freebsd-skq/sys/dev/jme/if_jme.c

3457 lines
96 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/rman.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <dev/jme/if_jmereg.h>
#include <dev/jme/if_jmevar.h>
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/* Define the following to disable printing Rx errors. */
#undef JME_SHOW_ERRORS
#define JME_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
MODULE_DEPEND(jme, pci, 1, 1, 1);
MODULE_DEPEND(jme, ether, 1, 1, 1);
MODULE_DEPEND(jme, miibus, 1, 1, 1);
/* Tunables. */
static int msi_disable = 0;
static int msix_disable = 0;
TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
/*
* Devices supported by this driver.
*/
static struct jme_dev {
uint16_t jme_vendorid;
uint16_t jme_deviceid;
const char *jme_name;
} jme_devs[] = {
{ VENDORID_JMICRON, DEVICEID_JMC250,
"JMicron Inc, JMC25x Gigabit Ethernet" },
{ VENDORID_JMICRON, DEVICEID_JMC260,
"JMicron Inc, JMC26x Fast Ethernet" },
};
static int jme_miibus_readreg(device_t, int, int);
static int jme_miibus_writereg(device_t, int, int, int);
static void jme_miibus_statchg(device_t);
static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
static int jme_mediachange(struct ifnet *);
static int jme_probe(device_t);
static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
static int jme_eeprom_macaddr(struct jme_softc *);
static int jme_efuse_macaddr(struct jme_softc *);
static void jme_reg_macaddr(struct jme_softc *);
static void jme_set_macaddr(struct jme_softc *, uint8_t *);
static void jme_map_intr_vector(struct jme_softc *);
static int jme_attach(device_t);
static int jme_detach(device_t);
static void jme_sysctl_node(struct jme_softc *);
static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int jme_dma_alloc(struct jme_softc *);
static void jme_dma_free(struct jme_softc *);
static int jme_shutdown(device_t);
static void jme_setlinkspeed(struct jme_softc *);
static void jme_setwol(struct jme_softc *);
static int jme_suspend(device_t);
static int jme_resume(device_t);
static int jme_encap(struct jme_softc *, struct mbuf **);
static void jme_start(struct ifnet *);
static void jme_start_locked(struct ifnet *);
static void jme_watchdog(struct jme_softc *);
static int jme_ioctl(struct ifnet *, u_long, caddr_t);
static void jme_mac_config(struct jme_softc *);
static void jme_link_task(void *, int);
static int jme_intr(void *);
static void jme_int_task(void *, int);
static void jme_txeof(struct jme_softc *);
static __inline void jme_discard_rxbuf(struct jme_softc *, int);
static void jme_rxeof(struct jme_softc *);
static int jme_rxintr(struct jme_softc *, int);
static void jme_tick(void *);
static void jme_reset(struct jme_softc *);
static void jme_init(void *);
static void jme_init_locked(struct jme_softc *);
static void jme_stop(struct jme_softc *);
static void jme_stop_tx(struct jme_softc *);
static void jme_stop_rx(struct jme_softc *);
static int jme_init_rx_ring(struct jme_softc *);
static void jme_init_tx_ring(struct jme_softc *);
static void jme_init_ssb(struct jme_softc *);
static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
static void jme_set_vlan(struct jme_softc *);
static void jme_set_filter(struct jme_softc *);
static void jme_stats_clear(struct jme_softc *);
static void jme_stats_save(struct jme_softc *);
static void jme_stats_update(struct jme_softc *);
static void jme_phy_down(struct jme_softc *);
static void jme_phy_up(struct jme_softc *);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
static device_method_t jme_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, jme_probe),
DEVMETHOD(device_attach, jme_attach),
DEVMETHOD(device_detach, jme_detach),
DEVMETHOD(device_shutdown, jme_shutdown),
DEVMETHOD(device_suspend, jme_suspend),
DEVMETHOD(device_resume, jme_resume),
/* MII interface. */
DEVMETHOD(miibus_readreg, jme_miibus_readreg),
DEVMETHOD(miibus_writereg, jme_miibus_writereg),
DEVMETHOD(miibus_statchg, jme_miibus_statchg),
{ NULL, NULL }
};
static driver_t jme_driver = {
"jme",
jme_methods,
sizeof(struct jme_softc)
};
static devclass_t jme_devclass;
DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0);
DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0);
static struct resource_spec jme_res_spec_mem[] = {
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec jme_irq_spec_legacy[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
static struct resource_spec jme_irq_spec_msi[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
/*
* Read a PHY register on the MII of the JMC250.
*/
static int
jme_miibus_readreg(device_t dev, int phy, int reg)
{
struct jme_softc *sc;
uint32_t val;
int i;
sc = device_get_softc(dev);
/* For FPGA version, PHY address 0 should be ignored. */
if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
return (0);
CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
for (i = JME_PHY_TIMEOUT; i > 0; i--) {
DELAY(1);
if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
break;
}
if (i == 0) {
device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
return (0);
}
return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
}
/*
* Write a PHY register on the MII of the JMC250.
*/
static int
jme_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct jme_softc *sc;
int i;
sc = device_get_softc(dev);
/* For FPGA version, PHY address 0 should be ignored. */
if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
return (0);
CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
for (i = JME_PHY_TIMEOUT; i > 0; i--) {
DELAY(1);
if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
break;
}
if (i == 0)
device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
return (0);
}
/*
* Callback from MII layer when media changes.
*/
static void
jme_miibus_statchg(device_t dev)
{
struct jme_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
}
/*
* Get the current interface media status.
*/
static void
jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct jme_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
JME_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
JME_UNLOCK(sc);
return;
}
mii = device_get_softc(sc->jme_miibus);
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
JME_UNLOCK(sc);
}
/*
* Set hardware to newly-selected media.
*/
static int
jme_mediachange(struct ifnet *ifp)
{
struct jme_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
JME_LOCK(sc);
mii = device_get_softc(sc->jme_miibus);
- Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP (reporting IFM_LOOP based on BMCR_LOOP is left in place though as it might provide useful for debugging). For most mii(4) drivers it was unclear whether the PHYs driven by them actually support loopback or not. Moreover, typically loopback mode also needs to be activated on the MAC, which none of the Ethernet drivers using mii(4) implements. Given that loopback media has no real use (and obviously hardly had a chance to actually work) besides for driver development (which just loopback mode should be sufficient for though, i.e one doesn't necessary need support for loopback media) support for it is just dropped as both NetBSD and OpenBSD already did quite some time ago. - Let mii_phy_add_media() also announce the support of IFM_NONE. - Restructure the PHY entry points to use a structure of entry points instead of discrete function pointers, and extend this to include a "reset" entry point. Make sure any PHY-specific reset routine is always used, and provide one for lxtphy(4) which disables MII interrupts (as is done for a few other PHYs we have drivers for). This includes changing NIC drivers which previously just called the generic mii_phy_reset() to now actually call the PHY-specific reset routine, which might be crucial in some cases. While at it, the redundant checks in these NIC drivers for mii->mii_instance not being zero before calling the reset routines were removed because as soon as one PHY driver attaches mii->mii_instance is incremented and we hardly can end up in their media change callbacks etc if no PHY driver has attached as mii_attach() would have failed in that case and not attach a miibus(4) instance. Consequently, NIC drivers now no longer should call mii_phy_reset() directly, so it was removed from EXPORT_SYMS. - Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe(). The purpose of that function is to perform the common steps to attach a PHY driver instance and to hook it up to the miibus(4) instance and to optionally also handle the probing, addition and initialization of the supported media. So all a PHY driver without any special requirements has to do in its bus attach method is to call mii_phy_dev_attach() along with PHY-specific MIIF_* flags, a pointer to its PHY functions and the add_media set to one. All PHY drivers were updated to take advantage of mii_phy_dev_attach() as appropriate. Along with these changes the capability mask was added to the mii_softc structure so PHY drivers taking advantage of mii_phy_dev_attach() but still handling media on their own do not need to fiddle with the MII attach arguments anyway. - Keep track of the PHY offset in the mii_softc structure. This is done for compatibility with NetBSD/OpenBSD. - Keep track of the PHY's OUI, model and revision in the mii_softc structure. Several PHY drivers require this information also after attaching and previously had to wrap their own softc around mii_softc. NetBSD/OpenBSD also keep track of the model and revision on their mii_softc structure. All PHY drivers were updated to take advantage as appropriate. - Convert the mebers of the MII data structure to unsigned where appropriate. This is partly inspired by NetBSD/OpenBSD. - According to IEEE 802.3-2002 the bits actually have to be reversed when mapping an OUI to the MII ID registers. All PHY drivers and miidevs where changed as necessary. Actually this now again allows to largely share miidevs with NetBSD, which fixed this problem already 9 years ago. Consequently miidevs was synced as far as possible. - Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that weren't explicitly converted to support flow control before. It's unclear whether flow control actually works with these but typically it should and their net behavior should be more correct with these changes in place than without if the MAC driver sets MIIF_DOPAUSE. Obtained from: NetBSD (partially) Reviewed by: yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
JME_UNLOCK(sc);
return (error);
}
static int
jme_probe(device_t dev)
{
struct jme_dev *sp;
int i;
uint16_t vendor, devid;
vendor = pci_get_vendor(dev);
devid = pci_get_device(dev);
sp = jme_devs;
for (i = 0; i < nitems(jme_devs); i++, sp++) {
if (vendor == sp->jme_vendorid &&
devid == sp->jme_deviceid) {
device_set_desc(dev, sp->jme_name);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static int
jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
{
uint32_t reg;
int i;
*val = 0;
for (i = JME_TIMEOUT; i > 0; i--) {
reg = CSR_READ_4(sc, JME_SMBCSR);
if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
break;
DELAY(1);
}
if (i == 0) {
device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
return (ETIMEDOUT);
}
reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
for (i = JME_TIMEOUT; i > 0; i--) {
DELAY(1);
reg = CSR_READ_4(sc, JME_SMBINTF);
if ((reg & SMBINTF_CMD_TRIGGER) == 0)
break;
}
if (i == 0) {
device_printf(sc->jme_dev, "EEPROM read timeout!\n");
return (ETIMEDOUT);
}
reg = CSR_READ_4(sc, JME_SMBINTF);
*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
return (0);
}
static int
jme_eeprom_macaddr(struct jme_softc *sc)
{
uint8_t eaddr[ETHER_ADDR_LEN];
uint8_t fup, reg, val;
uint32_t offset;
int match;
offset = 0;
if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
fup != JME_EEPROM_SIG0)
return (ENOENT);
if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
fup != JME_EEPROM_SIG1)
return (ENOENT);
match = 0;
do {
if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
break;
if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
(fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
break;
if (reg >= JME_PAR0 &&
reg < JME_PAR0 + ETHER_ADDR_LEN) {
if (jme_eeprom_read_byte(sc, offset + 2,
&val) != 0)
break;
eaddr[reg - JME_PAR0] = val;
match++;
}
}
/* Check for the end of EEPROM descriptor. */
if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
break;
/* Try next eeprom descriptor. */
offset += JME_EEPROM_DESC_BYTES;
} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
if (match == ETHER_ADDR_LEN) {
bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
return (0);
}
return (ENOENT);
}
static int
jme_efuse_macaddr(struct jme_softc *sc)
{
uint32_t reg;
int i;
reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
EFUSE_CTL1_AUTOLAOD_DONE)
return (ENOENT);
/* Reset eFuse controller. */
reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
reg |= EFUSE_CTL2_RESET;
pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
reg &= ~EFUSE_CTL2_RESET;
pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
/* Have eFuse reload station address to MAC controller. */
reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
reg &= ~EFUSE_CTL1_CMD_MASK;
reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
/*
* Verify completion of eFuse autload command. It should be
* completed within 108us.
*/
DELAY(110);
for (i = 10; i > 0; i--) {
reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
DELAY(20);
continue;
}
if ((reg & EFUSE_CTL1_EXECUTE) == 0)
break;
/* Station address loading is still in progress. */
DELAY(20);
}
if (i == 0) {
device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
return (ETIMEDOUT);
}
return (0);
}
static void
jme_reg_macaddr(struct jme_softc *sc)
{
uint32_t par0, par1;
/* Read station address. */
par0 = CSR_READ_4(sc, JME_PAR0);
par1 = CSR_READ_4(sc, JME_PAR1);
par1 &= 0xFFFF;
if ((par0 == 0 && par1 == 0) ||
(par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
device_printf(sc->jme_dev,
"Failed to retrieve Ethernet address.\n");
} else {
/*
* For controllers that use eFuse, the station address
* could also be extracted from JME_PCI_PAR0 and
* JME_PCI_PAR1 registers in PCI configuration space.
* Each register holds exactly half of station address(24bits)
* so use JME_PAR0, JME_PAR1 registers instead.
*/
sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
}
}
static void
jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
{
uint32_t val;
int i;
if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
/*
* Avoid reprogramming station address if the address
* is the same as previous one. Note, reprogrammed
* station address is permanent as if it was written
* to EEPROM. So if station address was changed by
* admistrator it's possible to lose factory configured
* address when driver fails to restore its address.
* (e.g. reboot or system crash)
*/
if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
for (i = 0; i < ETHER_ADDR_LEN; i++) {
val = JME_EFUSE_EEPROM_FUNC0 <<
JME_EFUSE_EEPROM_FUNC_SHIFT;
val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
JME_EFUSE_EEPROM_PAGE_SHIFT;
val |= (JME_PAR0 + i) <<
JME_EFUSE_EEPROM_ADDR_SHIFT;
val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
val | JME_EFUSE_EEPROM_WRITE, 4);
}
}
} else {
CSR_WRITE_4(sc, JME_PAR0,
eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
}
}
static void
jme_map_intr_vector(struct jme_softc *sc)
{
uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
bzero(map, sizeof(map));
/* Map Tx interrupts source to MSI/MSIX vector 2. */
map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
/* Map Rx interrupts source to MSI/MSIX vector 1. */
map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
/* Map all other interrupts source to MSI/MSIX vector 0. */
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
}
static int
jme_attach(device_t dev)
{
struct jme_softc *sc;
struct ifnet *ifp;
struct mii_softc *miisc;
struct mii_data *mii;
uint32_t reg;
uint16_t burst;
int error, i, mii_flags, msic, msixc, pmc;
error = 0;
sc = device_get_softc(dev);
sc->jme_dev = dev;
mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
/*
* Map the device. JMC250 supports both memory mapped and I/O
* register space access. Because I/O register access should
* use different BARs to access registers it's waste of time
* to use I/O register spce access. JMC250 uses 16K to map
* entire memory space.
*/
pci_enable_busmaster(dev);
sc->jme_res_spec = jme_res_spec_mem;
sc->jme_irq_spec = jme_irq_spec_legacy;
error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
if (error != 0) {
device_printf(dev, "cannot allocate memory resources.\n");
goto fail;
}
/* Allocate IRQ resources. */
msixc = pci_msix_count(dev);
msic = pci_msi_count(dev);
if (bootverbose) {
device_printf(dev, "MSIX count : %d\n", msixc);
device_printf(dev, "MSI count : %d\n", msic);
}
/* Use 1 MSI/MSI-X. */
if (msixc > 1)
msixc = 1;
if (msic > 1)
msic = 1;
/* Prefer MSIX over MSI. */
if (msix_disable == 0 || msi_disable == 0) {
if (msix_disable == 0 && msixc > 0 &&
pci_alloc_msix(dev, &msixc) == 0) {
if (msixc == 1) {
device_printf(dev, "Using %d MSIX messages.\n",
msixc);
sc->jme_flags |= JME_FLAG_MSIX;
sc->jme_irq_spec = jme_irq_spec_msi;
} else
pci_release_msi(dev);
}
if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
if (msic == 1) {
device_printf(dev, "Using %d MSI messages.\n",
msic);
sc->jme_flags |= JME_FLAG_MSI;
sc->jme_irq_spec = jme_irq_spec_msi;
} else
pci_release_msi(dev);
}
/* Map interrupt vector 0, 1 and 2. */
if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
(sc->jme_flags & JME_FLAG_MSIX) != 0)
jme_map_intr_vector(sc);
}
error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
if (error != 0) {
device_printf(dev, "cannot allocate IRQ resources.\n");
goto fail;
}
sc->jme_rev = pci_get_device(dev);
if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
sc->jme_flags |= JME_FLAG_FASTETH;
sc->jme_flags |= JME_FLAG_NOJUMBO;
}
reg = CSR_READ_4(sc, JME_CHIPMODE);
sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
CHIPMODE_NOT_FPGA)
sc->jme_flags |= JME_FLAG_FPGA;
if (bootverbose) {
device_printf(dev, "PCI device revision : 0x%04x\n",
sc->jme_rev);
device_printf(dev, "Chip revision : 0x%02x\n",
sc->jme_chip_rev);
if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
device_printf(dev, "FPGA revision : 0x%04x\n",
(reg & CHIPMODE_FPGA_REV_MASK) >>
CHIPMODE_FPGA_REV_SHIFT);
}
if (sc->jme_chip_rev == 0xFF) {
device_printf(dev, "Unknown chip revision : 0x%02x\n",
sc->jme_rev);
error = ENXIO;
goto fail;
}
/* Identify controller features and bugs. */
if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
sc->jme_flags |= JME_FLAG_DMA32BIT;
if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
sc->jme_flags |= JME_FLAG_HWMIB;
}
/* Reset the ethernet controller. */
jme_reset(sc);
/* Get station address. */
if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
error = jme_efuse_macaddr(sc);
if (error == 0)
jme_reg_macaddr(sc);
} else {
error = ENOENT;
reg = CSR_READ_4(sc, JME_SMBCSR);
if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
error = jme_eeprom_macaddr(sc);
if (error != 0 && bootverbose)
device_printf(sc->jme_dev,
"ethernet hardware address not found in EEPROM.\n");
if (error != 0)
jme_reg_macaddr(sc);
}
/*
* Save PHY address.
* Integrated JR0211 has fixed PHY address whereas FPGA version
* requires PHY probing to get correct PHY address.
*/
if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
GPREG0_PHY_ADDR_MASK;
if (bootverbose)
device_printf(dev, "PHY is at address %d.\n",
sc->jme_phyaddr);
} else
sc->jme_phyaddr = 0;
/* Set max allowable DMA size. */
if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
sc->jme_flags |= JME_FLAG_PCIE;
burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
if (bootverbose) {
device_printf(dev, "Read request size : %d bytes.\n",
128 << ((burst >> 12) & 0x07));
device_printf(dev, "TLP payload size : %d bytes.\n",
128 << ((burst >> 5) & 0x07));
}
switch ((burst >> 12) & 0x07) {
case 0:
sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
break;
case 1:
sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
break;
default:
sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
break;
}
sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
} else {
sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
}
/* Create coalescing sysctl node. */
jme_sysctl_node(sc);
if ((error = jme_dma_alloc(sc)) != 0)
goto fail;
ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet structure.\n");
error = ENXIO;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = jme_ioctl;
ifp->if_start = jme_start;
ifp->if_init = jme_init;
ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
sc->jme_flags |= JME_FLAG_PMCAP;
ifp->if_capabilities |= IFCAP_WOL_MAGIC;
}
ifp->if_capenable = ifp->if_capabilities;
/* Wakeup PHY. */
jme_phy_up(sc);
mii_flags = MIIF_DOPAUSE;
/* Ask PHY calibration to PHY driver. */
if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
mii_flags |= MIIF_MACPRIV0;
/* Set up MII bus. */
error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
jme_mediastatus, BMSR_DEFCAPMASK,
sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
MII_OFFSET_ANY, mii_flags);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/*
* Force PHY to FPGA mode.
*/
if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
mii = device_get_softc(sc->jme_miibus);
if (mii->mii_instance != 0) {
LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
if (miisc->mii_phy != 0) {
sc->jme_phyaddr = miisc->mii_phy;
break;
}
}
if (sc->jme_phyaddr != 0) {
device_printf(sc->jme_dev,
"FPGA PHY is at %d\n", sc->jme_phyaddr);
/* vendor magic. */
jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
0x0004);
}
}
}
ether_ifattach(ifp, sc->jme_eaddr);
/* VLAN capability setup */
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
ifp->if_capenable = ifp->if_capabilities;
/* Tell the upper layer(s) we support long frames. */
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
/* Create local taskq. */
sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->jme_tq);
if (sc->jme_tq == NULL) {
device_printf(dev, "could not create taskqueue.\n");
ether_ifdetach(ifp);
error = ENXIO;
goto fail;
}
taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->jme_dev));
for (i = 0; i < 1; i++) {
error = bus_setup_intr(dev, sc->jme_irq[i],
INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
&sc->jme_intrhand[i]);
if (error != 0)
break;
}
if (error != 0) {
device_printf(dev, "could not set up interrupt handler.\n");
taskqueue_free(sc->jme_tq);
sc->jme_tq = NULL;
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error != 0)
jme_detach(dev);
return (error);
}
static int
jme_detach(device_t dev)
{
struct jme_softc *sc;
struct ifnet *ifp;
int i;
sc = device_get_softc(dev);
ifp = sc->jme_ifp;
if (device_is_attached(dev)) {
JME_LOCK(sc);
sc->jme_flags |= JME_FLAG_DETACH;
jme_stop(sc);
JME_UNLOCK(sc);
callout_drain(&sc->jme_tick_ch);
taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
/* Restore possibly modified station address. */
if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
jme_set_macaddr(sc, sc->jme_eaddr);
ether_ifdetach(ifp);
}
if (sc->jme_tq != NULL) {
taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
taskqueue_free(sc->jme_tq);
sc->jme_tq = NULL;
}
if (sc->jme_miibus != NULL) {
device_delete_child(dev, sc->jme_miibus);
sc->jme_miibus = NULL;
}
bus_generic_detach(dev);
jme_dma_free(sc);
if (ifp != NULL) {
if_free(ifp);
sc->jme_ifp = NULL;
}
for (i = 0; i < 1; i++) {
if (sc->jme_intrhand[i] != NULL) {
bus_teardown_intr(dev, sc->jme_irq[i],
sc->jme_intrhand[i]);
sc->jme_intrhand[i] = NULL;
}
}
if (sc->jme_irq[0] != NULL)
bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
pci_release_msi(dev);
if (sc->jme_res[0] != NULL)
bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
mtx_destroy(&sc->jme_mtx);
return (0);
}
#define JME_SYSCTL_STAT_ADD32(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
static void
jme_sysctl_node(struct jme_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child, *parent;
struct sysctl_oid *tree;
struct jme_hw_stats *stats;
int error;
stats = &sc->jme_stats;
ctx = device_get_sysctl_ctx(sc->jme_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0,
sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0,
sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0,
sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0,
sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0,
sysctl_hw_jme_proc_limit, "I",
"max number of Rx events to process");
/* Pull in device tunables. */
sc->jme_process_limit = JME_PROC_DEFAULT;
error = resource_int_value(device_get_name(sc->jme_dev),
device_get_unit(sc->jme_dev), "process_limit",
&sc->jme_process_limit);
if (error == 0) {
if (sc->jme_process_limit < JME_PROC_MIN ||
sc->jme_process_limit > JME_PROC_MAX) {
device_printf(sc->jme_dev,
"process_limit value out of range; "
"using default: %d\n", JME_PROC_DEFAULT);
sc->jme_process_limit = JME_PROC_DEFAULT;
}
}
sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
error = resource_int_value(device_get_name(sc->jme_dev),
device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
if (error == 0) {
if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
device_printf(sc->jme_dev,
"tx_coal_to value out of range; "
"using default: %d\n", PCCTX_COAL_TO_DEFAULT);
sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
}
}
sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
error = resource_int_value(device_get_name(sc->jme_dev),
device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
if (error == 0) {
if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
device_printf(sc->jme_dev,
"tx_coal_pkt value out of range; "
"using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
}
}
sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
error = resource_int_value(device_get_name(sc->jme_dev),
device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
if (error == 0) {
if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
device_printf(sc->jme_dev,
"rx_coal_to value out of range; "
"using default: %d\n", PCCRX_COAL_TO_DEFAULT);
sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
}
}
sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
error = resource_int_value(device_get_name(sc->jme_dev),
device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
if (error == 0) {
if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
device_printf(sc->jme_dev,
"tx_coal_pkt value out of range; "
"using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
}
}
if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
return;
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "JME statistics");
parent = SYSCTL_CHILDREN(tree);
/* Rx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "Rx MAC statistics");
child = SYSCTL_CHILDREN(tree);
JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->rx_good_frames, "Good frames");
JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
&stats->rx_crc_errs, "CRC errors");
JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
&stats->rx_mii_errs, "MII errors");
JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
&stats->rx_fifo_oflows, "FIFO overflows");
JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
&stats->rx_desc_empty, "Descriptor empty");
JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
&stats->rx_bad_frames, "Bad frames");
/* Tx statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "Tx MAC statistics");
child = SYSCTL_CHILDREN(tree);
JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
&stats->tx_good_frames, "Good frames");
JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
&stats->tx_bad_frames, "Bad frames");
}
#undef JME_SYSCTL_STAT_ADD32
struct jme_dmamap_arg {
bus_addr_t jme_busaddr;
};
static void
jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct jme_dmamap_arg *ctx;
if (error != 0)
return;
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
ctx = (struct jme_dmamap_arg *)arg;
ctx->jme_busaddr = segs[0].ds_addr;
}
static int
jme_dma_alloc(struct jme_softc *sc)
{
struct jme_dmamap_arg ctx;
struct jme_txdesc *txd;
struct jme_rxdesc *rxd;
bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
int error, i;
lowaddr = BUS_SPACE_MAXADDR;
if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
lowaddr = BUS_SPACE_MAXADDR_32BIT;
again:
/* Create parent ring tag. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1, 0, /* algnmnt, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_ring_tag);
if (error != 0) {
device_printf(sc->jme_dev,
"could not create parent ring DMA tag.\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
JME_TX_RING_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
JME_TX_RING_SIZE, /* maxsize */
1, /* nsegments */
JME_TX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_tx_ring_tag);
if (error != 0) {
device_printf(sc->jme_dev,
"could not allocate Tx ring DMA tag.\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
JME_RX_RING_ALIGN, 0, /* algnmnt, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
JME_RX_RING_SIZE, /* maxsize */
1, /* nsegments */
JME_RX_RING_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_rx_ring_tag);
if (error != 0) {
device_printf(sc->jme_dev,
"could not allocate Rx ring DMA tag.\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
(void **)&sc->jme_rdata.jme_tx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->jme_cdata.jme_tx_ring_map);
if (error != 0) {
device_printf(sc->jme_dev,
"could not allocate DMA'able memory for Tx ring.\n");
goto fail;
}
ctx.jme_busaddr = 0;
error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (error != 0 || ctx.jme_busaddr == 0) {
device_printf(sc->jme_dev,
"could not load DMA'able memory for Tx ring.\n");
goto fail;
}
sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
(void **)&sc->jme_rdata.jme_rx_ring,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->jme_cdata.jme_rx_ring_map);
if (error != 0) {
device_printf(sc->jme_dev,
"could not allocate DMA'able memory for Rx ring.\n");
goto fail;
}
ctx.jme_busaddr = 0;
error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (error != 0 || ctx.jme_busaddr == 0) {
device_printf(sc->jme_dev,
"could not load DMA'able memory for Rx ring.\n");
goto fail;
}
sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
/* Tx/Rx descriptor queue should reside within 4GB boundary. */
tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
JME_TX_RING_SIZE;
rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
JME_RX_RING_SIZE;
if ((JME_ADDR_HI(tx_ring_end) !=
JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
(JME_ADDR_HI(rx_ring_end) !=
JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
device_printf(sc->jme_dev, "4GB boundary crossed, "
"switching to 32bit DMA address mode.\n");
jme_dma_free(sc);
/* Limit DMA address space to 32bit and try again. */
lowaddr = BUS_SPACE_MAXADDR_32BIT;
goto again;
}
}
lowaddr = BUS_SPACE_MAXADDR;
if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
lowaddr = BUS_SPACE_MAXADDR_32BIT;
/* Create parent buffer tag. */
error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1, 0, /* algnmnt, boundary */
lowaddr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_buffer_tag);
if (error != 0) {
device_printf(sc->jme_dev,
"could not create parent buffer DMA tag.\n");
goto fail;
}
/* Create shadow status block tag. */
error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
JME_SSB_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
JME_SSB_SIZE, /* maxsize */
1, /* nsegments */
JME_SSB_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_ssb_tag);
if (error != 0) {
device_printf(sc->jme_dev,
"could not create shared status block DMA tag.\n");
goto fail;
}
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
JME_TSO_MAXSIZE, /* maxsize */
JME_MAXTXSEGS, /* nsegments */
JME_TSO_MAXSEGSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_tx_tag);
if (error != 0) {
device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
JME_RX_BUF_ALIGN, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->jme_cdata.jme_rx_tag);
if (error != 0) {
device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
goto fail;
}
/*
* Allocate DMA'able memory and load the DMA map for shared
* status block.
*/
error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
(void **)&sc->jme_rdata.jme_ssb_block,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->jme_cdata.jme_ssb_map);
if (error != 0) {
device_printf(sc->jme_dev, "could not allocate DMA'able "
"memory for shared status block.\n");
goto fail;
}
ctx.jme_busaddr = 0;
error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (error != 0 || ctx.jme_busaddr == 0) {
device_printf(sc->jme_dev, "could not load DMA'able memory "
"for shared status block.\n");
goto fail;
}
sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->jme_dev,
"could not create Tx dmamap.\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
&sc->jme_cdata.jme_rx_sparemap)) != 0) {
device_printf(sc->jme_dev,
"could not create spare Rx dmamap.\n");
goto fail;
}
for (i = 0; i < JME_RX_RING_CNT; i++) {
rxd = &sc->jme_cdata.jme_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->jme_dev,
"could not create Rx dmamap.\n");
goto fail;
}
}
fail:
return (error);
}
static void
jme_dma_free(struct jme_softc *sc)
{
struct jme_txdesc *txd;
struct jme_rxdesc *rxd;
int i;
/* Tx ring */
if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
if (sc->jme_rdata.jme_tx_ring_paddr)
bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_cdata.jme_tx_ring_map);
if (sc->jme_rdata.jme_tx_ring)
bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_rdata.jme_tx_ring,
sc->jme_cdata.jme_tx_ring_map);
sc->jme_rdata.jme_tx_ring = NULL;
sc->jme_rdata.jme_tx_ring_paddr = 0;
bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
sc->jme_cdata.jme_tx_ring_tag = NULL;
}
/* Rx ring */
if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
if (sc->jme_rdata.jme_rx_ring_paddr)
bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
sc->jme_cdata.jme_rx_ring_map);
if (sc->jme_rdata.jme_rx_ring)
bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
sc->jme_rdata.jme_rx_ring,
sc->jme_cdata.jme_rx_ring_map);
sc->jme_rdata.jme_rx_ring = NULL;
sc->jme_rdata.jme_rx_ring_paddr = 0;
bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
sc->jme_cdata.jme_rx_ring_tag = NULL;
}
/* Tx buffers */
if (sc->jme_cdata.jme_tx_tag != NULL) {
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
sc->jme_cdata.jme_tx_tag = NULL;
}
/* Rx buffers */
if (sc->jme_cdata.jme_rx_tag != NULL) {
for (i = 0; i < JME_RX_RING_CNT; i++) {
rxd = &sc->jme_cdata.jme_rxdesc[i];
if (rxd->rx_dmamap != NULL) {
bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->jme_cdata.jme_rx_sparemap != NULL) {
bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
sc->jme_cdata.jme_rx_sparemap);
sc->jme_cdata.jme_rx_sparemap = NULL;
}
bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
sc->jme_cdata.jme_rx_tag = NULL;
}
/* Shared status block. */
if (sc->jme_cdata.jme_ssb_tag != NULL) {
if (sc->jme_rdata.jme_ssb_block_paddr)
bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
sc->jme_cdata.jme_ssb_map);
if (sc->jme_rdata.jme_ssb_block)
bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
sc->jme_rdata.jme_ssb_block,
sc->jme_cdata.jme_ssb_map);
sc->jme_rdata.jme_ssb_block = NULL;
sc->jme_rdata.jme_ssb_block_paddr = 0;
bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
sc->jme_cdata.jme_ssb_tag = NULL;
}
if (sc->jme_cdata.jme_buffer_tag != NULL) {
bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
sc->jme_cdata.jme_buffer_tag = NULL;
}
if (sc->jme_cdata.jme_ring_tag != NULL) {
bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
sc->jme_cdata.jme_ring_tag = NULL;
}
}
/*
* Make sure the interface is stopped at reboot time.
*/
static int
jme_shutdown(device_t dev)
{
return (jme_suspend(dev));
}
/*
* Unlike other ethernet controllers, JMC250 requires
* explicit resetting link speed to 10/100Mbps as gigabit
* link will cunsume more power than 375mA.
* Note, we reset the link speed to 10/100Mbps with
* auto-negotiation but we don't know whether that operation
* would succeed or not as we have no control after powering
* off. If the renegotiation fail WOL may not work. Running
* at 1Gbps draws more power than 375mA at 3.3V which is
* specified in PCI specification and that would result in
* complete shutdowning power to ethernet controller.
*
* TODO
* Save current negotiated media speed/duplex/flow-control
* to softc and restore the same link again after resuming.
* PHY handling such as power down/resetting to 100Mbps
* may be better handled in suspend method in phy driver.
*/
static void
jme_setlinkspeed(struct jme_softc *sc)
{
struct mii_data *mii;
int aneg, i;
JME_LOCK_ASSERT(sc);
mii = device_get_softc(sc->jme_miibus);
mii_pollstat(mii);
aneg = 0;
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch IFM_SUBTYPE(mii->mii_media_active) {
case IFM_10_T:
case IFM_100_TX:
return;
case IFM_1000_T:
aneg++;
default:
break;
}
}
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
BMCR_AUTOEN | BMCR_STARTNEG);
DELAY(1000);
if (aneg != 0) {
/* Poll link state until jme(4) get a 10/100 link. */
for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
mii_pollstat(mii);
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
jme_mac_config(sc);
return;
default:
break;
}
}
JME_UNLOCK(sc);
pause("jmelnk", hz);
JME_LOCK(sc);
}
if (i == MII_ANEGTICKS_GIGE)
device_printf(sc->jme_dev, "establishing link failed, "
"WOL may not work!");
}
/*
* No link, force MAC to have 100Mbps, full-duplex link.
* This is the last resort and may/may not work.
*/
mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
jme_mac_config(sc);
}
static void
jme_setwol(struct jme_softc *sc)
{
struct ifnet *ifp;
uint32_t gpr, pmcs;
uint16_t pmstat;
int pmc;
JME_LOCK_ASSERT(sc);
if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
/* Remove Tx MAC/offload clock to save more power. */
if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
CSR_WRITE_4(sc, JME_GPREG1,
CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
/* No PME capability, PHY power down. */
jme_phy_down(sc);
return;
}
ifp = sc->jme_ifp;
gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
pmcs = CSR_READ_4(sc, JME_PMCS);
pmcs &= ~PMCS_WOL_ENB_MASK;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
/* Enable PME message. */
gpr |= GPREG0_PME_ENB;
/* For gigabit controllers, reset link speed to 10/100. */
if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
jme_setlinkspeed(sc);
}
CSR_WRITE_4(sc, JME_PMCS, pmcs);
CSR_WRITE_4(sc, JME_GPREG0, gpr);
/* Remove Tx MAC/offload clock to save more power. */
if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
/* Request PME. */
pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
if ((ifp->if_capenable & IFCAP_WOL) == 0) {
/* No WOL, PHY power down. */
jme_phy_down(sc);
}
}
static int
jme_suspend(device_t dev)
{
struct jme_softc *sc;
sc = device_get_softc(dev);
JME_LOCK(sc);
jme_stop(sc);
jme_setwol(sc);
JME_UNLOCK(sc);
return (0);
}
static int
jme_resume(device_t dev)
{
struct jme_softc *sc;
struct ifnet *ifp;
uint16_t pmstat;
int pmc;
sc = device_get_softc(dev);
JME_LOCK(sc);
if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
pmstat = pci_read_config(sc->jme_dev,
pmc + PCIR_POWER_STATUS, 2);
/* Disable PME clear PME status. */
pmstat &= ~PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->jme_dev,
pmc + PCIR_POWER_STATUS, pmstat, 2);
}
/* Wakeup PHY. */
jme_phy_up(sc);
ifp = sc->jme_ifp;
if ((ifp->if_flags & IFF_UP) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
jme_init_locked(sc);
}
JME_UNLOCK(sc);
return (0);
}
static int
jme_encap(struct jme_softc *sc, struct mbuf **m_head)
{
struct jme_txdesc *txd;
struct jme_desc *desc;
struct mbuf *m;
bus_dma_segment_t txsegs[JME_MAXTXSEGS];
int error, i, nsegs, prod;
uint32_t cflags, tsosegsz;
JME_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
/*
* Due to the adherence to NDIS specification JMC250
* assumes upper stack computed TCP pseudo checksum
* without including payload length. This breaks
* checksum offload for TSO case so recompute TCP
* pseudo checksum for JMC250. Hopefully this wouldn't
* be much burden on modern CPUs.
*/
struct ether_header *eh;
struct ip *ip;
struct tcphdr *tcp;
uint32_t ip_off, poff;
if (M_WRITABLE(*m_head) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_NOWAIT);
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
ip_off = sizeof(struct ether_header);
m = m_pullup(*m_head, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
/* Check the existence of VLAN tag. */
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
ip_off = sizeof(struct ether_vlan_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
}
m = m_pullup(m, ip_off + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + ip_off);
poff = ip_off + (ip->ip_hl << 2);
m = m_pullup(m, poff + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
/*
* Reset IP checksum and recompute TCP pseudo
* checksum that NDIS specification requires.
*/
ip = (struct ip *)(mtod(m, char *) + ip_off);
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
ip->ip_sum = 0;
if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr,
htons((tcp->th_off << 2) + IPPROTO_TCP));
/* No need to TSO, force IP checksum offload. */
(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
} else
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
*m_head = m;
}
prod = sc->jme_cdata.jme_tx_prod;
txd = &sc->jme_cdata.jme_txdesc[prod];
error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/*
* Check descriptor overrun. Leave one free descriptor.
* Since we always use 64bit address mode for transmitting,
* each Tx request requires one more dummy descriptor.
*/
if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
return (ENOBUFS);
}
m = *m_head;
cflags = 0;
tsosegsz = 0;
/* Configure checksum offload and TSO. */
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
JME_TD_MSS_SHIFT;
cflags |= JME_TD_TSO;
} else {
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
cflags |= JME_TD_IPCSUM;
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
cflags |= JME_TD_TCPCSUM;
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
cflags |= JME_TD_UDPCSUM;
}
/* Configure VLAN. */
if ((m->m_flags & M_VLANTAG) != 0) {
cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
cflags |= JME_TD_VLAN_TAG;
}
desc = &sc->jme_rdata.jme_tx_ring[prod];
desc->flags = htole32(cflags);
desc->buflen = htole32(tsosegsz);
desc->addr_hi = htole32(m->m_pkthdr.len);
desc->addr_lo = 0;
sc->jme_cdata.jme_tx_cnt++;
JME_DESC_INC(prod, JME_TX_RING_CNT);
for (i = 0; i < nsegs; i++) {
desc = &sc->jme_rdata.jme_tx_ring[prod];
desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
desc->buflen = htole32(txsegs[i].ds_len);
desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
sc->jme_cdata.jme_tx_cnt++;
JME_DESC_INC(prod, JME_TX_RING_CNT);
}
/* Update producer index. */
sc->jme_cdata.jme_tx_prod = prod;
/*
* Finally request interrupt and give the first descriptor
* owenership to hardware.
*/
desc = txd->tx_desc;
desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
txd->tx_m = m;
txd->tx_ndesc = nsegs + 1;
/* Sync descriptors. */
bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_cdata.jme_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
jme_start(struct ifnet *ifp)
{
struct jme_softc *sc;
sc = ifp->if_softc;
JME_LOCK(sc);
jme_start_locked(ifp);
JME_UNLOCK(sc);
}
static void
jme_start_locked(struct ifnet *ifp)
{
struct jme_softc *sc;
struct mbuf *m_head;
int enq;
sc = ifp->if_softc;
JME_LOCK_ASSERT(sc);
if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
jme_txeof(sc);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
return;
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (jme_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/*
* Reading TXCSR takes very long time under heavy load
* so cache TXCSR value and writes the ORed value with
* the kick command to the TXCSR. This saves one register
* access cycle.
*/
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
TXCSR_TXQ_N_START(TXCSR_TXQ0));
/* Set a timeout in case the chip goes out to lunch. */
sc->jme_watchdog_timer = JME_TX_TIMEOUT;
}
}
static void
jme_watchdog(struct jme_softc *sc)
{
struct ifnet *ifp;
JME_LOCK_ASSERT(sc);
if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
return;
ifp = sc->jme_ifp;
if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
jme_init_locked(sc);
return;
}
jme_txeof(sc);
if (sc->jme_cdata.jme_tx_cnt == 0) {
if_printf(sc->jme_ifp,
"watchdog timeout (missed Tx interrupts) -- recovering\n");
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
jme_start_locked(ifp);
return;
}
if_printf(sc->jme_ifp, "watchdog timeout\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
jme_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
jme_start_locked(ifp);
}
static int
jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct jme_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
uint32_t reg;
int error, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
ifr->ifr_mtu > JME_MAX_MTU)) {
error = EINVAL;
break;
}
if (ifp->if_mtu != ifr->ifr_mtu) {
/*
* No special configuration is required when interface
* MTU is changed but availability of TSO/Tx checksum
* offload should be chcked against new MTU size as
* FIFO size is just 2K.
*/
JME_LOCK(sc);
if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
ifp->if_capenable &=
~(IFCAP_TXCSUM | IFCAP_TSO4);
ifp->if_hwassist &=
~(JME_CSUM_FEATURES | CSUM_TSO);
VLAN_CAPABILITIES(ifp);
}
ifp->if_mtu = ifr->ifr_mtu;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
jme_init_locked(sc);
}
JME_UNLOCK(sc);
}
break;
case SIOCSIFFLAGS:
JME_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc->jme_if_flags)
& (IFF_PROMISC | IFF_ALLMULTI)) != 0)
jme_set_filter(sc);
} else {
if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
jme_init_locked(sc);
}
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
jme_stop(sc);
}
sc->jme_if_flags = ifp->if_flags;
JME_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
JME_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
jme_set_filter(sc);
JME_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->jme_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
JME_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
ifp->if_mtu < JME_TX_FIFO_SIZE) {
if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
ifp->if_hwassist |= JME_CSUM_FEATURES;
else
ifp->if_hwassist &= ~JME_CSUM_FEATURES;
}
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_RXCSUM;
reg = CSR_READ_4(sc, JME_RXMAC);
reg &= ~RXMAC_CSUM_ENB;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
reg |= RXMAC_CSUM_ENB;
CSR_WRITE_4(sc, JME_RXMAC, reg);
}
if ((mask & IFCAP_TSO4) != 0 &&
ifp->if_mtu < JME_TX_FIFO_SIZE) {
if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
}
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
jme_set_vlan(sc);
}
JME_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
jme_mac_config(struct jme_softc *sc)
{
struct mii_data *mii;
uint32_t ghc, gpreg, rxmac, txmac, txpause;
uint32_t txclk;
JME_LOCK_ASSERT(sc);
mii = device_get_softc(sc->jme_miibus);
CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
DELAY(10);
CSR_WRITE_4(sc, JME_GHC, 0);
ghc = 0;
txclk = 0;
rxmac = CSR_READ_4(sc, JME_RXMAC);
rxmac &= ~RXMAC_FC_ENB;
txmac = CSR_READ_4(sc, JME_TXMAC);
txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
txpause = CSR_READ_4(sc, JME_TXPFC);
txpause &= ~TXPFC_PAUSE_ENB;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
ghc |= GHC_FULL_DUPLEX;
rxmac &= ~RXMAC_COLL_DET_ENB;
txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
TXMAC_FRAME_BURST);
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
txpause |= TXPFC_PAUSE_ENB;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
rxmac |= RXMAC_FC_ENB;
/* Disable retry transmit timer/retry limit. */
CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
} else {
rxmac |= RXMAC_COLL_DET_ENB;
txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
/* Enable retry transmit timer/retry limit. */
CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
}
/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
ghc |= GHC_SPEED_10;
txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
break;
case IFM_100_TX:
ghc |= GHC_SPEED_100;
txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
break;
case IFM_1000_T:
if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
break;
ghc |= GHC_SPEED_1000;
txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
break;
default:
break;
}
if (sc->jme_rev == DEVICEID_JMC250 &&
sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
/*
* Workaround occasional packet loss issue of JMC250 A2
* when it runs on half-duplex media.
*/
gpreg = CSR_READ_4(sc, JME_GPREG1);
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
gpreg &= ~GPREG1_HDPX_FIX;
else
gpreg |= GPREG1_HDPX_FIX;
CSR_WRITE_4(sc, JME_GPREG1, gpreg);
/* Workaround CRC errors at 100Mbps on JMC250 A2. */
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
/* Extend interface FIFO depth. */
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
0x1B, 0x0000);
} else {
/* Select default interface FIFO depth. */
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
0x1B, 0x0004);
}
}
if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
ghc |= txclk;
CSR_WRITE_4(sc, JME_GHC, ghc);
CSR_WRITE_4(sc, JME_RXMAC, rxmac);
CSR_WRITE_4(sc, JME_TXMAC, txmac);
CSR_WRITE_4(sc, JME_TXPFC, txpause);
}
static void
jme_link_task(void *arg, int pending)
{
struct jme_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
struct jme_txdesc *txd;
bus_addr_t paddr;
int i;
sc = (struct jme_softc *)arg;
JME_LOCK(sc);
mii = device_get_softc(sc->jme_miibus);
ifp = sc->jme_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
JME_UNLOCK(sc);
return;
}
sc->jme_flags &= ~JME_FLAG_LINK;
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->jme_flags |= JME_FLAG_LINK;
break;
case IFM_1000_T:
if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
break;
sc->jme_flags |= JME_FLAG_LINK;
break;
default:
break;
}
}
/*
* Disabling Rx/Tx MACs have a side-effect of resetting
* JME_TXNDA/JME_RXNDA register to the first address of
* Tx/Rx descriptor address. So driver should reset its
* internal procucer/consumer pointer and reclaim any
* allocated resources. Note, just saving the value of
* JME_TXNDA and JME_RXNDA registers before stopping MAC
* and restoring JME_TXNDA/JME_RXNDA register is not
* sufficient to make sure correct MAC state because
* stopping MAC operation can take a while and hardware
* might have updated JME_TXNDA/JME_RXNDA registers
* during the stop operation.
*/
/* Block execution of task. */
taskqueue_block(sc->jme_tq);
/* Disable interrupts and stop driver. */
CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
callout_stop(&sc->jme_tick_ch);
sc->jme_watchdog_timer = 0;
/* Stop receiver/transmitter. */
jme_stop_rx(sc);
jme_stop_tx(sc);
/* XXX Drain all queued tasks. */
JME_UNLOCK(sc);
taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
JME_LOCK(sc);
if (sc->jme_cdata.jme_rxhead != NULL)
m_freem(sc->jme_cdata.jme_rxhead);
JME_RXCHAIN_RESET(sc);
jme_txeof(sc);
if (sc->jme_cdata.jme_tx_cnt != 0) {
/* Remove queued packets for transmit. */
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(
sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(
sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
txd->tx_ndesc = 0;
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
}
}
}
/*
* Reuse configured Rx descriptors and reset
* producer/consumer index.
*/
sc->jme_cdata.jme_rx_cons = 0;
sc->jme_morework = 0;
jme_init_tx_ring(sc);
/* Initialize shadow status block. */
jme_init_ssb(sc);
/* Program MAC with resolved speed/duplex/flow-control. */
if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
jme_mac_config(sc);
jme_stats_clear(sc);
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
/* Set Tx ring address to the hardware. */
paddr = JME_TX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
/* Set Rx ring address to the hardware. */
paddr = JME_RX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
/* Restart receiver/transmitter. */
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
RXCSR_RXQ_START);
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
/* Lastly enable TX/RX clock. */
if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
CSR_WRITE_4(sc, JME_GHC,
CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
CSR_WRITE_4(sc, JME_GPREG1,
CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
}
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
/* Unblock execution of task. */
taskqueue_unblock(sc->jme_tq);
/* Reenable interrupts. */
CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
JME_UNLOCK(sc);
}
static int
jme_intr(void *arg)
{
struct jme_softc *sc;
uint32_t status;
sc = (struct jme_softc *)arg;
status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
if (status == 0 || status == 0xFFFFFFFF)
return (FILTER_STRAY);
/* Disable interrupts. */
CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
return (FILTER_HANDLED);
}
static void
jme_int_task(void *arg, int pending)
{
struct jme_softc *sc;
struct ifnet *ifp;
uint32_t status;
int more;
sc = (struct jme_softc *)arg;
ifp = sc->jme_ifp;
JME_LOCK(sc);
status = CSR_READ_4(sc, JME_INTR_STATUS);
if (sc->jme_morework != 0) {
sc->jme_morework = 0;
status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
}
if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
goto done;
/* Reset PCC counter/timer and Ack interrupts. */
status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
CSR_WRITE_4(sc, JME_INTR_STATUS, status);
more = 0;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
more = jme_rxintr(sc, sc->jme_process_limit);
if (more != 0)
sc->jme_morework = 1;
}
if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
/*
* Notify hardware availability of new Rx
* buffers.
* Reading RXCSR takes very long time under
* heavy load so cache RXCSR value and writes
* the ORed value with the kick command to
* the RXCSR. This saves one register access
* cycle.
*/
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
RXCSR_RX_ENB | RXCSR_RXQ_START);
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
jme_start_locked(ifp);
}
if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
JME_UNLOCK(sc);
return;
}
done:
JME_UNLOCK(sc);
/* Reenable interrupts. */
CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
}
static void
jme_txeof(struct jme_softc *sc)
{
struct ifnet *ifp;
struct jme_txdesc *txd;
uint32_t status;
int cons, nsegs;
JME_LOCK_ASSERT(sc);
ifp = sc->jme_ifp;
cons = sc->jme_cdata.jme_tx_cons;
if (cons == sc->jme_cdata.jme_tx_prod)
return;
bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_cdata.jme_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (; cons != sc->jme_cdata.jme_tx_prod;) {
txd = &sc->jme_cdata.jme_txdesc[cons];
status = le32toh(txd->tx_desc->flags);
if ((status & JME_TD_OWN) == JME_TD_OWN)
break;
if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
else {
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
if ((status & JME_TD_COLLISION) != 0)
if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
le32toh(txd->tx_desc->buflen) &
JME_TD_BUF_LEN_MASK);
}
/*
* Only the first descriptor of multi-descriptor
* transmission is updated so driver have to skip entire
* chained buffers for the transmiited frame. In other
* words, JME_TD_OWN bit is valid only at the first
* descriptor of a multi-descriptor transmission.
*/
for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
sc->jme_rdata.jme_tx_ring[cons].flags = 0;
JME_DESC_INC(cons, JME_TX_RING_CNT);
}
/* Reclaim transferred mbufs. */
bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
KASSERT(txd->tx_m != NULL,
("%s: freeing NULL mbuf!\n", __func__));
m_freem(txd->tx_m);
txd->tx_m = NULL;
sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
("%s: Active Tx desc counter was garbled\n", __func__));
txd->tx_ndesc = 0;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
sc->jme_cdata.jme_tx_cons = cons;
/* Unarm watchog timer when there is no pending descriptors in queue. */
if (sc->jme_cdata.jme_tx_cnt == 0)
sc->jme_watchdog_timer = 0;
bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_cdata.jme_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static __inline void
jme_discard_rxbuf(struct jme_softc *sc, int cons)
{
struct jme_desc *desc;
desc = &sc->jme_rdata.jme_rx_ring[cons];
desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
desc->buflen = htole32(MCLBYTES);
}
/* Receive a frame. */
static void
jme_rxeof(struct jme_softc *sc)
{
struct ifnet *ifp;
struct jme_desc *desc;
struct jme_rxdesc *rxd;
struct mbuf *mp, *m;
uint32_t flags, status;
int cons, count, nsegs;
JME_LOCK_ASSERT(sc);
ifp = sc->jme_ifp;
cons = sc->jme_cdata.jme_rx_cons;
desc = &sc->jme_rdata.jme_rx_ring[cons];
flags = le32toh(desc->flags);
status = le32toh(desc->buflen);
nsegs = JME_RX_NSEGS(status);
sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
if ((status & JME_RX_ERR_STAT) != 0) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
#ifdef JME_SHOW_ERRORS
device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
__func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
#endif
sc->jme_cdata.jme_rx_cons += nsegs;
sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
return;
}
for (count = 0; count < nsegs; count++,
JME_DESC_INC(cons, JME_RX_RING_CNT)) {
rxd = &sc->jme_cdata.jme_rxdesc[cons];
mp = rxd->rx_m;
/* Add a new receive buffer to the ring. */
if (jme_newbuf(sc, rxd) != 0) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
/* Reuse buffer. */
for (; count < nsegs; count++) {
jme_discard_rxbuf(sc, cons);
JME_DESC_INC(cons, JME_RX_RING_CNT);
}
if (sc->jme_cdata.jme_rxhead != NULL) {
m_freem(sc->jme_cdata.jme_rxhead);
JME_RXCHAIN_RESET(sc);
}
break;
}
/*
* Assume we've received a full sized frame.
* Actual size is fixed when we encounter the end of
* multi-segmented frame.
*/
mp->m_len = MCLBYTES;
/* Chain received mbufs. */
if (sc->jme_cdata.jme_rxhead == NULL) {
sc->jme_cdata.jme_rxhead = mp;
sc->jme_cdata.jme_rxtail = mp;
} else {
/*
* Receive processor can receive a maximum frame
* size of 65535 bytes.
*/
mp->m_flags &= ~M_PKTHDR;
sc->jme_cdata.jme_rxtail->m_next = mp;
sc->jme_cdata.jme_rxtail = mp;
}
if (count == nsegs - 1) {
/* Last desc. for this frame. */
m = sc->jme_cdata.jme_rxhead;
m->m_flags |= M_PKTHDR;
m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
if (nsegs > 1) {
/* Set first mbuf size. */
m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
/* Set last mbuf size. */
mp->m_len = sc->jme_cdata.jme_rxlen -
((MCLBYTES - JME_RX_PAD_BYTES) +
(MCLBYTES * (nsegs - 2)));
} else
m->m_len = sc->jme_cdata.jme_rxlen;
m->m_pkthdr.rcvif = ifp;
/*
* Account for 10bytes auto padding which is used
* to align IP header on 32bit boundary. Also note,
* CRC bytes is automatically removed by the
* hardware.
*/
m->m_data += JME_RX_PAD_BYTES;
/* Set checksum information. */
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
(flags & JME_RD_IPV4) != 0) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if ((flags & JME_RD_IPCSUM) != 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if (((flags & JME_RD_MORE_FRAG) == 0) &&
((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
(JME_RD_TCP | JME_RD_TCPCSUM) ||
(flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
(JME_RD_UDP | JME_RD_UDPCSUM))) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
/* Check for VLAN tagged packets. */
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
(flags & JME_RD_VLAN_TAG) != 0) {
m->m_pkthdr.ether_vtag =
flags & JME_RD_VLAN_MASK;
m->m_flags |= M_VLANTAG;
}
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
/* Pass it on. */
JME_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
JME_LOCK(sc);
/* Reset mbuf chains. */
JME_RXCHAIN_RESET(sc);
}
}
sc->jme_cdata.jme_rx_cons += nsegs;
sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
}
static int
jme_rxintr(struct jme_softc *sc, int count)
{
struct jme_desc *desc;
int nsegs, prog, pktlen;
bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
sc->jme_cdata.jme_rx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (prog = 0; count > 0; prog++) {
desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
break;
if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
break;
nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
/*
* Check number of segments against received bytes.
* Non-matching value would indicate that hardware
* is still trying to update Rx descriptors. I'm not
* sure whether this check is needed.
*/
pktlen = JME_RX_BYTES(le32toh(desc->buflen));
if (nsegs != howmany(pktlen, MCLBYTES))
break;
prog++;
/* Received a frame. */
jme_rxeof(sc);
count -= nsegs;
}
if (prog > 0)
bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
sc->jme_cdata.jme_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (count > 0 ? 0 : EAGAIN);
}
static void
jme_tick(void *arg)
{
struct jme_softc *sc;
struct mii_data *mii;
sc = (struct jme_softc *)arg;
JME_LOCK_ASSERT(sc);
mii = device_get_softc(sc->jme_miibus);
mii_tick(mii);
/*
* Reclaim Tx buffers that have been completed. It's not
* needed here but it would release allocated mbuf chains
* faster and limit the maximum delay to a hz.
*/
jme_txeof(sc);
jme_stats_update(sc);
jme_watchdog(sc);
callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
}
static void
jme_reset(struct jme_softc *sc)
{
uint32_t ghc, gpreg;
/* Stop receiver, transmitter. */
jme_stop_rx(sc);
jme_stop_tx(sc);
/* Reset controller. */
CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
CSR_READ_4(sc, JME_GHC);
DELAY(10);
/*
* Workaround Rx FIFO overruns seen under certain conditions.
* Explicitly synchorize TX/RX clock. TX/RX clock should be
* enabled only after enabling TX/RX MACs.
*/
if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
/* Disable TX clock. */
CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
/* Disable RX clock. */
gpreg = CSR_READ_4(sc, JME_GPREG1);
CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
gpreg = CSR_READ_4(sc, JME_GPREG1);
/* De-assert RESET but still disable TX clock. */
CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
ghc = CSR_READ_4(sc, JME_GHC);
/* Enable TX clock. */
CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
/* Enable RX clock. */
CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
CSR_READ_4(sc, JME_GPREG1);
/* Disable TX/RX clock again. */
CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
} else
CSR_WRITE_4(sc, JME_GHC, 0);
CSR_READ_4(sc, JME_GHC);
DELAY(10);
}
static void
jme_init(void *xsc)
{
struct jme_softc *sc;
sc = (struct jme_softc *)xsc;
JME_LOCK(sc);
jme_init_locked(sc);
JME_UNLOCK(sc);
}
static void
jme_init_locked(struct jme_softc *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
bus_addr_t paddr;
uint32_t reg;
int error;
JME_LOCK_ASSERT(sc);
ifp = sc->jme_ifp;
mii = device_get_softc(sc->jme_miibus);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel any pending I/O.
*/
jme_stop(sc);
/*
* Reset the chip to a known state.
*/
jme_reset(sc);
/* Init descriptors. */
error = jme_init_rx_ring(sc);
if (error != 0) {
device_printf(sc->jme_dev,
"%s: initialization failed: no memory for Rx buffers.\n",
__func__);
jme_stop(sc);
return;
}
jme_init_tx_ring(sc);
/* Initialize shadow status block. */
jme_init_ssb(sc);
/* Reprogram the station address. */
jme_set_macaddr(sc, IF_LLADDR(sc->jme_ifp));
/*
* Configure Tx queue.
* Tx priority queue weight value : 0
* Tx FIFO threshold for processing next packet : 16QW
* Maximum Tx DMA length : 512
* Allow Tx DMA burst.
*/
sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
sc->jme_txcsr |= sc->jme_tx_dma_size;
sc->jme_txcsr |= TXCSR_DMA_BURST;
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
/* Set Tx descriptor counter. */
CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
/* Set Tx ring address to the hardware. */
paddr = JME_TX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
/* Configure TxMAC parameters. */
reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
reg |= TXMAC_THRESH_1_PKT;
reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
CSR_WRITE_4(sc, JME_TXMAC, reg);
/*
* Configure Rx queue.
* FIFO full threshold for transmitting Tx pause packet : 128T
* FIFO threshold for processing next packet : 128QW
* Rx queue 0 select
* Max Rx DMA length : 128
* Rx descriptor retry : 32
* Rx descriptor retry time gap : 256ns
* Don't receive runt/bad frame.
*/
sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
/*
* Since Rx FIFO size is 4K bytes, receiving frames larger
* than 4K bytes will suffer from Rx FIFO overruns. So
* decrease FIFO threshold to reduce the FIFO overruns for
* frames larger than 4000 bytes.
* For best performance of standard MTU sized frames use
* maximum allowable FIFO threshold, 128QW. Note these do
* not hold on chip full mask verion >=2. For these
* controllers 64QW and 128QW are not valid value.
*/
if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
else {
if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
else
sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
}
sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
/* Set Rx descriptor counter. */
CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
/* Set Rx ring address to the hardware. */
paddr = JME_RX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
/* Clear receive filter. */
CSR_WRITE_4(sc, JME_RXMAC, 0);
/* Set up the receive filter. */
jme_set_filter(sc);
jme_set_vlan(sc);
/*
* Disable all WOL bits as WOL can interfere normal Rx
* operation. Also clear WOL detection status bits.
*/
reg = CSR_READ_4(sc, JME_PMCS);
reg &= ~PMCS_WOL_ENB_MASK;
CSR_WRITE_4(sc, JME_PMCS, reg);
reg = CSR_READ_4(sc, JME_RXMAC);
/*
* Pad 10bytes right before received frame. This will greatly
* help Rx performance on strict-alignment architectures as
* it does not need to copy the frame to align the payload.
*/
reg |= RXMAC_PAD_10BYTES;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
reg |= RXMAC_CSUM_ENB;
CSR_WRITE_4(sc, JME_RXMAC, reg);
/* Configure general purpose reg0 */
reg = CSR_READ_4(sc, JME_GPREG0);
reg &= ~GPREG0_PCC_UNIT_MASK;
/* Set PCC timer resolution to micro-seconds unit. */
reg |= GPREG0_PCC_UNIT_US;
/*
* Disable all shadow register posting as we have to read
* JME_INTR_STATUS register in jme_int_task. Also it seems
* that it's hard to synchronize interrupt status between
* hardware and software with shadow posting due to
* requirements of bus_dmamap_sync(9).
*/
reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
/* Disable posting of DW0. */
reg &= ~GPREG0_POST_DW0_ENB;
/* Clear PME message. */
reg &= ~GPREG0_PME_ENB;
/* Set PHY address. */
reg &= ~GPREG0_PHY_ADDR_MASK;
reg |= sc->jme_phyaddr;
CSR_WRITE_4(sc, JME_GPREG0, reg);
/* Configure Tx queue 0 packet completion coalescing. */
reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
PCCTX_COAL_TO_MASK;
reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
PCCTX_COAL_PKT_MASK;
reg |= PCCTX_COAL_TXQ0;
CSR_WRITE_4(sc, JME_PCCTX, reg);
/* Configure Rx queue 0 packet completion coalescing. */
reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
PCCRX_COAL_TO_MASK;
reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
PCCRX_COAL_PKT_MASK;
CSR_WRITE_4(sc, JME_PCCRX0, reg);
/*
* Configure PCD(Packet Completion Deferring). It seems PCD
* generates an interrupt when the time interval between two
* back-to-back incoming/outgoing packet is long enough for
* it to reach its timer value 0. The arrival of new packets
* after timer has started causes the PCD timer to restart.
* Unfortunately, it's not clear how PCD is useful at this
* moment, so just use the same of PCC parameters.
*/
if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
sc->jme_rx_pcd_to = PCDRX_TO_MAX;
sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
sc->jme_tx_pcd_to = PCDTX_TO_MAX;
reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
CSR_WRITE_4(sc, PCDRX_REG(0), reg);
reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
CSR_WRITE_4(sc, JME_PCDTX, reg);
}
/* Configure shadow status block but don't enable posting. */
paddr = sc->jme_rdata.jme_ssb_block_paddr;
CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
/* Disable Timer 1 and Timer 2. */
CSR_WRITE_4(sc, JME_TIMER1, 0);
CSR_WRITE_4(sc, JME_TIMER2, 0);
/* Configure retry transmit period, retry limit value. */
CSR_WRITE_4(sc, JME_TXTRHD,
((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
TXTRHD_RT_PERIOD_MASK) |
((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
TXTRHD_RT_LIMIT_SHIFT));
/* Disable RSS. */
CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
/* Initialize the interrupt mask. */
CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
/*
* Enabling Tx/Rx DMA engines and Rx queue processing is
* done after detection of valid link in jme_link_task.
*/
sc->jme_flags &= ~JME_FLAG_LINK;
/* Set the current media. */
mii_mediachg(mii);
callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
static void
jme_stop(struct jme_softc *sc)
{
struct ifnet *ifp;
struct jme_txdesc *txd;
struct jme_rxdesc *rxd;
int i;
JME_LOCK_ASSERT(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp = sc->jme_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->jme_flags &= ~JME_FLAG_LINK;
callout_stop(&sc->jme_tick_ch);
sc->jme_watchdog_timer = 0;
/*
* Disable interrupts.
*/
CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
/* Disable updating shadow status block. */
CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
/* Stop receiver, transmitter. */
jme_stop_rx(sc);
jme_stop_tx(sc);
/* Reclaim Rx/Tx buffers that have been completed. */
jme_rxintr(sc, JME_RX_RING_CNT);
if (sc->jme_cdata.jme_rxhead != NULL)
m_freem(sc->jme_cdata.jme_rxhead);
JME_RXCHAIN_RESET(sc);
jme_txeof(sc);
/*
* Free RX and TX mbufs still in the queues.
*/
for (i = 0; i < JME_RX_RING_CNT; i++) {
rxd = &sc->jme_cdata.jme_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
txd->tx_ndesc = 0;
}
}
jme_stats_update(sc);
jme_stats_save(sc);
}
static void
jme_stop_tx(struct jme_softc *sc)
{
uint32_t reg;
int i;
reg = CSR_READ_4(sc, JME_TXCSR);
if ((reg & TXCSR_TX_ENB) == 0)
return;
reg &= ~TXCSR_TX_ENB;
CSR_WRITE_4(sc, JME_TXCSR, reg);
for (i = JME_TIMEOUT; i > 0; i--) {
DELAY(1);
if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
break;
}
if (i == 0)
device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
}
static void
jme_stop_rx(struct jme_softc *sc)
{
uint32_t reg;
int i;
reg = CSR_READ_4(sc, JME_RXCSR);
if ((reg & RXCSR_RX_ENB) == 0)
return;
reg &= ~RXCSR_RX_ENB;
CSR_WRITE_4(sc, JME_RXCSR, reg);
for (i = JME_TIMEOUT; i > 0; i--) {
DELAY(1);
if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
break;
}
if (i == 0)
device_printf(sc->jme_dev, "stopping recevier timeout!\n");
}
static void
jme_init_tx_ring(struct jme_softc *sc)
{
struct jme_ring_data *rd;
struct jme_txdesc *txd;
int i;
sc->jme_cdata.jme_tx_prod = 0;
sc->jme_cdata.jme_tx_cons = 0;
sc->jme_cdata.jme_tx_cnt = 0;
rd = &sc->jme_rdata;
bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
txd->tx_m = NULL;
txd->tx_desc = &rd->jme_tx_ring[i];
txd->tx_ndesc = 0;
}
bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
sc->jme_cdata.jme_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
jme_init_ssb(struct jme_softc *sc)
{
struct jme_ring_data *rd;
rd = &sc->jme_rdata;
bzero(rd->jme_ssb_block, JME_SSB_SIZE);
bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
jme_init_rx_ring(struct jme_softc *sc)
{
struct jme_ring_data *rd;
struct jme_rxdesc *rxd;
int i;
sc->jme_cdata.jme_rx_cons = 0;
JME_RXCHAIN_RESET(sc);
sc->jme_morework = 0;
rd = &sc->jme_rdata;
bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
for (i = 0; i < JME_RX_RING_CNT; i++) {
rxd = &sc->jme_cdata.jme_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_desc = &rd->jme_rx_ring[i];
if (jme_newbuf(sc, rxd) != 0)
return (ENOBUFS);
}
bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
sc->jme_cdata.jme_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static int
jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
{
struct jme_desc *desc;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
/*
* JMC250 has 64bit boundary alignment limitation so jme(4)
* takes advantage of 10 bytes padding feature of hardware
* in order not to copy entire frame to align IP header on
* 32bit boundary.
*/
m->m_len = m->m_pkthdr.len = MCLBYTES;
if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
sc->jme_cdata.jme_rx_sparemap = map;
bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
desc = rxd->rx_desc;
desc->buflen = htole32(segs[0].ds_len);
desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
return (0);
}
static void
jme_set_vlan(struct jme_softc *sc)
{
struct ifnet *ifp;
uint32_t reg;
JME_LOCK_ASSERT(sc);
ifp = sc->jme_ifp;
reg = CSR_READ_4(sc, JME_RXMAC);
reg &= ~RXMAC_VLAN_ENB;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
reg |= RXMAC_VLAN_ENB;
CSR_WRITE_4(sc, JME_RXMAC, reg);
}
static void
jme_set_filter(struct jme_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t crc;
uint32_t mchash[2];
uint32_t rxcfg;
JME_LOCK_ASSERT(sc);
ifp = sc->jme_ifp;
rxcfg = CSR_READ_4(sc, JME_RXMAC);
rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
RXMAC_ALLMULTI);
/* Always accept frames destined to our station address. */
rxcfg |= RXMAC_UNICAST;
if ((ifp->if_flags & IFF_BROADCAST) != 0)
rxcfg |= RXMAC_BROADCAST;
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxcfg |= RXMAC_PROMISC;
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
rxcfg |= RXMAC_ALLMULTI;
CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
return;
}
/*
* Set up the multicast address filter by passing all multicast
* addresses through a CRC generator, and then using the low-order
* 6 bits as an index into the 64 bit multicast hash table. The
* high order bits select the register, while the rest of the bits
* select the bit within the register.
*/
rxcfg |= RXMAC_MULTICAST;
bzero(mchash, sizeof(mchash));
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
/* Just want the 6 least significant bits. */
crc &= 0x3f;
/* Set the corresponding bit in the hash table. */
mchash[crc >> 5] |= 1 << (crc & 0x1f);
}
if_maddr_runlock(ifp);
CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
}
static void
jme_stats_clear(struct jme_softc *sc)
{
JME_LOCK_ASSERT(sc);
if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
return;
/* Disable and clear counters. */
CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
/* Activate hw counters. */
CSR_WRITE_4(sc, JME_STATCSR, 0);
CSR_READ_4(sc, JME_STATCSR);
bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
}
static void
jme_stats_save(struct jme_softc *sc)
{
JME_LOCK_ASSERT(sc);
if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
return;
/* Save current counters. */
bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
/* Disable and clear counters. */
CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
}
static void
jme_stats_update(struct jme_softc *sc)
{
struct jme_hw_stats *stat, *ostat;
uint32_t reg;
JME_LOCK_ASSERT(sc);
if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
return;
stat = &sc->jme_stats;
ostat = &sc->jme_ostats;
stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
reg = CSR_READ_4(sc, JME_STAT_CRCMII);
stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
STAT_RX_CRC_ERR_SHIFT;
stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
STAT_RX_MII_ERR_SHIFT;
reg = CSR_READ_4(sc, JME_STAT_RXERR);
stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
STAT_RXERR_OFLOW_SHIFT;
stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
STAT_RXERR_MPTY_SHIFT;
reg = CSR_READ_4(sc, JME_STAT_FAIL);
stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
/* Account for previous counters. */
stat->rx_good_frames += ostat->rx_good_frames;
stat->rx_crc_errs += ostat->rx_crc_errs;
stat->rx_mii_errs += ostat->rx_mii_errs;
stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
stat->rx_desc_empty += ostat->rx_desc_empty;
stat->rx_bad_frames += ostat->rx_bad_frames;
stat->tx_good_frames += ostat->tx_good_frames;
stat->tx_bad_frames += ostat->tx_bad_frames;
}
static void
jme_phy_down(struct jme_softc *sc)
{
uint32_t reg;
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
reg = CSR_READ_4(sc, JME_PHYPOWDN);
reg |= 0x0000000F;
CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
reg &= ~PE1_GIGA_PDOWN_MASK;
reg |= PE1_GIGA_PDOWN_D3;
pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
}
}
static void
jme_phy_up(struct jme_softc *sc)
{
uint32_t reg;
uint16_t bmcr;
bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
bmcr &= ~BMCR_PDOWN;
jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
reg = CSR_READ_4(sc, JME_PHYPOWDN);
reg &= ~0x0000000F;
CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
reg &= ~PE1_GIGA_PDOWN_MASK;
reg |= PE1_GIGA_PDOWN_DIS;
pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
}
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (arg1 == NULL)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
}
static int
sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
}
static int
sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
}
static int
sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
}
static int
sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req,
JME_PROC_MIN, JME_PROC_MAX));
}