freebsd-skq/sys/ufs/ffs/ffs_vnops.c

1771 lines
43 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1994-05-24 10:09:53 +00:00
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95
* from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ...
* @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95
1994-05-24 10:09:53 +00:00
*/
2003-06-11 06:34:30 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/bio.h>
1994-05-24 10:09:53 +00:00
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/extattr.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/priv.h>
1994-05-24 10:09:53 +00:00
#include <sys/stat.h>
#include <sys/vmmeter.h>
1994-05-24 10:09:53 +00:00
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vnode_pager.h>
1994-05-24 10:09:53 +00:00
#include <ufs/ufs/extattr.h>
1994-05-24 10:09:53 +00:00
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ufs/ufsmount.h>
1994-05-24 10:09:53 +00:00
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
#include "opt_directio.h"
#include "opt_ffs.h"
1994-05-24 10:09:53 +00:00
#ifdef DIRECTIO
extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
#endif
static vop_fsync_t ffs_fsync;
static vop_lock1_t ffs_lock;
static vop_getpages_t ffs_getpages;
static vop_read_t ffs_read;
static vop_write_t ffs_write;
static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
struct ucred *cred);
static vop_strategy_t ffsext_strategy;
static vop_closeextattr_t ffs_closeextattr;
static vop_deleteextattr_t ffs_deleteextattr;
static vop_getextattr_t ffs_getextattr;
static vop_listextattr_t ffs_listextattr;
static vop_openextattr_t ffs_openextattr;
static vop_setextattr_t ffs_setextattr;
static vop_vptofh_t ffs_vptofh;
1995-12-17 21:14:36 +00:00
1994-05-24 10:09:53 +00:00
/* Global vfs data structures for ufs. */
struct vop_vector ffs_vnodeops1 = {
.vop_default = &ufs_vnodeops,
.vop_fsync = ffs_fsync,
.vop_getpages = ffs_getpages,
.vop_lock1 = ffs_lock,
.vop_read = ffs_read,
.vop_reallocblks = ffs_reallocblks,
.vop_write = ffs_write,
.vop_vptofh = ffs_vptofh,
};
struct vop_vector ffs_fifoops1 = {
.vop_default = &ufs_fifoops,
.vop_fsync = ffs_fsync,
.vop_reallocblks = ffs_reallocblks, /* XXX: really ??? */
.vop_vptofh = ffs_vptofh,
};
/* Global vfs data structures for ufs. */
struct vop_vector ffs_vnodeops2 = {
.vop_default = &ufs_vnodeops,
.vop_fsync = ffs_fsync,
.vop_getpages = ffs_getpages,
.vop_lock1 = ffs_lock,
.vop_read = ffs_read,
.vop_reallocblks = ffs_reallocblks,
.vop_write = ffs_write,
.vop_closeextattr = ffs_closeextattr,
.vop_deleteextattr = ffs_deleteextattr,
2004-12-14 21:35:00 +00:00
.vop_getextattr = ffs_getextattr,
.vop_listextattr = ffs_listextattr,
.vop_openextattr = ffs_openextattr,
2004-12-14 21:35:00 +00:00
.vop_setextattr = ffs_setextattr,
.vop_vptofh = ffs_vptofh,
1994-05-24 10:09:53 +00:00
};
struct vop_vector ffs_fifoops2 = {
.vop_default = &ufs_fifoops,
.vop_fsync = ffs_fsync,
.vop_lock1 = ffs_lock,
.vop_reallocblks = ffs_reallocblks,
.vop_strategy = ffsext_strategy,
.vop_closeextattr = ffs_closeextattr,
.vop_deleteextattr = ffs_deleteextattr,
2004-12-14 21:35:00 +00:00
.vop_getextattr = ffs_getextattr,
.vop_listextattr = ffs_listextattr,
.vop_openextattr = ffs_openextattr,
2004-12-14 21:35:00 +00:00
.vop_setextattr = ffs_setextattr,
.vop_vptofh = ffs_vptofh,
};
1994-05-24 10:09:53 +00:00
/*
* Synch an open file.
*/
/* ARGSUSED */
static int
ffs_fsync(struct vop_fsync_args *ap)
{
struct vnode *vp;
struct bufobj *bo;
int error;
vp = ap->a_vp;
bo = &vp->v_bufobj;
retry:
error = ffs_syncvnode(vp, ap->a_waitfor);
if (error)
return (error);
if (ap->a_waitfor == MNT_WAIT &&
(vp->v_mount->mnt_flag & MNT_SOFTDEP)) {
error = softdep_fsync(vp);
if (error)
return (error);
/*
* The softdep_fsync() function may drop vp lock,
* allowing for dirty buffers to reappear on the
* bo_dirty list. Recheck and resync as needed.
*/
BO_LOCK(bo);
if (vp->v_type == VREG && (bo->bo_numoutput > 0 ||
bo->bo_dirty.bv_cnt > 0)) {
BO_UNLOCK(bo);
goto retry;
}
BO_UNLOCK(bo);
}
return (0);
}
int
ffs_syncvnode(struct vnode *vp, int waitfor)
1994-05-24 10:09:53 +00:00
{
struct inode *ip = VTOI(vp);
struct bufobj *bo;
struct buf *bp;
1994-05-24 10:09:53 +00:00
struct buf *nbp;
int s, error, wait, passes, skipmeta;
This commit adds basic support for the UFS2 filesystem. The UFS2 filesystem expands the inode to 256 bytes to make space for 64-bit block pointers. It also adds a file-creation time field, an ability to use jumbo blocks per inode to allow extent like pointer density, and space for extended attributes (up to twice the filesystem block size worth of attributes, e.g., on a 16K filesystem, there is space for 32K of attributes). UFS2 fully supports and runs existing UFS1 filesystems. New filesystems built using newfs can be built in either UFS1 or UFS2 format using the -O option. In this commit UFS1 is the default format, so if you want to build UFS2 format filesystems, you must specify -O 2. This default will be changed to UFS2 when UFS2 proves itself to be stable. In this commit the boot code for reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c) as there is insufficient space in the boot block. Once the size of the boot block is increased, this code can be defined. Things to note: the definition of SBSIZE has changed to SBLOCKSIZE. The header file <ufs/ufs/dinode.h> must be included before <ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and ufs_lbn_t. Still TODO: Verify that the first level bootstraps work for all the architectures. Convert the utility ffsinfo to understand UFS2 and test growfs. Add support for the extended attribute storage. Update soft updates to ensure integrity of extended attribute storage. Switch the current extended attribute interfaces to use the extended attribute storage. Add the extent like functionality (framework is there, but is currently never used). Sponsored by: DARPA & NAI Labs. Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
2002-06-21 06:18:05 +00:00
ufs_lbn_t lbn;
wait = (waitfor == MNT_WAIT);
Move UFS from DEVFS backing to GEOM backing. This eliminates a bunch of vnode overhead (approx 1-2 % speed improvement) and gives us more control over the access to the storage device. Access counts on the underlying device are not correctly tracked and therefore it is possible to read-only mount the same disk device multiple times: syv# mount -p /dev/md0 /var ufs rw 2 2 /dev/ad0 /mnt ufs ro 1 1 /dev/ad0 /mnt2 ufs ro 1 1 /dev/ad0 /mnt3 ufs ro 1 1 Since UFS/FFS is not a synchrousely consistent filesystem (ie: it caches things in RAM) this is not possible with read-write mounts, and the system will correctly reject this. Details: Add a geom consumer and a bufobj pointer to ufsmount. Eliminate the vnode argument from softdep_disk_prewrite(). Pick the vnode out of bp->b_vp for now. Eventually we should find it through bp->b_bufobj->b_private. In the mountcode, use g_vfs_open() once we have used VOP_ACCESS() to check permissions. When upgrading and downgrading between r/o and r/w do the right thing with GEOM access counts. Remove all the workarounds for not being able to do this with VOP_OPEN(). If we are the root mount, drop the exclusive access count until we upgrade to r/w. This allows fsck of the root filesystem and the MNT_RELOAD to work correctly. Set bo_private to the GEOM consumer on the device bufobj. Change the ffs_ops->strategy function to call g_vfs_strategy() In ufs_strategy() directly call the strategy on the disk bufobj. Same in rawread. In ffs_fsync() we will no longer see VCHR device nodes, so remove code which synced the filesystem mounted on it, in case we came there. I'm not sure this code made sense in the first place since we would have taken the specfs route on such a vnode. Redo the highly bogus readblock() function in the snapshot code to something slightly less bogus: Constructing an uio and using physio was really quite a detour. Instead just fill in a bio and ship it down.
2004-10-29 10:15:56 +00:00
lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1));
bo = &vp->v_bufobj;
ip->i_flag &= ~IN_NEEDSYNC;
1994-05-24 10:09:53 +00:00
/*
* Flush all dirty buffers associated with a vnode.
*/
passes = NIADDR + 1;
skipmeta = 0;
if (wait)
skipmeta = 1;
1994-05-24 10:09:53 +00:00
s = splbio();
BO_LOCK(bo);
loop:
TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
bp->b_vflags &= ~BV_SCANNED;
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2008-01-02 01:19:17 +00:00
/*
* Reasons to skip this buffer: it has already been considered
* on this pass, this pass is the first time through on a
* synchronous flush request and the buffer being considered
* is metadata, the buffer has dependencies that will cause
* it to be redirtied and it has not already been deferred,
* or it is already being written.
*/
if ((bp->b_vflags & BV_SCANNED) != 0)
continue;
bp->b_vflags |= BV_SCANNED;
if ((skipmeta == 1 && bp->b_lblkno < 0))
continue;
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
continue;
BO_UNLOCK(bo);
2007-04-04 07:29:53 +00:00
if (!wait && !LIST_EMPTY(&bp->b_dep) &&
(bp->b_flags & B_DEFERRED) == 0 &&
buf_countdeps(bp, 0)) {
bp->b_flags |= B_DEFERRED;
BUF_UNLOCK(bp);
BO_LOCK(bo);
continue;
}
1994-05-24 10:09:53 +00:00
if ((bp->b_flags & B_DELWRI) == 0)
panic("ffs_fsync: not dirty");
/*
* If this is a synchronous flush request, or it is not a
2008-02-25 19:31:44 +00:00
* file or device, start the write on this buffer immediately.
*/
if (wait || (vp->v_type != VREG && vp->v_type != VBLK)) {
/*
* On our final pass through, do all I/O synchronously
* so that we can find out if our flush is failing
* because of write errors.
*/
if (passes > 0 || !wait) {
if ((bp->b_flags & B_CLUSTEROK) && !wait) {
(void) vfs_bio_awrite(bp);
} else {
bremfree(bp);
splx(s);
(void) bawrite(bp);
s = splbio();
}
} else {
bremfree(bp);
splx(s);
if ((error = bwrite(bp)) != 0)
return (error);
s = splbio();
}
} else if ((vp->v_type == VREG) && (bp->b_lblkno >= lbn)) {
2008-01-02 01:19:17 +00:00
/*
* If the buffer is for data that has been truncated
* off the file, then throw it away.
*/
bremfree(bp);
bp->b_flags |= B_INVAL | B_NOCACHE;
splx(s);
brelse(bp);
s = splbio();
} else
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
vfs_bio_awrite(bp);
/*
2008-01-02 01:19:17 +00:00
* Since we may have slept during the I/O, we need
* to start from a known point.
*/
BO_LOCK(bo);
nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd);
1994-05-24 10:09:53 +00:00
}
/*
* If we were asked to do this synchronously, then go back for
* another pass, this time doing the metadata.
*/
if (skipmeta) {
skipmeta = 0;
goto loop;
}
if (wait) {
bufobj_wwait(bo, 3, 0);
BO_UNLOCK(bo);
2008-01-02 01:19:17 +00:00
/*
* Ensure that any filesystem metatdata associated
* with the vnode has been written.
*/
splx(s);
if ((error = softdep_sync_metadata(vp)) != 0)
return (error);
s = splbio();
BO_LOCK(bo);
if (bo->bo_dirty.bv_cnt > 0) {
/*
* Block devices associated with filesystems may
* have new I/O requests posted for them even if
* the vnode is locked, so no amount of trying will
* get them clean. Thus we give block devices a
* good effort, then just give up. For all other file
* types, go around and try again until it is clean.
*/
if (passes > 0) {
passes -= 1;
goto loop;
}
#ifdef INVARIANTS
if (!vn_isdisk(vp, NULL))
vprint("ffs_fsync: dirty", vp);
1994-05-24 10:09:53 +00:00
#endif
}
1994-05-24 10:09:53 +00:00
}
BO_UNLOCK(bo);
splx(s);
return (ffs_update(vp, wait));
1994-05-24 10:09:53 +00:00
}
static int
ffs_lock(ap)
struct vop_lock1_args /* {
struct vnode *a_vp;
int a_flags;
struct thread *a_td;
char *file;
int line;
} */ *ap;
{
#ifndef NO_FFS_SNAPSHOT
struct vnode *vp;
int flags;
struct lock *lkp;
int result;
2008-01-02 01:19:17 +00:00
switch (ap->a_flags & LK_TYPE_MASK) {
case LK_SHARED:
case LK_UPGRADE:
case LK_EXCLUSIVE:
vp = ap->a_vp;
flags = ap->a_flags;
for (;;) {
#ifdef DEBUG_VFS_LOCKS
KASSERT(vp->v_holdcnt != 0,
("ffs_lock %p: zero hold count", vp));
#endif
lkp = vp->v_vnlock;
result = _lockmgr_args(lkp, flags, VI_MTX(vp),
LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
ap->a_file, ap->a_line);
if (lkp == vp->v_vnlock || result != 0)
break;
/*
* Apparent success, except that the vnode
* mutated between snapshot file vnode and
* regular file vnode while this process
* slept. The lock currently held is not the
* right lock. Release it, and try to get the
* new lock.
*/
(void) _lockmgr_args(lkp, LK_RELEASE, NULL,
LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
ap->a_file, ap->a_line);
if ((flags & (LK_INTERLOCK | LK_NOWAIT)) ==
(LK_INTERLOCK | LK_NOWAIT))
return (EBUSY);
if ((flags & LK_TYPE_MASK) == LK_UPGRADE)
flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE;
flags &= ~LK_INTERLOCK;
}
break;
default:
result = VOP_LOCK1_APV(&ufs_vnodeops, ap);
}
return (result);
#else
return (VOP_LOCK1_APV(&ufs_vnodeops, ap));
#endif
}
/*
* Vnode op for reading.
*/
/* ARGSUSED */
static int
ffs_read(ap)
struct vop_read_args /* {
struct vnode *a_vp;
struct uio *a_uio;
int a_ioflag;
struct ucred *a_cred;
} */ *ap;
{
struct vnode *vp;
struct inode *ip;
struct uio *uio;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn, nextlbn;
off_t bytesinfile;
long size, xfersize, blkoffset;
int error, orig_resid;
int seqcount;
int ioflag;
vp = ap->a_vp;
uio = ap->a_uio;
ioflag = ap->a_ioflag;
if (ap->a_ioflag & IO_EXT)
#ifdef notyet
return (ffs_extread(vp, uio, ioflag));
#else
panic("ffs_read+IO_EXT");
#endif
#ifdef DIRECTIO
if ((ioflag & IO_DIRECT) != 0) {
int workdone;
error = ffs_rawread(vp, uio, &workdone);
if (error != 0 || workdone != 0)
return error;
}
#endif
seqcount = ap->a_ioflag >> IO_SEQSHIFT;
ip = VTOI(vp);
#ifdef INVARIANTS
if (uio->uio_rw != UIO_READ)
panic("ffs_read: mode");
if (vp->v_type == VLNK) {
if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
panic("ffs_read: short symlink");
} else if (vp->v_type != VREG && vp->v_type != VDIR)
panic("ffs_read: type %d", vp->v_type);
#endif
orig_resid = uio->uio_resid;
KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0"));
if (orig_resid == 0)
return (0);
KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0"));
fs = ip->i_fs;
if (uio->uio_offset < ip->i_size &&
uio->uio_offset >= fs->fs_maxfilesize)
return (EOVERFLOW);
for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
break;
lbn = lblkno(fs, uio->uio_offset);
nextlbn = lbn + 1;
/*
* size of buffer. The buffer representing the
* end of the file is rounded up to the size of
2008-01-02 01:19:17 +00:00
* the block type ( fragment or full block,
* depending ).
*/
size = blksize(fs, ip, lbn);
blkoffset = blkoff(fs, uio->uio_offset);
2008-01-02 01:19:17 +00:00
/*
* The amount we want to transfer in this iteration is
* one FS block less the amount of the data before
* our startpoint (duh!)
*/
xfersize = fs->fs_bsize - blkoffset;
/*
* But if we actually want less than the block,
* or the file doesn't have a whole block more of data,
* then use the lesser number.
*/
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (bytesinfile < xfersize)
xfersize = bytesinfile;
if (lblktosize(fs, nextlbn) >= ip->i_size) {
/*
* Don't do readahead if this is the end of the file.
*/
error = bread(vp, lbn, size, NOCRED, &bp);
} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
2008-01-02 01:19:17 +00:00
/*
* Otherwise if we are allowed to cluster,
* grab as much as we can.
*
* XXX This may not be a win if we are not
* doing sequential access.
*/
error = cluster_read(vp, ip->i_size, lbn,
size, NOCRED, blkoffset + uio->uio_resid, seqcount, &bp);
} else if (seqcount > 1) {
/*
* If we are NOT allowed to cluster, then
* if we appear to be acting sequentially,
* fire off a request for a readahead
* as well as a read. Note that the 4th and 5th
* arguments point to arrays of the size specified in
* the 6th argument.
*/
int nextsize = blksize(fs, ip, nextlbn);
error = breadn(vp, lbn,
size, &nextlbn, &nextsize, 1, NOCRED, &bp);
} else {
/*
2008-01-02 01:19:17 +00:00
* Failing all of the above, just read what the
* user asked for. Interestingly, the same as
* the first option above.
*/
error = bread(vp, lbn, size, NOCRED, &bp);
}
if (error) {
brelse(bp);
bp = NULL;
break;
}
/*
* If IO_DIRECT then set B_DIRECT for the buffer. This
* will cause us to attempt to release the buffer later on
* and will cause the buffer cache to attempt to free the
* underlying pages.
*/
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
/*
* We should only get non-zero b_resid when an I/O error
* has occurred, which should cause us to break above.
* However, if the short read did not cause an error,
* then we want to ensure that we do not uiomove bad
* or uninitialized data.
*/
size -= bp->b_resid;
if (size < xfersize) {
if (size == 0)
break;
xfersize = size;
}
error = uiomove((char *)bp->b_data + blkoffset,
(int)xfersize, uio);
if (error)
break;
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
2007-04-04 07:29:53 +00:00
(LIST_EMPTY(&bp->b_dep))) {
/*
* If there are no dependencies, and it's VMIO,
* then we don't need the buf, mark it available
* for freeing. The VM has the data.
*/
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
/*
* Otherwise let whoever
* made the request take care of
* freeing it. We just queue
* it onto another list.
*/
bqrelse(bp);
}
}
2008-01-02 01:19:17 +00:00
/*
* This can only happen in the case of an error
* because the loop above resets bp to NULL on each iteration
* and on normal completion has not set a new value into it.
* so it must have come from a 'break' statement
*/
if (bp != NULL) {
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
2007-04-04 07:29:53 +00:00
(LIST_EMPTY(&bp->b_dep))) {
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
bqrelse(bp);
}
}
if ((error == 0 || uio->uio_resid != orig_resid) &&
(vp->v_mount->mnt_flag & MNT_NOATIME) == 0 &&
(ip->i_flag & IN_ACCESS) == 0) {
VI_LOCK(vp);
ip->i_flag |= IN_ACCESS;
VI_UNLOCK(vp);
}
return (error);
}
/*
* Vnode op for writing.
*/
static int
ffs_write(ap)
struct vop_write_args /* {
struct vnode *a_vp;
struct uio *a_uio;
int a_ioflag;
struct ucred *a_cred;
} */ *ap;
{
struct vnode *vp;
struct uio *uio;
struct inode *ip;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn;
off_t osize;
int seqcount;
int blkoffset, error, flags, ioflag, resid, size, xfersize;
vp = ap->a_vp;
uio = ap->a_uio;
ioflag = ap->a_ioflag;
if (ap->a_ioflag & IO_EXT)
#ifdef notyet
return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
#else
panic("ffs_write+IO_EXT");
#endif
seqcount = ap->a_ioflag >> IO_SEQSHIFT;
ip = VTOI(vp);
#ifdef INVARIANTS
if (uio->uio_rw != UIO_WRITE)
panic("ffs_write: mode");
#endif
switch (vp->v_type) {
case VREG:
if (ioflag & IO_APPEND)
uio->uio_offset = ip->i_size;
if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size)
return (EPERM);
/* FALLTHROUGH */
case VLNK:
break;
case VDIR:
panic("ffs_write: dir write");
break;
default:
panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type,
(int)uio->uio_offset,
(int)uio->uio_resid
);
}
KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0"));
KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0"));
fs = ip->i_fs;
if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize)
return (EFBIG);
/*
* Maybe this should be above the vnode op call, but so long as
* file servers have no limits, I don't think it matters.
*/
if (vn_rlimit_fsize(vp, uio, uio->uio_td))
return (EFBIG);
resid = uio->uio_resid;
osize = ip->i_size;
Fix a file-rewrite performance case for UFS[2]. When rewriting portions of a file in chunks that are less then the filesystem block size, if the data is not already cached the system will perform a read-before-write. The problem is that it does this on a block-by-block basis, breaking up the I/Os and making clustering impossible for the writes. Programs such as INN using cyclic file buffers suffer greatly. This problem is only going to get worse as we use larger and larger filesystem block sizes. The solution is to extend the sequential heuristic so UFS[2] can perform a far larger read and readahead when dealing with this case. (note: maximum disk write bandwidth is 27MB/sec thru filesystem) (note: filesystem blocksize in test is 8K (1K frag)) dd if=/dev/zero of=test.dat bs=1k count=2m conv=notrunc Before: (note half of these are reads) tty da0 da1 acd0 cpu tin tout KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us ni sy in id 0 76 14.21 598 8.30 0.00 0 0.00 0.00 0 0.00 0 0 7 1 92 0 76 14.09 813 11.19 0.00 0 0.00 0.00 0 0.00 0 0 9 5 86 0 76 14.28 821 11.45 0.00 0 0.00 0.00 0 0.00 0 0 8 1 91 After: (note half of these are reads) tty da0 da1 acd0 cpu tin tout KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us ni sy in id 0 76 63.62 434 26.99 0.00 0 0.00 0.00 0 0.00 0 0 18 1 80 0 76 63.58 424 26.30 0.00 0 0.00 0.00 0 0.00 0 0 17 2 82 0 76 63.82 438 27.32 0.00 0 0.00 0.00 0 0.00 1 0 19 2 79 Reviewed by: mckusick Approved by: re X-MFC after: immediately (was heavily tested in -stable for 4 months)
2002-10-18 22:52:41 +00:00
if (seqcount > BA_SEQMAX)
flags = BA_SEQMAX << BA_SEQSHIFT;
else
flags = seqcount << BA_SEQSHIFT;
if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
Fix a file-rewrite performance case for UFS[2]. When rewriting portions of a file in chunks that are less then the filesystem block size, if the data is not already cached the system will perform a read-before-write. The problem is that it does this on a block-by-block basis, breaking up the I/Os and making clustering impossible for the writes. Programs such as INN using cyclic file buffers suffer greatly. This problem is only going to get worse as we use larger and larger filesystem block sizes. The solution is to extend the sequential heuristic so UFS[2] can perform a far larger read and readahead when dealing with this case. (note: maximum disk write bandwidth is 27MB/sec thru filesystem) (note: filesystem blocksize in test is 8K (1K frag)) dd if=/dev/zero of=test.dat bs=1k count=2m conv=notrunc Before: (note half of these are reads) tty da0 da1 acd0 cpu tin tout KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us ni sy in id 0 76 14.21 598 8.30 0.00 0 0.00 0.00 0 0.00 0 0 7 1 92 0 76 14.09 813 11.19 0.00 0 0.00 0.00 0 0.00 0 0 9 5 86 0 76 14.28 821 11.45 0.00 0 0.00 0.00 0 0.00 0 0 8 1 91 After: (note half of these are reads) tty da0 da1 acd0 cpu tin tout KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us ni sy in id 0 76 63.62 434 26.99 0.00 0 0.00 0.00 0 0.00 0 0 18 1 80 0 76 63.58 424 26.30 0.00 0 0.00 0.00 0 0.00 0 0 17 2 82 0 76 63.82 438 27.32 0.00 0 0.00 0.00 0 0.00 1 0 19 2 79 Reviewed by: mckusick Approved by: re X-MFC after: immediately (was heavily tested in -stable for 4 months)
2002-10-18 22:52:41 +00:00
flags |= IO_SYNC;
for (error = 0; uio->uio_resid > 0;) {
lbn = lblkno(fs, uio->uio_offset);
blkoffset = blkoff(fs, uio->uio_offset);
xfersize = fs->fs_bsize - blkoffset;
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (uio->uio_offset + xfersize > ip->i_size)
vnode_pager_setsize(vp, uio->uio_offset + xfersize);
2008-01-02 01:19:17 +00:00
/*
* We must perform a read-before-write if the transfer size
* does not cover the entire buffer.
*/
if (fs->fs_bsize > xfersize)
flags |= BA_CLRBUF;
else
flags &= ~BA_CLRBUF;
/* XXX is uio->uio_offset the right thing here? */
error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
ap->a_cred, flags, &bp);
if (error != 0) {
vnode_pager_setsize(vp, ip->i_size);
break;
}
/*
* If the buffer is not valid we have to clear out any
* garbage data from the pages instantiated for the buffer.
* If we do not, a failed uiomove() during a write can leave
* the prior contents of the pages exposed to a userland
* mmap(). XXX deal with uiomove() errors a better way.
*/
if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
vfs_bio_clrbuf(bp);
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL))
bp->b_flags |= B_NOCACHE;
if (uio->uio_offset + xfersize > ip->i_size) {
ip->i_size = uio->uio_offset + xfersize;
DIP_SET(ip, i_size, ip->i_size);
}
size = blksize(fs, ip, lbn) - bp->b_resid;
if (size < xfersize)
xfersize = size;
error =
uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
2007-04-04 07:29:53 +00:00
(LIST_EMPTY(&bp->b_dep))) {
bp->b_flags |= B_RELBUF;
}
/*
* If IO_SYNC each buffer is written synchronously. Otherwise
2008-01-02 01:19:17 +00:00
* if we have a severe page deficiency write the buffer
* asynchronously. Otherwise try to cluster, and if that
* doesn't do it then either do an async write (if O_DIRECT),
* or a delayed write (if not).
*/
if (ioflag & IO_SYNC) {
(void)bwrite(bp);
} else if (vm_page_count_severe() ||
buf_dirty_count_severe() ||
(ioflag & IO_ASYNC)) {
bp->b_flags |= B_CLUSTEROK;
bawrite(bp);
} else if (xfersize + blkoffset == fs->fs_bsize) {
if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
bp->b_flags |= B_CLUSTEROK;
cluster_write(vp, bp, ip->i_size, seqcount);
} else {
bawrite(bp);
}
} else if (ioflag & IO_DIRECT) {
bp->b_flags |= B_CLUSTEROK;
bawrite(bp);
} else {
bp->b_flags |= B_CLUSTEROK;
bdwrite(bp);
}
if (error || xfersize == 0)
break;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
}
/*
* If we successfully wrote any data, and we are not the superuser
* we clear the setuid and setgid bits as a precaution against
* tampering.
*/
if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid &&
ap->a_cred) {
if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) {
ip->i_mode &= ~(ISUID | ISGID);
DIP_SET(ip, i_mode, ip->i_mode);
}
}
if (error) {
if (ioflag & IO_UNIT) {
(void)ffs_truncate(vp, osize,
IO_NORMAL | (ioflag & IO_SYNC),
ap->a_cred, uio->uio_td);
uio->uio_offset -= resid - uio->uio_resid;
uio->uio_resid = resid;
}
} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
error = ffs_update(vp, 1);
return (error);
}
/*
* get page routine
*/
static int
ffs_getpages(ap)
struct vop_getpages_args *ap;
{
int i;
vm_page_t mreq;
int pcount;
pcount = round_page(ap->a_count) / PAGE_SIZE;
mreq = ap->a_m[ap->a_reqpage];
/*
* if ANY DEV_BSIZE blocks are valid on a large filesystem block,
* then the entire page is valid. Since the page may be mapped,
* user programs might reference data beyond the actual end of file
* occuring within the page. We have to zero that data.
*/
VM_OBJECT_LOCK(mreq->object);
if (mreq->valid) {
if (mreq->valid != VM_PAGE_BITS_ALL)
vm_page_zero_invalid(mreq, TRUE);
for (i = 0; i < pcount; i++) {
if (i != ap->a_reqpage) {
vm_page_lock(ap->a_m[i]);
vm_page_free(ap->a_m[i]);
vm_page_unlock(ap->a_m[i]);
}
}
2003-06-15 21:50:38 +00:00
VM_OBJECT_UNLOCK(mreq->object);
return VM_PAGER_OK;
}
VM_OBJECT_UNLOCK(mreq->object);
return vnode_pager_generic_getpages(ap->a_vp, ap->a_m,
ap->a_count,
ap->a_reqpage);
}
/*
* Extended attribute area reading.
*/
static int
ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn, nextlbn;
off_t bytesinfile;
long size, xfersize, blkoffset;
int error, orig_resid;
ip = VTOI(vp);
fs = ip->i_fs;
dp = ip->i_din2;
#ifdef INVARIANTS
if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
panic("ffs_extread: mode");
#endif
orig_resid = uio->uio_resid;
KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0"));
if (orig_resid == 0)
return (0);
KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0"));
for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
break;
lbn = lblkno(fs, uio->uio_offset);
nextlbn = lbn + 1;
/*
* size of buffer. The buffer representing the
* end of the file is rounded up to the size of
2008-01-02 01:19:17 +00:00
* the block type ( fragment or full block,
* depending ).
*/
size = sblksize(fs, dp->di_extsize, lbn);
blkoffset = blkoff(fs, uio->uio_offset);
2008-01-02 01:19:17 +00:00
/*
* The amount we want to transfer in this iteration is
* one FS block less the amount of the data before
* our startpoint (duh!)
*/
xfersize = fs->fs_bsize - blkoffset;
/*
* But if we actually want less than the block,
* or the file doesn't have a whole block more of data,
* then use the lesser number.
*/
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (bytesinfile < xfersize)
xfersize = bytesinfile;
if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
/*
* Don't do readahead if this is the end of the info.
*/
error = bread(vp, -1 - lbn, size, NOCRED, &bp);
} else {
/*
* If we have a second block, then
* fire off a request for a readahead
* as well as a read. Note that the 4th and 5th
* arguments point to arrays of the size specified in
* the 6th argument.
*/
int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
nextlbn = -1 - nextlbn;
error = breadn(vp, -1 - lbn,
size, &nextlbn, &nextsize, 1, NOCRED, &bp);
}
if (error) {
brelse(bp);
bp = NULL;
break;
}
/*
* If IO_DIRECT then set B_DIRECT for the buffer. This
* will cause us to attempt to release the buffer later on
* and will cause the buffer cache to attempt to free the
* underlying pages.
*/
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
/*
* We should only get non-zero b_resid when an I/O error
* has occurred, which should cause us to break above.
* However, if the short read did not cause an error,
* then we want to ensure that we do not uiomove bad
* or uninitialized data.
*/
size -= bp->b_resid;
if (size < xfersize) {
if (size == 0)
break;
xfersize = size;
}
error = uiomove((char *)bp->b_data + blkoffset,
(int)xfersize, uio);
if (error)
break;
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
2007-04-04 07:29:53 +00:00
(LIST_EMPTY(&bp->b_dep))) {
/*
* If there are no dependencies, and it's VMIO,
* then we don't need the buf, mark it available
* for freeing. The VM has the data.
*/
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
/*
* Otherwise let whoever
* made the request take care of
* freeing it. We just queue
* it onto another list.
*/
bqrelse(bp);
}
}
2008-01-02 01:19:17 +00:00
/*
* This can only happen in the case of an error
* because the loop above resets bp to NULL on each iteration
* and on normal completion has not set a new value into it.
* so it must have come from a 'break' statement
*/
if (bp != NULL) {
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
2007-04-04 07:29:53 +00:00
(LIST_EMPTY(&bp->b_dep))) {
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
bqrelse(bp);
}
}
return (error);
}
/*
* Extended attribute area writing.
*/
static int
ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn;
off_t osize;
int blkoffset, error, flags, resid, size, xfersize;
ip = VTOI(vp);
fs = ip->i_fs;
dp = ip->i_din2;
#ifdef INVARIANTS
if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
panic("ffs_extwrite: mode");
#endif
if (ioflag & IO_APPEND)
uio->uio_offset = dp->di_extsize;
KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0"));
KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0"));
if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize)
return (EFBIG);
resid = uio->uio_resid;
osize = dp->di_extsize;
flags = IO_EXT;
if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
flags |= IO_SYNC;
for (error = 0; uio->uio_resid > 0;) {
lbn = lblkno(fs, uio->uio_offset);
blkoffset = blkoff(fs, uio->uio_offset);
xfersize = fs->fs_bsize - blkoffset;
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
2008-01-02 01:19:17 +00:00
/*
* We must perform a read-before-write if the transfer size
* does not cover the entire buffer.
*/
if (fs->fs_bsize > xfersize)
flags |= BA_CLRBUF;
else
flags &= ~BA_CLRBUF;
error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
ucred, flags, &bp);
if (error != 0)
break;
/*
* If the buffer is not valid we have to clear out any
* garbage data from the pages instantiated for the buffer.
* If we do not, a failed uiomove() during a write can leave
* the prior contents of the pages exposed to a userland
* mmap(). XXX deal with uiomove() errors a better way.
*/
if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
vfs_bio_clrbuf(bp);
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
if (uio->uio_offset + xfersize > dp->di_extsize)
dp->di_extsize = uio->uio_offset + xfersize;
size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
if (size < xfersize)
xfersize = size;
error =
uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
2007-04-04 07:29:53 +00:00
(LIST_EMPTY(&bp->b_dep))) {
bp->b_flags |= B_RELBUF;
}
/*
* If IO_SYNC each buffer is written synchronously. Otherwise
2008-01-02 01:19:17 +00:00
* if we have a severe page deficiency write the buffer
* asynchronously. Otherwise try to cluster, and if that
* doesn't do it then either do an async write (if O_DIRECT),
* or a delayed write (if not).
*/
if (ioflag & IO_SYNC) {
(void)bwrite(bp);
} else if (vm_page_count_severe() ||
buf_dirty_count_severe() ||
xfersize + blkoffset == fs->fs_bsize ||
(ioflag & (IO_ASYNC | IO_DIRECT)))
bawrite(bp);
else
bdwrite(bp);
if (error || xfersize == 0)
break;
ip->i_flag |= IN_CHANGE;
}
/*
* If we successfully wrote any data, and we are not the superuser
* we clear the setuid and setgid bits as a precaution against
* tampering.
*/
if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) {
if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) {
ip->i_mode &= ~(ISUID | ISGID);
dp->di_mode = ip->i_mode;
}
}
if (error) {
if (ioflag & IO_UNIT) {
(void)ffs_truncate(vp, osize,
IO_EXT | (ioflag&IO_SYNC), ucred, uio->uio_td);
uio->uio_offset -= resid - uio->uio_resid;
uio->uio_resid = resid;
}
} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
error = ffs_update(vp, 1);
return (error);
}
/*
* Vnode operating to retrieve a named extended attribute.
*
* Locate a particular EA (nspace:name) in the area (ptr:length), and return
* the length of the EA, and possibly the pointer to the entry and to the data.
*/
static int
ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac)
{
u_char *p, *pe, *pn, *p0;
int eapad1, eapad2, ealength, ealen, nlen;
uint32_t ul;
pe = ptr + length;
nlen = strlen(name);
for (p = ptr; p < pe; p = pn) {
p0 = p;
bcopy(p, &ul, sizeof(ul));
pn = p + ul;
/* make sure this entry is complete */
if (pn > pe)
break;
p += sizeof(uint32_t);
if (*p != nspace)
continue;
p++;
eapad2 = *p++;
if (*p != nlen)
continue;
p++;
if (bcmp(p, name, nlen))
continue;
ealength = sizeof(uint32_t) + 3 + nlen;
eapad1 = 8 - (ealength % 8);
if (eapad1 == 8)
eapad1 = 0;
ealength += eapad1;
ealen = ul - ealength - eapad2;
p += nlen + eapad1;
if (eap != NULL)
*eap = p0;
if (eac != NULL)
*eac = p;
return (ealen);
}
return(-1);
}
static int
ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct fs *fs;
struct uio luio;
struct iovec liovec;
int easize, error;
u_char *eae;
ip = VTOI(vp);
fs = ip->i_fs;
dp = ip->i_din2;
easize = dp->di_extsize;
if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize)
return (EFBIG);
eae = malloc(easize + extra, M_TEMP, M_WAITOK);
liovec.iov_base = eae;
liovec.iov_len = easize;
luio.uio_iov = &liovec;
luio.uio_iovcnt = 1;
luio.uio_offset = 0;
luio.uio_resid = easize;
luio.uio_segflg = UIO_SYSSPACE;
luio.uio_rw = UIO_READ;
luio.uio_td = td;
error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
if (error) {
free(eae, M_TEMP);
return(error);
}
*p = eae;
return (0);
}
static void
ffs_lock_ea(struct vnode *vp)
{
struct inode *ip;
ip = VTOI(vp);
VI_LOCK(vp);
while (ip->i_flag & IN_EA_LOCKED) {
ip->i_flag |= IN_EA_LOCKWAIT;
msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea",
0);
}
ip->i_flag |= IN_EA_LOCKED;
VI_UNLOCK(vp);
}
static void
ffs_unlock_ea(struct vnode *vp)
{
struct inode *ip;
ip = VTOI(vp);
VI_LOCK(vp);
if (ip->i_flag & IN_EA_LOCKWAIT)
wakeup(&ip->i_ea_refs);
ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT);
VI_UNLOCK(vp);
}
static int
ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
{
struct inode *ip;
struct ufs2_dinode *dp;
int error;
ip = VTOI(vp);
ffs_lock_ea(vp);
if (ip->i_ea_area != NULL) {
ip->i_ea_refs++;
ffs_unlock_ea(vp);
return (0);
}
dp = ip->i_din2;
error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0);
if (error) {
ffs_unlock_ea(vp);
return (error);
}
ip->i_ea_len = dp->di_extsize;
ip->i_ea_error = 0;
ip->i_ea_refs++;
ffs_unlock_ea(vp);
return (0);
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
{
struct inode *ip;
struct uio luio;
struct iovec liovec;
int error;
struct ufs2_dinode *dp;
ip = VTOI(vp);
ffs_lock_ea(vp);
if (ip->i_ea_area == NULL) {
ffs_unlock_ea(vp);
return (EINVAL);
}
dp = ip->i_din2;
error = ip->i_ea_error;
if (commit && error == 0) {
ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit");
if (cred == NOCRED)
cred = vp->v_mount->mnt_cred;
liovec.iov_base = ip->i_ea_area;
liovec.iov_len = ip->i_ea_len;
luio.uio_iov = &liovec;
luio.uio_iovcnt = 1;
luio.uio_offset = 0;
luio.uio_resid = ip->i_ea_len;
luio.uio_segflg = UIO_SYSSPACE;
luio.uio_rw = UIO_WRITE;
luio.uio_td = td;
/* XXX: I'm not happy about truncating to zero size */
if (ip->i_ea_len < dp->di_extsize)
error = ffs_truncate(vp, 0, IO_EXT, cred, td);
error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
}
if (--ip->i_ea_refs == 0) {
free(ip->i_ea_area, M_TEMP);
ip->i_ea_area = NULL;
ip->i_ea_len = 0;
ip->i_ea_error = 0;
}
ffs_unlock_ea(vp);
return (error);
}
/*
Move UFS from DEVFS backing to GEOM backing. This eliminates a bunch of vnode overhead (approx 1-2 % speed improvement) and gives us more control over the access to the storage device. Access counts on the underlying device are not correctly tracked and therefore it is possible to read-only mount the same disk device multiple times: syv# mount -p /dev/md0 /var ufs rw 2 2 /dev/ad0 /mnt ufs ro 1 1 /dev/ad0 /mnt2 ufs ro 1 1 /dev/ad0 /mnt3 ufs ro 1 1 Since UFS/FFS is not a synchrousely consistent filesystem (ie: it caches things in RAM) this is not possible with read-write mounts, and the system will correctly reject this. Details: Add a geom consumer and a bufobj pointer to ufsmount. Eliminate the vnode argument from softdep_disk_prewrite(). Pick the vnode out of bp->b_vp for now. Eventually we should find it through bp->b_bufobj->b_private. In the mountcode, use g_vfs_open() once we have used VOP_ACCESS() to check permissions. When upgrading and downgrading between r/o and r/w do the right thing with GEOM access counts. Remove all the workarounds for not being able to do this with VOP_OPEN(). If we are the root mount, drop the exclusive access count until we upgrade to r/w. This allows fsck of the root filesystem and the MNT_RELOAD to work correctly. Set bo_private to the GEOM consumer on the device bufobj. Change the ffs_ops->strategy function to call g_vfs_strategy() In ufs_strategy() directly call the strategy on the disk bufobj. Same in rawread. In ffs_fsync() we will no longer see VCHR device nodes, so remove code which synced the filesystem mounted on it, in case we came there. I'm not sure this code made sense in the first place since we would have taken the specfs route on such a vnode. Redo the highly bogus readblock() function in the snapshot code to something slightly less bogus: Constructing an uio and using physio was really quite a detour. Instead just fill in a bio and ship it down.
2004-10-29 10:15:56 +00:00
* Vnode extattr strategy routine for fifos.
*
* We need to check for a read or write of the external attributes.
* Otherwise we just fall through and do the usual thing.
*/
static int
ffsext_strategy(struct vop_strategy_args *ap)
/*
struct vop_strategy_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
struct buf *a_bp;
};
*/
{
struct vnode *vp;
daddr_t lbn;
vp = ap->a_vp;
lbn = ap->a_bp->b_lblkno;
if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC &&
lbn < 0 && lbn >= -NXADDR)
return (VOP_STRATEGY_APV(&ufs_vnodeops, ap));
if (vp->v_type == VFIFO)
return (VOP_STRATEGY_APV(&ufs_fifoops, ap));
panic("spec nodes went here");
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_openextattr(struct vop_openextattr_args *ap)
/*
struct vop_openextattr_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_closeextattr(struct vop_closeextattr_args *ap)
/*
struct vop_closeextattr_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
int a_commit;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY))
return (EROFS);
return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
}
/*
* Vnode operation to remove a named attribute.
*/
static int
ffs_deleteextattr(struct vop_deleteextattr_args *ap)
/*
vop_deleteextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
uint32_t ealength, ul;
int ealen, olen, eapad1, eapad2, error, i, easize;
u_char *eae, *p;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
if (strlen(ap->a_name) == 0)
return (EINVAL);
if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VWRITE);
if (error) {
/*
* ffs_lock_ea is not needed there, because the vnode
2009-03-27 15:46:02 +00:00
* must be exclusively locked.
*/
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = error;
return (error);
}
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
ealength = eapad1 = ealen = eapad2 = 0;
eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
bcopy(ip->i_ea_area, eae, ip->i_ea_len);
easize = ip->i_ea_len;
olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
&p, NULL);
if (olen == -1) {
/* delete but nonexistent */
free(eae, M_TEMP);
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return(ENOATTR);
}
bcopy(p, &ul, sizeof ul);
i = p - eae + ul;
if (ul != ealength) {
bcopy(p + ul, p + ealength, easize - i);
easize += (ealength - ul);
}
if (easize > NXADDR * fs->fs_bsize) {
free(eae, M_TEMP);
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = ENOSPC;
return(ENOSPC);
}
p = ip->i_ea_area;
ip->i_ea_area = eae;
ip->i_ea_len = easize;
free(p, M_TEMP);
error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
return(error);
}
/*
* Vnode operation to retrieve a named extended attribute.
*/
static int
ffs_getextattr(struct vop_getextattr_args *ap)
/*
vop_getextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
INOUT struct uio *a_uio;
OUT size_t *a_size;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
u_char *eae, *p;
unsigned easize;
int error, ealen;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VREAD);
if (error)
return (error);
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
eae = ip->i_ea_area;
easize = ip->i_ea_len;
ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
NULL, &p);
if (ealen >= 0) {
error = 0;
if (ap->a_size != NULL)
*ap->a_size = ealen;
else if (ap->a_uio != NULL)
error = uiomove(p, ealen, ap->a_uio);
} else
error = ENOATTR;
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return(error);
}
/*
* Vnode operation to retrieve extended attributes on a vnode.
*/
static int
ffs_listextattr(struct vop_listextattr_args *ap)
/*
vop_listextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
INOUT struct uio *a_uio;
OUT size_t *a_size;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
u_char *eae, *p, *pe, *pn;
unsigned easize;
uint32_t ul;
int error, ealen;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VREAD);
if (error)
return (error);
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
eae = ip->i_ea_area;
easize = ip->i_ea_len;
error = 0;
if (ap->a_size != NULL)
*ap->a_size = 0;
pe = eae + easize;
for(p = eae; error == 0 && p < pe; p = pn) {
bcopy(p, &ul, sizeof(ul));
pn = p + ul;
if (pn > pe)
break;
p += sizeof(ul);
if (*p++ != ap->a_attrnamespace)
continue;
p++; /* pad2 */
ealen = *p;
if (ap->a_size != NULL) {
*ap->a_size += ealen + 1;
} else if (ap->a_uio != NULL) {
error = uiomove(p, ealen + 1, ap->a_uio);
}
}
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return(error);
}
/*
* Vnode operation to set a named attribute.
*/
static int
ffs_setextattr(struct vop_setextattr_args *ap)
/*
vop_setextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
INOUT struct uio *a_uio;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
uint32_t ealength, ul;
int ealen, olen, eapad1, eapad2, error, i, easize;
u_char *eae, *p;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
if (strlen(ap->a_name) == 0)
return (EINVAL);
/* XXX Now unsupported API to delete EAs using NULL uio. */
if (ap->a_uio == NULL)
return (EOPNOTSUPP);
if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VWRITE);
if (error) {
/*
* ffs_lock_ea is not needed there, because the vnode
2009-03-27 15:46:02 +00:00
* must be exclusively locked.
*/
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = error;
return (error);
}
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
ealen = ap->a_uio->uio_resid;
ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
eapad1 = 8 - (ealength % 8);
if (eapad1 == 8)
eapad1 = 0;
eapad2 = 8 - (ealen % 8);
if (eapad2 == 8)
eapad2 = 0;
ealength += eapad1 + ealen + eapad2;
eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
bcopy(ip->i_ea_area, eae, ip->i_ea_len);
easize = ip->i_ea_len;
olen = ffs_findextattr(eae, easize,
ap->a_attrnamespace, ap->a_name, &p, NULL);
if (olen == -1) {
/* new, append at end */
p = eae + easize;
easize += ealength;
} else {
bcopy(p, &ul, sizeof ul);
i = p - eae + ul;
if (ul != ealength) {
bcopy(p + ul, p + ealength, easize - i);
easize += (ealength - ul);
}
}
if (easize > NXADDR * fs->fs_bsize) {
free(eae, M_TEMP);
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = ENOSPC;
return(ENOSPC);
}
bcopy(&ealength, p, sizeof(ealength));
p += sizeof(ealength);
*p++ = ap->a_attrnamespace;
*p++ = eapad2;
*p++ = strlen(ap->a_name);
strcpy(p, ap->a_name);
p += strlen(ap->a_name);
bzero(p, eapad1);
p += eapad1;
error = uiomove(p, ealen, ap->a_uio);
if (error) {
free(eae, M_TEMP);
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = error;
return(error);
}
p += ealen;
bzero(p, eapad2);
p = ip->i_ea_area;
ip->i_ea_area = eae;
ip->i_ea_len = easize;
free(p, M_TEMP);
error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
return(error);
}
/*
* Vnode pointer to File handle
*/
static int
ffs_vptofh(struct vop_vptofh_args *ap)
/*
vop_vptofh {
IN struct vnode *a_vp;
IN struct fid *a_fhp;
};
*/
{
struct inode *ip;
struct ufid *ufhp;
ip = VTOI(ap->a_vp);
ufhp = (struct ufid *)ap->a_fhp;
ufhp->ufid_len = sizeof(struct ufid);
ufhp->ufid_ino = ip->i_number;
ufhp->ufid_gen = ip->i_gen;
return (0);
}