freebsd-skq/sys/dev/ffec/if_ffec.c

1765 lines
46 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for Freescale Fast Ethernet Controller, found on imx-series SoCs among
* others. Also works for the ENET Gigibit controller found on imx6 and imx28,
* but the driver doesn't currently use any of the ENET advanced features other
* than enabling gigabit.
*
* The interface name 'fec' is already taken by netgraph's Fast Etherchannel
* (netgraph/ng_fec.c), so we use 'ffec'.
*
* Requires an FDT entry with at least these properties:
* fec: ethernet@02188000 {
* compatible = "fsl,imxNN-fec";
* reg = <0x02188000 0x4000>;
* interrupts = <150 151>;
* phy-mode = "rgmii";
* phy-disable-preamble; // optional
* };
* The second interrupt number is for IEEE-1588, and is not currently used; it
* need not be present. phy-mode must be one of: "mii", "rmii", "rgmii".
* There is also an optional property, phy-disable-preamble, which if present
* will disable the preamble bits, cutting the size of each mdio transaction
* (and thus the busy-wait time) in half.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/if_vlan_var.h>
#include <dev/ffec/if_ffecreg.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "miibus_if.h"
/*
* There are small differences in the hardware on various SoCs. Not every SoC
* we support has its own FECTYPE; most work as GENERIC and only the ones that
* need different handling get their own entry. In addition to the types in
* this list, there are some flags below that can be ORed into the upper bits.
*/
enum {
FECTYPE_NONE,
FECTYPE_GENERIC,
FECTYPE_IMX53,
FECTYPE_IMX6,
FECTYPE_MVF,
};
/*
* Flags that describe general differences between the FEC hardware in various
* SoCs. These are ORed into the FECTYPE enum values.
*/
#define FECTYPE_MASK 0x0000ffff
#define FECFLAG_GBE (0x0001 << 16)
/*
* Table of supported FDT compat strings and their associated FECTYPE values.
*/
static struct ofw_compat_data compat_data[] = {
{"fsl,imx51-fec", FECTYPE_GENERIC},
{"fsl,imx53-fec", FECTYPE_IMX53},
{"fsl,imx6q-fec", FECTYPE_IMX6 | FECFLAG_GBE},
{"fsl,mvf600-fec", FECTYPE_MVF},
{"fsl,mvf-fec", FECTYPE_MVF},
{NULL, FECTYPE_NONE},
};
/*
* Driver data and defines.
*/
#define RX_DESC_COUNT 64
#define RX_DESC_SIZE (sizeof(struct ffec_hwdesc) * RX_DESC_COUNT)
#define TX_DESC_COUNT 64
#define TX_DESC_SIZE (sizeof(struct ffec_hwdesc) * TX_DESC_COUNT)
#define WATCHDOG_TIMEOUT_SECS 5
#define STATS_HARVEST_INTERVAL 3
struct ffec_bufmap {
struct mbuf *mbuf;
bus_dmamap_t map;
};
enum {
PHY_CONN_UNKNOWN,
PHY_CONN_MII,
PHY_CONN_RMII,
PHY_CONN_RGMII
};
struct ffec_softc {
device_t dev;
device_t miibus;
struct mii_data * mii_softc;
struct ifnet *ifp;
int if_flags;
struct mtx mtx;
struct resource *irq_res;
struct resource *mem_res;
void * intr_cookie;
struct callout ffec_callout;
uint8_t phy_conn_type;
uint8_t fectype;
boolean_t link_is_up;
boolean_t is_attached;
boolean_t is_detaching;
int tx_watchdog_count;
int stats_harvest_count;
bus_dma_tag_t rxdesc_tag;
bus_dmamap_t rxdesc_map;
struct ffec_hwdesc *rxdesc_ring;
bus_addr_t rxdesc_ring_paddr;
bus_dma_tag_t rxbuf_tag;
struct ffec_bufmap rxbuf_map[RX_DESC_COUNT];
uint32_t rx_idx;
bus_dma_tag_t txdesc_tag;
bus_dmamap_t txdesc_map;
struct ffec_hwdesc *txdesc_ring;
bus_addr_t txdesc_ring_paddr;
bus_dma_tag_t txbuf_tag;
struct ffec_bufmap txbuf_map[RX_DESC_COUNT];
uint32_t tx_idx_head;
uint32_t tx_idx_tail;
int txcount;
};
#define FFEC_LOCK(sc) mtx_lock(&(sc)->mtx)
#define FFEC_UNLOCK(sc) mtx_unlock(&(sc)->mtx)
#define FFEC_LOCK_INIT(sc) mtx_init(&(sc)->mtx, \
device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF)
#define FFEC_LOCK_DESTROY(sc) mtx_destroy(&(sc)->mtx);
#define FFEC_ASSERT_LOCKED(sc) mtx_assert(&(sc)->mtx, MA_OWNED);
#define FFEC_ASSERT_UNLOCKED(sc) mtx_assert(&(sc)->mtx, MA_NOTOWNED);
static void ffec_init_locked(struct ffec_softc *sc);
static void ffec_stop_locked(struct ffec_softc *sc);
static void ffec_txstart_locked(struct ffec_softc *sc);
static void ffec_txfinish_locked(struct ffec_softc *sc);
static inline uint16_t
RD2(struct ffec_softc *sc, bus_size_t off)
{
return (bus_read_2(sc->mem_res, off));
}
static inline void
WR2(struct ffec_softc *sc, bus_size_t off, uint16_t val)
{
bus_write_2(sc->mem_res, off, val);
}
static inline uint32_t
RD4(struct ffec_softc *sc, bus_size_t off)
{
return (bus_read_4(sc->mem_res, off));
}
static inline void
WR4(struct ffec_softc *sc, bus_size_t off, uint32_t val)
{
bus_write_4(sc->mem_res, off, val);
}
static inline uint32_t
next_rxidx(struct ffec_softc *sc, uint32_t curidx)
{
return ((curidx == RX_DESC_COUNT - 1) ? 0 : curidx + 1);
}
static inline uint32_t
next_txidx(struct ffec_softc *sc, uint32_t curidx)
{
return ((curidx == TX_DESC_COUNT - 1) ? 0 : curidx + 1);
}
static void
ffec_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0)
return;
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static void
ffec_miigasket_setup(struct ffec_softc *sc)
{
uint32_t ifmode;
/*
* We only need the gasket for MII and RMII connections on certain SoCs.
*/
switch (sc->fectype & FECTYPE_MASK)
{
case FECTYPE_IMX53:
break;
default:
return;
}
switch (sc->phy_conn_type)
{
case PHY_CONN_MII:
ifmode = 0;
break;
case PHY_CONN_RMII:
ifmode = FEC_MIIGSK_CFGR_IF_MODE_RMII;
break;
default:
return;
}
/*
* Disable the gasket, configure for either MII or RMII, then enable.
*/
WR2(sc, FEC_MIIGSK_ENR, 0);
while (RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY)
continue;
WR2(sc, FEC_MIIGSK_CFGR, ifmode);
WR2(sc, FEC_MIIGSK_ENR, FEC_MIIGSK_ENR_EN);
while (!(RD2(sc, FEC_MIIGSK_ENR) & FEC_MIIGSK_ENR_READY))
continue;
}
static boolean_t
ffec_miibus_iowait(struct ffec_softc *sc)
{
uint32_t timeout;
for (timeout = 10000; timeout != 0; --timeout)
if (RD4(sc, FEC_IER_REG) & FEC_IER_MII)
return (true);
return (false);
}
static int
ffec_miibus_readreg(device_t dev, int phy, int reg)
{
struct ffec_softc *sc;
int val;
sc = device_get_softc(dev);
WR4(sc, FEC_IER_REG, FEC_IER_MII);
WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_READ |
FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK));
if (!ffec_miibus_iowait(sc)) {
device_printf(dev, "timeout waiting for mii read\n");
return (-1); /* All-ones is a symptom of bad mdio. */
}
val = RD4(sc, FEC_MMFR_REG) & FEC_MMFR_DATA_MASK;
return (val);
}
static int
ffec_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct ffec_softc *sc;
sc = device_get_softc(dev);
WR4(sc, FEC_IER_REG, FEC_IER_MII);
WR4(sc, FEC_MMFR_REG, FEC_MMFR_OP_WRITE |
FEC_MMFR_ST_VALUE | FEC_MMFR_TA_VALUE |
((phy << FEC_MMFR_PA_SHIFT) & FEC_MMFR_PA_MASK) |
((reg << FEC_MMFR_RA_SHIFT) & FEC_MMFR_RA_MASK) |
(val & FEC_MMFR_DATA_MASK));
if (!ffec_miibus_iowait(sc)) {
device_printf(dev, "timeout waiting for mii write\n");
return (-1);
}
return (0);
}
static void
ffec_miibus_statchg(device_t dev)
{
struct ffec_softc *sc;
struct mii_data *mii;
uint32_t ecr, rcr, tcr;
/*
* Called by the MII bus driver when the PHY establishes link to set the
* MAC interface registers.
*/
sc = device_get_softc(dev);
FFEC_ASSERT_LOCKED(sc);
mii = sc->mii_softc;
if (mii->mii_media_status & IFM_ACTIVE)
sc->link_is_up = true;
else
sc->link_is_up = false;
ecr = RD4(sc, FEC_ECR_REG) & ~FEC_ECR_SPEED;
rcr = RD4(sc, FEC_RCR_REG) & ~(FEC_RCR_RMII_10T | FEC_RCR_RMII_MODE |
FEC_RCR_RGMII_EN | FEC_RCR_DRT | FEC_RCR_FCE);
tcr = RD4(sc, FEC_TCR_REG) & ~FEC_TCR_FDEN;
rcr |= FEC_RCR_MII_MODE; /* Must always be on even for R[G]MII. */
switch (sc->phy_conn_type) {
case PHY_CONN_MII:
break;
case PHY_CONN_RMII:
rcr |= FEC_RCR_RMII_MODE;
break;
case PHY_CONN_RGMII:
rcr |= FEC_RCR_RGMII_EN;
break;
}
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T:
case IFM_1000_SX:
ecr |= FEC_ECR_SPEED;
break;
case IFM_100_TX:
/* Not-FEC_ECR_SPEED + not-FEC_RCR_RMII_10T means 100TX */
break;
case IFM_10_T:
rcr |= FEC_RCR_RMII_10T;
break;
case IFM_NONE:
sc->link_is_up = false;
return;
default:
sc->link_is_up = false;
device_printf(dev, "Unsupported media %u\n",
IFM_SUBTYPE(mii->mii_media_active));
return;
}
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
tcr |= FEC_TCR_FDEN;
else
rcr |= FEC_RCR_DRT;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FLOW) != 0)
rcr |= FEC_RCR_FCE;
WR4(sc, FEC_RCR_REG, rcr);
WR4(sc, FEC_TCR_REG, tcr);
WR4(sc, FEC_ECR_REG, ecr);
}
static void
ffec_media_status(struct ifnet * ifp, struct ifmediareq *ifmr)
{
struct ffec_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = sc->mii_softc;
FFEC_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
FFEC_UNLOCK(sc);
}
static int
ffec_media_change_locked(struct ffec_softc *sc)
{
return (mii_mediachg(sc->mii_softc));
}
static int
ffec_media_change(struct ifnet * ifp)
{
struct ffec_softc *sc;
int error;
sc = ifp->if_softc;
FFEC_LOCK(sc);
error = ffec_media_change_locked(sc);
FFEC_UNLOCK(sc);
return (error);
}
static void ffec_clear_stats(struct ffec_softc *sc)
{
WR4(sc, FEC_RMON_R_PACKETS, 0);
WR4(sc, FEC_RMON_R_MC_PKT, 0);
WR4(sc, FEC_RMON_R_CRC_ALIGN, 0);
WR4(sc, FEC_RMON_R_UNDERSIZE, 0);
WR4(sc, FEC_RMON_R_OVERSIZE, 0);
WR4(sc, FEC_RMON_R_FRAG, 0);
WR4(sc, FEC_RMON_R_JAB, 0);
WR4(sc, FEC_RMON_T_PACKETS, 0);
WR4(sc, FEC_RMON_T_MC_PKT, 0);
WR4(sc, FEC_RMON_T_CRC_ALIGN, 0);
WR4(sc, FEC_RMON_T_UNDERSIZE, 0);
WR4(sc, FEC_RMON_T_OVERSIZE , 0);
WR4(sc, FEC_RMON_T_FRAG, 0);
WR4(sc, FEC_RMON_T_JAB, 0);
WR4(sc, FEC_RMON_T_COL, 0);
}
static void
ffec_harvest_stats(struct ffec_softc *sc)
{
struct ifnet *ifp;
/* We don't need to harvest too often. */
if (++sc->stats_harvest_count < STATS_HARVEST_INTERVAL)
return;
/*
* Try to avoid harvesting unless the IDLE flag is on, but if it has
* been too long just go ahead and do it anyway, the worst that'll
* happen is we'll lose a packet count or two as we clear at the end.
*/
if (sc->stats_harvest_count < (2 * STATS_HARVEST_INTERVAL) &&
((RD4(sc, FEC_MIBC_REG) & FEC_MIBC_IDLE) == 0))
return;
sc->stats_harvest_count = 0;
ifp = sc->ifp;
ifp->if_ipackets += RD4(sc, FEC_RMON_R_PACKETS);
ifp->if_imcasts += RD4(sc, FEC_RMON_R_MC_PKT);
ifp->if_ierrors += RD4(sc, FEC_RMON_R_CRC_ALIGN);
ifp->if_ierrors += RD4(sc, FEC_RMON_R_UNDERSIZE);
ifp->if_ierrors += RD4(sc, FEC_RMON_R_OVERSIZE);
ifp->if_ierrors += RD4(sc, FEC_RMON_R_FRAG);
ifp->if_ierrors += RD4(sc, FEC_RMON_R_JAB);
ifp->if_opackets += RD4(sc, FEC_RMON_T_PACKETS);
ifp->if_omcasts += RD4(sc, FEC_RMON_T_MC_PKT);
ifp->if_oerrors += RD4(sc, FEC_RMON_T_CRC_ALIGN);
ifp->if_oerrors += RD4(sc, FEC_RMON_T_UNDERSIZE);
ifp->if_oerrors += RD4(sc, FEC_RMON_T_OVERSIZE );
ifp->if_oerrors += RD4(sc, FEC_RMON_T_FRAG);
ifp->if_oerrors += RD4(sc, FEC_RMON_T_JAB);
ifp->if_collisions += RD4(sc, FEC_RMON_T_COL);
ffec_clear_stats(sc);
}
static void
ffec_tick(void *arg)
{
struct ffec_softc *sc;
struct ifnet *ifp;
int link_was_up;
sc = arg;
FFEC_ASSERT_LOCKED(sc);
ifp = sc->ifp;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
return;
/*
* Typical tx watchdog. If this fires it indicates that we enqueued
* packets for output and never got a txdone interrupt for them. Maybe
* it's a missed interrupt somehow, just pretend we got one.
*/
if (sc->tx_watchdog_count > 0) {
if (--sc->tx_watchdog_count == 0) {
ffec_txfinish_locked(sc);
}
}
/* Gather stats from hardware counters. */
ffec_harvest_stats(sc);
/* Check the media status. */
link_was_up = sc->link_is_up;
mii_tick(sc->mii_softc);
if (sc->link_is_up && !link_was_up)
ffec_txstart_locked(sc);
/* Schedule another check one second from now. */
callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
}
inline static uint32_t
ffec_setup_txdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr,
uint32_t len)
{
uint32_t nidx;
uint32_t flags;
nidx = next_txidx(sc, idx);
/* Addr/len 0 means we're clearing the descriptor after xmit done. */
if (paddr == 0 || len == 0) {
flags = 0;
--sc->txcount;
} else {
flags = FEC_TXDESC_READY | FEC_TXDESC_L | FEC_TXDESC_TC;
++sc->txcount;
}
if (nidx == 0)
flags |= FEC_TXDESC_WRAP;
/*
* The hardware requires 32-bit physical addresses. We set up the dma
* tag to indicate that, so the cast to uint32_t should never lose
* significant bits.
*/
sc->txdesc_ring[idx].buf_paddr = (uint32_t)paddr;
sc->txdesc_ring[idx].flags_len = flags | len; /* Must be set last! */
return (nidx);
}
static int
ffec_setup_txbuf(struct ffec_softc *sc, int idx, struct mbuf **mp)
{
struct mbuf * m;
int error, nsegs;
struct bus_dma_segment seg;
if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
return (ENOMEM);
*mp = m;
error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
m, &seg, &nsegs, 0);
if (error != 0) {
return (ENOMEM);
}
bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
BUS_DMASYNC_PREWRITE);
sc->txbuf_map[idx].mbuf = m;
ffec_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len);
return (0);
}
static void
ffec_txstart_locked(struct ffec_softc *sc)
{
struct ifnet *ifp;
struct mbuf *m;
int enqueued;
FFEC_ASSERT_LOCKED(sc);
if (!sc->link_is_up)
return;
ifp = sc->ifp;
if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
return;
enqueued = 0;
for (;;) {
if (sc->txcount == (TX_DESC_COUNT-1)) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (ffec_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) {
IFQ_DRV_PREPEND(&ifp->if_snd, m);
break;
}
BPF_MTAP(ifp, m);
sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head);
++enqueued;
}
if (enqueued != 0) {
WR4(sc, FEC_TDAR_REG, FEC_TDAR_TDAR);
sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
}
}
static void
ffec_txstart(struct ifnet *ifp)
{
struct ffec_softc *sc = ifp->if_softc;
FFEC_LOCK(sc);
ffec_txstart_locked(sc);
FFEC_UNLOCK(sc);
}
static void
ffec_txfinish_locked(struct ffec_softc *sc)
{
struct ifnet *ifp;
struct ffec_hwdesc *desc;
struct ffec_bufmap *bmap;
boolean_t retired_buffer;
FFEC_ASSERT_LOCKED(sc);
ifp = sc->ifp;
retired_buffer = false;
while (sc->tx_idx_tail != sc->tx_idx_head) {
desc = &sc->txdesc_ring[sc->tx_idx_tail];
if (desc->flags_len & FEC_TXDESC_READY)
break;
retired_buffer = true;
bmap = &sc->txbuf_map[sc->tx_idx_tail];
bus_dmamap_sync(sc->txbuf_tag, bmap->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txbuf_tag, bmap->map);
m_freem(bmap->mbuf);
bmap->mbuf = NULL;
ffec_setup_txdesc(sc, sc->tx_idx_tail, 0, 0);
sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail);
}
/*
* If we retired any buffers, there will be open tx slots available in
* the descriptor ring, go try to start some new output.
*/
if (retired_buffer) {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ffec_txstart_locked(sc);
}
/* If there are no buffers outstanding, muzzle the watchdog. */
if (sc->tx_idx_tail == sc->tx_idx_head) {
sc->tx_watchdog_count = 0;
}
}
inline static uint32_t
ffec_setup_rxdesc(struct ffec_softc *sc, int idx, bus_addr_t paddr)
{
uint32_t nidx;
/*
* The hardware requires 32-bit physical addresses. We set up the dma
* tag to indicate that, so the cast to uint32_t should never lose
* significant bits.
*/
nidx = next_rxidx(sc, idx);
sc->rxdesc_ring[idx].buf_paddr = (uint32_t)paddr;
sc->rxdesc_ring[idx].flags_len = FEC_RXDESC_EMPTY |
((nidx == 0) ? FEC_RXDESC_WRAP : 0);
return (nidx);
}
static int
ffec_setup_rxbuf(struct ffec_softc *sc, int idx, struct mbuf * m)
{
int error, nsegs;
struct bus_dma_segment seg;
/*
* We need to leave at least ETHER_ALIGN bytes free at the beginning of
* the buffer to allow the data to be re-aligned after receiving it (by
* copying it backwards ETHER_ALIGN bytes in the same buffer). We also
* have to ensure that the beginning of the buffer is aligned to the
* hardware's requirements.
*/
m_adj(m, roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN));
error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
m, &seg, &nsegs, 0);
if (error != 0) {
return (error);
}
bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
BUS_DMASYNC_PREREAD);
sc->rxbuf_map[idx].mbuf = m;
ffec_setup_rxdesc(sc, idx, seg.ds_addr);
return (0);
}
static struct mbuf *
ffec_alloc_mbufcl(struct ffec_softc *sc)
{
struct mbuf *m;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
return (m);
}
static void
ffec_rxfinish_onebuf(struct ffec_softc *sc, int len)
{
struct mbuf *m, *newmbuf;
struct ffec_bufmap *bmap;
uint8_t *dst, *src;
int error;
/*
* First try to get a new mbuf to plug into this slot in the rx ring.
* If that fails, drop the current packet and recycle the current
* mbuf, which is still mapped and loaded.
*/
if ((newmbuf = ffec_alloc_mbufcl(sc)) == NULL) {
++sc->ifp->if_iqdrops;
ffec_setup_rxdesc(sc, sc->rx_idx,
sc->rxdesc_ring[sc->rx_idx].buf_paddr);
return;
}
/*
* Unfortunately, the protocol headers need to be aligned on a 32-bit
* boundary for the upper layers. The hardware requires receive
* buffers to be 16-byte aligned. The ethernet header is 14 bytes,
* leaving the protocol header unaligned. We used m_adj() after
* allocating the buffer to leave empty space at the start of the
* buffer, now we'll use the alignment agnostic bcopy() routine to
* shuffle all the data backwards 2 bytes and adjust m_data.
*
* XXX imx6 hardware is able to do this 2-byte alignment by setting the
* SHIFT16 bit in the RACC register. Older hardware doesn't have that
* feature, but for them could we speed this up by copying just the
* protocol headers into their own small mbuf then chaining the cluster
* to it? That way we'd only need to copy like 64 bytes or whatever
* the biggest header is, instead of the whole 1530ish-byte frame.
*/
FFEC_UNLOCK(sc);
bmap = &sc->rxbuf_map[sc->rx_idx];
len -= ETHER_CRC_LEN;
bus_dmamap_sync(sc->rxbuf_tag, bmap->map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxbuf_tag, bmap->map);
m = bmap->mbuf;
bmap->mbuf = NULL;
m->m_len = len;
m->m_pkthdr.len = len;
m->m_pkthdr.rcvif = sc->ifp;
src = mtod(m, uint8_t*);
dst = src - ETHER_ALIGN;
bcopy(src, dst, len);
m->m_data = dst;
sc->ifp->if_input(sc->ifp, m);
FFEC_LOCK(sc);
if ((error = ffec_setup_rxbuf(sc, sc->rx_idx, newmbuf)) != 0) {
device_printf(sc->dev, "ffec_setup_rxbuf error %d\n", error);
/* XXX Now what? We've got a hole in the rx ring. */
}
}
static void
ffec_rxfinish_locked(struct ffec_softc *sc)
{
struct ffec_hwdesc *desc;
int len;
boolean_t produced_empty_buffer;
FFEC_ASSERT_LOCKED(sc);
produced_empty_buffer = false;
for (;;) {
desc = &sc->rxdesc_ring[sc->rx_idx];
if (desc->flags_len & FEC_RXDESC_EMPTY)
break;
produced_empty_buffer = true;
len = (desc->flags_len & FEC_RXDESC_LEN_MASK);
if (len < 64) {
/*
* Just recycle the descriptor and continue. .
*/
ffec_setup_rxdesc(sc, sc->rx_idx,
sc->rxdesc_ring[sc->rx_idx].buf_paddr);
} else if ((desc->flags_len & FEC_RXDESC_L) == 0) {
/*
* The entire frame is not in this buffer. Impossible.
* Recycle the descriptor and continue.
*
* XXX what's the right way to handle this? Probably we
* should stop/init the hardware because this should
* just really never happen when we have buffers bigger
* than the maximum frame size.
*/
device_printf(sc->dev,
"fec_rxfinish: received frame without LAST bit set");
ffec_setup_rxdesc(sc, sc->rx_idx,
sc->rxdesc_ring[sc->rx_idx].buf_paddr);
} else if (desc->flags_len & FEC_RXDESC_ERROR_BITS) {
/*
* Something went wrong with receiving the frame, we
* don't care what (the hardware has counted the error
* in the stats registers already), we just reuse the
* same mbuf, which is still dma-mapped, by resetting
* the rx descriptor.
*/
ffec_setup_rxdesc(sc, sc->rx_idx,
sc->rxdesc_ring[sc->rx_idx].buf_paddr);
} else {
/*
* Normal case: a good frame all in one buffer.
*/
ffec_rxfinish_onebuf(sc, len);
}
sc->rx_idx = next_rxidx(sc, sc->rx_idx);
}
if (produced_empty_buffer) {
WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
}
}
static void
ffec_get_hwaddr(struct ffec_softc *sc, uint8_t *hwaddr)
{
uint32_t palr, paur, rnd;
/*
* Try to recover a MAC address from the running hardware. If there's
* something non-zero there, assume the bootloader did the right thing
* and just use it.
*
* Otherwise, set the address to a convenient locally assigned address,
* 'bsd' + random 24 low-order bits. 'b' is 0x62, which has the locally
* assigned bit set, and the broadcast/multicast bit clear.
*/
palr = RD4(sc, FEC_PALR_REG);
paur = RD4(sc, FEC_PAUR_REG) & FEC_PAUR_PADDR2_MASK;
if ((palr | paur) != 0) {
hwaddr[0] = palr >> 24;
hwaddr[1] = palr >> 16;
hwaddr[2] = palr >> 8;
hwaddr[3] = palr >> 0;
hwaddr[4] = paur >> 24;
hwaddr[5] = paur >> 16;
} else {
rnd = arc4random() & 0x00ffffff;
hwaddr[0] = 'b';
hwaddr[1] = 's';
hwaddr[2] = 'd';
hwaddr[3] = rnd >> 16;
hwaddr[4] = rnd >> 8;
hwaddr[5] = rnd >> 0;
}
if (bootverbose) {
device_printf(sc->dev,
"MAC address %02x:%02x:%02x:%02x:%02x:%02x:\n",
hwaddr[0], hwaddr[1], hwaddr[2],
hwaddr[3], hwaddr[4], hwaddr[5]);
}
}
static void
ffec_setup_rxfilter(struct ffec_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint8_t *eaddr;
uint32_t crc;
uint64_t ghash, ihash;
FFEC_ASSERT_LOCKED(sc);
ifp = sc->ifp;
/*
* Set the multicast (group) filter hash.
*/
if ((ifp->if_flags & IFF_ALLMULTI))
ghash = 0xffffffffffffffffLLU;
else {
ghash = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
/* 6 bits from MSB in LE CRC32 are used for hash. */
crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
ghash |= 1LLU << (((uint8_t *)&crc)[3] >> 2);
}
if_maddr_runlock(ifp);
}
WR4(sc, FEC_GAUR_REG, (uint32_t)(ghash >> 32));
WR4(sc, FEC_GALR_REG, (uint32_t)ghash);
/*
* Set the individual address filter hash.
*
* XXX Is 0 the right value when promiscuous is off? This hw feature
* seems to support the concept of MAC address aliases, does such a
* thing even exist?
*/
if ((ifp->if_flags & IFF_PROMISC))
ihash = 0xffffffffffffffffLLU;
else {
ihash = 0;
}
WR4(sc, FEC_IAUR_REG, (uint32_t)(ihash >> 32));
WR4(sc, FEC_IALR_REG, (uint32_t)ihash);
/*
* Set the primary address.
*/
eaddr = IF_LLADDR(ifp);
WR4(sc, FEC_PALR_REG, (eaddr[0] << 24) | (eaddr[1] << 16) |
(eaddr[2] << 8) | eaddr[3]);
WR4(sc, FEC_PAUR_REG, (eaddr[4] << 24) | (eaddr[5] << 16));
}
static void
ffec_stop_locked(struct ffec_softc *sc)
{
struct ifnet *ifp;
struct ffec_hwdesc *desc;
struct ffec_bufmap *bmap;
int idx;
FFEC_ASSERT_LOCKED(sc);
ifp = sc->ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->tx_watchdog_count = 0;
sc->stats_harvest_count = 0;
/*
* Stop the hardware, mask all interrupts, and clear all current
* interrupt status bits.
*/
WR4(sc, FEC_ECR_REG, RD4(sc, FEC_ECR_REG) & ~FEC_ECR_ETHEREN);
WR4(sc, FEC_IEM_REG, 0x00000000);
WR4(sc, FEC_IER_REG, 0xffffffff);
/*
* Stop the media-check callout. Do not use callout_drain() because
* we're holding a mutex the callout acquires, and if it's currently
* waiting to acquire it, we'd deadlock. If it is waiting now, the
* ffec_tick() routine will return without doing anything when it sees
* that IFF_DRV_RUNNING is not set, so avoiding callout_drain() is safe.
*/
callout_stop(&sc->ffec_callout);
/*
* Discard all untransmitted buffers. Each buffer is simply freed;
* it's as if the bits were transmitted and then lost on the wire.
*
* XXX Is this right? Or should we use IFQ_DRV_PREPEND() to put them
* back on the queue for when we get restarted later?
*/
idx = sc->tx_idx_tail;
while (idx != sc->tx_idx_head) {
desc = &sc->txdesc_ring[idx];
bmap = &sc->txbuf_map[idx];
if (desc->buf_paddr != 0) {
bus_dmamap_unload(sc->txbuf_tag, bmap->map);
m_freem(bmap->mbuf);
bmap->mbuf = NULL;
ffec_setup_txdesc(sc, idx, 0, 0);
}
idx = next_txidx(sc, idx);
}
/*
* Discard all unprocessed receive buffers. This amounts to just
* pretending that nothing ever got received into them. We reuse the
* mbuf already mapped for each desc, simply turning the EMPTY flags
* back on so they'll get reused when we start up again.
*/
for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
desc = &sc->rxdesc_ring[idx];
ffec_setup_rxdesc(sc, idx, desc->buf_paddr);
}
}
static void
ffec_init_locked(struct ffec_softc *sc)
{
struct ifnet *ifp = sc->ifp;
uint32_t maxbuf, maxfl, regval;
FFEC_ASSERT_LOCKED(sc);
/*
* The hardware has a limit of 0x7ff as the max frame length (see
* comments for MRBR below), and we use mbuf clusters as receive
* buffers, and we currently are designed to receive an entire frame
* into a single buffer.
*
* We start with a MCLBYTES-sized cluster, but we have to offset into
* the buffer by ETHER_ALIGN to make room for post-receive re-alignment,
* and then that value has to be rounded up to the hardware's DMA
* alignment requirements, so all in all our buffer is that much smaller
* than MCLBYTES.
*
* The resulting value is used as the frame truncation length and the
* max buffer receive buffer size for now. It'll become more complex
* when we support jumbo frames and receiving fragments of them into
* separate buffers.
*/
maxbuf = MCLBYTES - roundup(ETHER_ALIGN, FEC_RXBUF_ALIGN);
maxfl = min(maxbuf, 0x7ff);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
/* Mask all interrupts and clear all current interrupt status bits. */
WR4(sc, FEC_IEM_REG, 0x00000000);
WR4(sc, FEC_IER_REG, 0xffffffff);
/*
* Go set up palr/puar, galr/gaur, ialr/iaur.
*/
ffec_setup_rxfilter(sc);
/*
* TFWR - Transmit FIFO watermark register.
*
* Set the transmit fifo watermark register to "store and forward" mode
* and also set a threshold of 128 bytes in the fifo before transmission
* of a frame begins (to avoid dma underruns). Recent FEC hardware
* supports STRFWD and when that bit is set, the watermark level in the
* low bits is ignored. Older hardware doesn't have STRFWD, but writing
* to that bit is innocuous, and the TWFR bits get used instead.
*/
WR4(sc, FEC_TFWR_REG, FEC_TFWR_STRFWD | FEC_TFWR_TWFR_128BYTE);
/* RCR - Receive control register.
*
* Set max frame length + clean out anything left from u-boot.
*/
WR4(sc, FEC_RCR_REG, (maxfl << FEC_RCR_MAX_FL_SHIFT));
/*
* TCR - Transmit control register.
*
* Clean out anything left from u-boot. Any necessary values are set in
* ffec_miibus_statchg() based on the media type.
*/
WR4(sc, FEC_TCR_REG, 0);
/*
* OPD - Opcode/pause duration.
*
* XXX These magic numbers come from u-boot.
*/
WR4(sc, FEC_OPD_REG, 0x00010020);
/*
* FRSR - Fifo receive start register.
*
* This register does not exist on imx6, it is present on earlier
* hardware. The u-boot code sets this to a non-default value that's 32
* bytes larger than the default, with no clue as to why. The default
* value should work fine, so there's no code to init it here.
*/
/*
* MRBR - Max RX buffer size.
*
* Note: For hardware prior to imx6 this value cannot exceed 0x07ff,
* but the datasheet says no such thing for imx6. On the imx6, setting
* this to 2K without setting EN1588 resulted in a crazy runaway
* receive loop in the hardware, where every rx descriptor in the ring
* had its EMPTY flag cleared, no completion or error flags set, and a
* length of zero. I think maybe you can only exceed it when EN1588 is
* set, like maybe that's what enables jumbo frames, because in general
* the EN1588 flag seems to be the "enable new stuff" vs. "be legacy-
* compatible" flag.
*/
WR4(sc, FEC_MRBR_REG, maxfl << FEC_MRBR_R_BUF_SIZE_SHIFT);
/*
* FTRL - Frame truncation length.
*
* Must be greater than or equal to the value set in FEC_RCR_MAXFL.
*/
WR4(sc, FEC_FTRL_REG, maxfl);
/*
* RDSR / TDSR descriptor ring pointers.
*
* When we turn on ECR_ETHEREN at the end, the hardware zeroes its
* internal current descriptor index values for both rings, so we zero
* our index values as well.
*/
sc->rx_idx = 0;
sc->tx_idx_head = sc->tx_idx_tail = 0;
sc->txcount = 0;
WR4(sc, FEC_RDSR_REG, sc->rxdesc_ring_paddr);
WR4(sc, FEC_TDSR_REG, sc->txdesc_ring_paddr);
/*
* EIM - interrupt mask register.
*
* We always enable the same set of interrupts while running; unlike
* some drivers there's no need to change the mask on the fly depending
* on what operations are in progress.
*/
WR4(sc, FEC_IEM_REG, FEC_IER_TXF | FEC_IER_RXF | FEC_IER_EBERR);
/*
* MIBC - MIB control (hardware stats).
*/
regval = RD4(sc, FEC_MIBC_REG);
WR4(sc, FEC_MIBC_REG, regval | FEC_MIBC_DIS);
ffec_clear_stats(sc);
WR4(sc, FEC_MIBC_REG, regval & ~FEC_MIBC_DIS);
/*
* ECR - Ethernet control register.
*
* This must happen after all the other config registers are set. If
* we're running on little-endian hardware, also set the flag for byte-
* swapping descriptor ring entries. This flag doesn't exist on older
* hardware, but it can be safely set -- the bit position it occupies
* was unused.
*/
regval = RD4(sc, FEC_ECR_REG);
#if _BYTE_ORDER == _LITTLE_ENDIAN
regval |= FEC_ECR_DBSWP;
#endif
regval |= FEC_ECR_ETHEREN;
WR4(sc, FEC_ECR_REG, regval);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
/*
* Call mii_mediachg() which will call back into ffec_miibus_statchg() to
* set up the remaining config registers based on the current media.
*/
mii_mediachg(sc->mii_softc);
callout_reset(&sc->ffec_callout, hz, ffec_tick, sc);
/*
* Tell the hardware that receive buffers are available. They were made
* available in ffec_attach() or ffec_stop().
*/
WR4(sc, FEC_RDAR_REG, FEC_RDAR_RDAR);
}
static void
ffec_init(void *if_softc)
{
struct ffec_softc *sc = if_softc;
FFEC_LOCK(sc);
ffec_init_locked(sc);
FFEC_UNLOCK(sc);
}
static void
ffec_intr(void *arg)
{
struct ffec_softc *sc;
uint32_t ier;
sc = arg;
FFEC_LOCK(sc);
ier = RD4(sc, FEC_IER_REG);
if (ier & FEC_IER_TXF) {
WR4(sc, FEC_IER_REG, FEC_IER_TXF);
ffec_txfinish_locked(sc);
}
if (ier & FEC_IER_RXF) {
WR4(sc, FEC_IER_REG, FEC_IER_RXF);
ffec_rxfinish_locked(sc);
}
/*
* We actually don't care about most errors, because the hardware copes
* with them just fine, discarding the incoming bad frame, or forcing a
* bad CRC onto an outgoing bad frame, and counting the errors in the
* stats registers. The one that really matters is EBERR (DMA bus
* error) because the hardware automatically clears ECR[ETHEREN] and we
* have to restart it here. It should never happen.
*/
if (ier & FEC_IER_EBERR) {
WR4(sc, FEC_IER_REG, FEC_IER_EBERR);
device_printf(sc->dev,
"Ethernet DMA error, restarting controller.\n");
ffec_stop_locked(sc);
ffec_init_locked(sc);
}
FFEC_UNLOCK(sc);
}
static int
ffec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ffec_softc *sc;
struct mii_data *mii;
struct ifreq *ifr;
int mask, error;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
FFEC_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc->if_flags) &
(IFF_PROMISC | IFF_ALLMULTI))
ffec_setup_rxfilter(sc);
} else {
if (!sc->is_detaching)
ffec_init_locked(sc);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ffec_stop_locked(sc);
}
sc->if_flags = ifp->if_flags;
FFEC_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
FFEC_LOCK(sc);
ffec_setup_rxfilter(sc);
FFEC_UNLOCK(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = sc->mii_softc;
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
mask = ifp->if_capenable ^ ifr->ifr_reqcap;
if (mask & IFCAP_VLAN_MTU) {
/* No work to do except acknowledge the change took. */
ifp->if_capenable ^= IFCAP_VLAN_MTU;
}
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static int
ffec_detach(device_t dev)
{
struct ffec_softc *sc;
bus_dmamap_t map;
int idx;
/*
* NB: This function can be called internally to unwind a failure to
* attach. Make sure a resource got allocated/created before destroying.
*/
sc = device_get_softc(dev);
if (sc->is_attached) {
FFEC_LOCK(sc);
sc->is_detaching = true;
ffec_stop_locked(sc);
FFEC_UNLOCK(sc);
callout_drain(&sc->ffec_callout);
ether_ifdetach(sc->ifp);
}
/* XXX no miibus detach? */
/* Clean up RX DMA resources and free mbufs. */
for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
if ((map = sc->rxbuf_map[idx].map) != NULL) {
bus_dmamap_unload(sc->rxbuf_tag, map);
bus_dmamap_destroy(sc->rxbuf_tag, map);
m_freem(sc->rxbuf_map[idx].mbuf);
}
}
if (sc->rxbuf_tag != NULL)
bus_dma_tag_destroy(sc->rxbuf_tag);
if (sc->rxdesc_map != NULL) {
bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map);
bus_dmamap_destroy(sc->rxdesc_tag, sc->rxdesc_map);
}
if (sc->rxdesc_tag != NULL)
bus_dma_tag_destroy(sc->rxdesc_tag);
/* Clean up TX DMA resources. */
for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
if ((map = sc->txbuf_map[idx].map) != NULL) {
/* TX maps are already unloaded. */
bus_dmamap_destroy(sc->txbuf_tag, map);
}
}
if (sc->txbuf_tag != NULL)
bus_dma_tag_destroy(sc->txbuf_tag);
if (sc->txdesc_map != NULL) {
bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map);
bus_dmamap_destroy(sc->txdesc_tag, sc->txdesc_map);
}
if (sc->txdesc_tag != NULL)
bus_dma_tag_destroy(sc->txdesc_tag);
/* Release bus resources. */
if (sc->intr_cookie)
bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
if (sc->irq_res != NULL)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
if (sc->mem_res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
FFEC_LOCK_DESTROY(sc);
return (0);
}
static int
ffec_attach(device_t dev)
{
struct ffec_softc *sc;
struct ifnet *ifp = NULL;
struct mbuf *m;
phandle_t ofw_node;
int error, rid;
uint8_t eaddr[ETHER_ADDR_LEN];
char phy_conn_name[32];
uint32_t idx, mscr;
sc = device_get_softc(dev);
sc->dev = dev;
FFEC_LOCK_INIT(sc);
/*
* There are differences in the implementation and features of the FEC
* hardware on different SoCs, so figure out what type we are.
*/
sc->fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
/*
* We have to be told what kind of electrical connection exists between
* the MAC and PHY or we can't operate correctly.
*/
if ((ofw_node = ofw_bus_get_node(dev)) == -1) {
device_printf(dev, "Impossible: Can't find ofw bus node\n");
error = ENXIO;
goto out;
}
if (OF_searchprop(ofw_node, "phy-mode",
phy_conn_name, sizeof(phy_conn_name)) != -1) {
if (strcasecmp(phy_conn_name, "mii") == 0)
sc->phy_conn_type = PHY_CONN_MII;
else if (strcasecmp(phy_conn_name, "rmii") == 0)
sc->phy_conn_type = PHY_CONN_RMII;
else if (strcasecmp(phy_conn_name, "rgmii") == 0)
sc->phy_conn_type = PHY_CONN_RGMII;
}
if (sc->phy_conn_type == PHY_CONN_UNKNOWN) {
device_printf(sc->dev, "No valid 'phy-mode' "
"property found in FDT data for device.\n");
error = ENOATTR;
goto out;
}
callout_init_mtx(&sc->ffec_callout, &sc->mtx, 0);
/* Allocate bus resources for accessing the hardware. */
rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->mem_res == NULL) {
device_printf(dev, "could not allocate memory resources.\n");
error = ENOMEM;
goto out;
}
rid = 0;
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->irq_res == NULL) {
device_printf(dev, "could not allocate interrupt resources.\n");
error = ENOMEM;
goto out;
}
/*
* Set up TX descriptor ring, descriptors, and dma maps.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(dev), /* Parent tag. */
FEC_DESC_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
TX_DESC_SIZE, 1, /* maxsize, nsegments */
TX_DESC_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->txdesc_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create TX ring DMA tag.\n");
goto out;
}
error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map);
if (error != 0) {
device_printf(sc->dev,
"could not allocate TX descriptor ring.\n");
goto out;
}
error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring,
TX_DESC_SIZE, ffec_get1paddr, &sc->txdesc_ring_paddr, 0);
if (error != 0) {
device_printf(sc->dev,
"could not load TX descriptor ring map.\n");
goto out;
}
error = bus_dma_tag_create(
bus_get_dma_tag(dev), /* Parent tag. */
FEC_TXBUF_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, 1, /* maxsize, nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->txbuf_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create TX ring DMA tag.\n");
goto out;
}
for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
error = bus_dmamap_create(sc->txbuf_tag, 0,
&sc->txbuf_map[idx].map);
if (error != 0) {
device_printf(sc->dev,
"could not create TX buffer DMA map.\n");
goto out;
}
ffec_setup_txdesc(sc, idx, 0, 0);
}
/*
* Set up RX descriptor ring, descriptors, dma maps, and mbufs.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(dev), /* Parent tag. */
FEC_DESC_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
RX_DESC_SIZE, 1, /* maxsize, nsegments */
RX_DESC_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rxdesc_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create RX ring DMA tag.\n");
goto out;
}
error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map);
if (error != 0) {
device_printf(sc->dev,
"could not allocate RX descriptor ring.\n");
goto out;
}
error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring,
RX_DESC_SIZE, ffec_get1paddr, &sc->rxdesc_ring_paddr, 0);
if (error != 0) {
device_printf(sc->dev,
"could not load RX descriptor ring map.\n");
goto out;
}
error = bus_dma_tag_create(
bus_get_dma_tag(dev), /* Parent tag. */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, 1, /* maxsize, nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rxbuf_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create RX buf DMA tag.\n");
goto out;
}
for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
error = bus_dmamap_create(sc->rxbuf_tag, 0,
&sc->rxbuf_map[idx].map);
if (error != 0) {
device_printf(sc->dev,
"could not create RX buffer DMA map.\n");
goto out;
}
if ((m = ffec_alloc_mbufcl(sc)) == NULL) {
device_printf(dev, "Could not alloc mbuf\n");
error = ENOMEM;
goto out;
}
if ((error = ffec_setup_rxbuf(sc, idx, m)) != 0) {
device_printf(sc->dev,
"could not create new RX buffer.\n");
goto out;
}
}
/* Try to get the MAC address from the hardware before resetting it. */
ffec_get_hwaddr(sc, eaddr);
/* Reset the hardware. Disables all interrupts. */
WR4(sc, FEC_ECR_REG, FEC_ECR_RESET);
/* Setup interrupt handler. */
error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
NULL, ffec_intr, sc, &sc->intr_cookie);
if (error != 0) {
device_printf(dev, "could not setup interrupt handler.\n");
goto out;
}
/*
* Set up the PHY control register.
*
* Speed formula for ENET is md_clock = mac_clock / ((N + 1) * 2).
* Speed formula for FEC is md_clock = mac_clock / (N * 2)
*
* XXX - Revisit this...
*
* For a Wandboard imx6 (ENET) I was originally using 4, but the uboot
* code uses 10. Both values seem to work, but I suspect many modern
* PHY parts can do mdio at speeds far above the standard 2.5 MHz.
*
* Different imx manuals use confusingly different terminology (things
* like "system clock" and "internal module clock") with examples that
* use frequencies that have nothing to do with ethernet, giving the
* vague impression that maybe the clock in question is the periphclock
* or something. In fact, on an imx53 development board (FEC),
* measuring the mdio clock at the pin on the PHY and playing with
* various divisors showed that the root speed was 66 MHz (clk_ipg_root
* aka periphclock) and 13 was the right divisor.
*
* All in all, it seems likely that 13 is a safe divisor for now,
* because if we really do need to base it on the peripheral clock
* speed, then we need a platform-independant get-clock-freq API.
*/
mscr = 13 << FEC_MSCR_MII_SPEED_SHIFT;
if (OF_hasprop(ofw_node, "phy-disable-preamble")) {
mscr |= FEC_MSCR_DIS_PRE;
if (bootverbose)
device_printf(dev, "PHY preamble disabled\n");
}
WR4(sc, FEC_MSCR_REG, mscr);
/* Set up the ethernet interface. */
sc->ifp = ifp = if_alloc(IFT_ETHER);
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_capabilities = IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
ifp->if_start = ffec_txstart;
ifp->if_ioctl = ffec_ioctl;
ifp->if_init = ffec_init;
IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1);
ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1;
IFQ_SET_READY(&ifp->if_snd);
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
#if 0 /* XXX The hardware keeps stats we could use for these. */
ifp->if_linkmib = &sc->mibdata;
ifp->if_linkmiblen = sizeof(sc->mibdata);
#endif
/* Set up the miigasket hardware (if any). */
ffec_miigasket_setup(sc);
/* Attach the mii driver. */
error = mii_attach(dev, &sc->miibus, ifp, ffec_media_change,
ffec_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
(sc->fectype & FECTYPE_MVF) ? MIIF_FORCEANEG : 0);
if (error != 0) {
device_printf(dev, "PHY attach failed\n");
goto out;
}
sc->mii_softc = device_get_softc(sc->miibus);
/* All ready to run, attach the ethernet interface. */
ether_ifattach(ifp, eaddr);
sc->is_attached = true;
error = 0;
out:
if (error != 0)
ffec_detach(dev);
return (error);
}
static int
ffec_probe(device_t dev)
{
uintptr_t fectype;
if (!ofw_bus_status_okay(dev))
return (ENXIO);
fectype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
if (fectype == FECTYPE_NONE)
return (ENXIO);
device_set_desc(dev, (fectype & FECFLAG_GBE) ?
"Freescale Gigabit Ethernet Controller" :
"Freescale Fast Ethernet Controller");
return (BUS_PROBE_DEFAULT);
}
static device_method_t ffec_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, ffec_probe),
DEVMETHOD(device_attach, ffec_attach),
DEVMETHOD(device_detach, ffec_detach),
/*
DEVMETHOD(device_shutdown, ffec_shutdown),
DEVMETHOD(device_suspend, ffec_suspend),
DEVMETHOD(device_resume, ffec_resume),
*/
/* MII interface. */
DEVMETHOD(miibus_readreg, ffec_miibus_readreg),
DEVMETHOD(miibus_writereg, ffec_miibus_writereg),
DEVMETHOD(miibus_statchg, ffec_miibus_statchg),
DEVMETHOD_END
};
static driver_t ffec_driver = {
"ffec",
ffec_methods,
sizeof(struct ffec_softc)
};
static devclass_t ffec_devclass;
DRIVER_MODULE(ffec, simplebus, ffec_driver, ffec_devclass, 0, 0);
DRIVER_MODULE(miibus, ffec, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(ffec, ether, 1, 1, 1);
MODULE_DEPEND(ffec, miibus, 1, 1, 1);