freebsd-skq/contrib/ntp/ntpd/refclock_arbiter.c

454 lines
11 KiB
C
Raw Normal View History

1999-12-09 13:01:21 +00:00
/*
* refclock_arbiter - clock driver for Arbiter 1088A/B Satellite
* Controlled Clock
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#if defined(REFCLOCK) && defined(CLOCK_ARBITER)
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_refclock.h"
#include "ntp_stdlib.h"
2001-08-29 14:35:15 +00:00
#include <stdio.h>
#include <ctype.h>
1999-12-09 13:01:21 +00:00
/*
* This driver supports the Arbiter 1088A/B Satellite Controlled Clock.
* The claimed accuracy of this clock is 100 ns relative to the PPS
* output when receiving four or more satellites.
*
* The receiver should be configured before starting the NTP daemon, in
* order to establish reliable position and operating conditions. It
* does not initiate surveying or hold mode. For use with NTP, the
* daylight savings time feature should be disables (D0 command) and the
* broadcast mode set to operate in UTC (BU command).
*
* The timecode format supported by this driver is selected by the poll
* sequence "B5", which initiates a line in the following format to be
* repeated once per second until turned off by the "B0" poll sequence.
*
* Format B5 (24 ASCII printing characters):
*
* <cr><lf>i yy ddd hh:mm:ss.000bbb
*
* on-time = <cr>
* i = synchronization flag (' ' = locked, '?' = unlocked)
* yy = year of century
* ddd = day of year
* hh:mm:ss = hours, minutes, seconds
* .000 = fraction of second (not used)
* bbb = tailing spaces for fill
*
* The alarm condition is indicated by a '?' at i, which indicates the
* receiver is not synchronized. In normal operation, a line consisting
* of the timecode followed by the time quality character (TQ) followed
* by the receiver status string (SR) is written to the clockstats file.
* The time quality character is encoded in IEEE P1344 standard:
*
* Format TQ (IEEE P1344 estimated worst-case time quality)
*
* 0 clock locked, maximum accuracy
* F clock failure, time not reliable
* 4 clock unlocked, accuracy < 1 us
* 5 clock unlocked, accuracy < 10 us
* 6 clock unlocked, accuracy < 100 us
* 7 clock unlocked, accuracy < 1 ms
* 8 clock unlocked, accuracy < 10 ms
* 9 clock unlocked, accuracy < 100 ms
* A clock unlocked, accuracy < 1 s
* B clock unlocked, accuracy < 10 s
*
* The status string is encoded as follows:
*
* Format SR (25 ASCII printing characters)
*
* V=vv S=ss T=t P=pdop E=ee
*
* vv = satellites visible
* ss = relative signal strength
* t = satellites tracked
* pdop = position dilution of precision (meters)
* ee = hardware errors
*
* If flag4 is set, an additional line consisting of the receiver
* latitude (LA), longitude (LO), elevation (LH) (meters), and data
* buffer (DB) is written to this file. If channel B is enabled for
* deviation mode and connected to a 1-PPS signal, the last two numbers
* on the line are the deviation and standard deviation averaged over
* the last 15 seconds.
*
* PPS calibration fudge time1 .001240
1999-12-09 13:01:21 +00:00
*/
/*
* Interface definitions
*/
#define DEVICE "/dev/gps%d" /* device name and unit */
#define SPEED232 B9600 /* uart speed (9600 baud) */
#define PRECISION (-20) /* precision assumed (about 1 us) */
#define REFID "GPS " /* reference ID */
1999-12-09 13:01:21 +00:00
#define DESCRIPTION "Arbiter 1088A/B GPS Receiver" /* WRU */
#define LENARB 24 /* format B5 timecode length */
#define MAXSTA 40 /* max length of status string */
#define MAXPOS 80 /* max length of position string */
1999-12-09 13:01:21 +00:00
/*
* ARB unit control structure
*/
struct arbunit {
l_fp laststamp; /* last receive timestamp */
int tcswitch; /* timecode switch/counter */
char qualchar; /* IEEE P1344 quality (TQ command) */
char status[MAXSTA]; /* receiver status (SR command) */
char latlon[MAXPOS]; /* receiver position (lat/lon/alt) */
};
/*
* Function prototypes
*/
static int arb_start P((int, struct peer *));
static void arb_shutdown P((int, struct peer *));
static void arb_receive P((struct recvbuf *));
static void arb_poll P((int, struct peer *));
/*
* Transfer vector
*/
struct refclock refclock_arbiter = {
arb_start, /* start up driver */
arb_shutdown, /* shut down driver */
arb_poll, /* transmit poll message */
noentry, /* not used (old arb_control) */
noentry, /* initialize driver (not used) */
noentry, /* not used (old arb_buginfo) */
NOFLAGS /* not used */
};
/*
* arb_start - open the devices and initialize data for processing
*/
static int
arb_start(
int unit,
struct peer *peer
)
{
register struct arbunit *up;
struct refclockproc *pp;
int fd;
char device[20];
/*
* Open serial port. Use CLK line discipline, if available.
*/
(void)sprintf(device, DEVICE, unit);
if (!(fd = refclock_open(device, SPEED232, LDISC_CLK)))
return (0);
/*
* Allocate and initialize unit structure
*/
if (!(up = (struct arbunit *)emalloc(sizeof(struct arbunit)))) {
(void) close(fd);
return (0);
}
memset((char *)up, 0, sizeof(struct arbunit));
pp = peer->procptr;
pp->io.clock_recv = arb_receive;
pp->io.srcclock = (caddr_t)peer;
pp->io.datalen = 0;
pp->io.fd = fd;
if (!io_addclock(&pp->io)) {
(void) close(fd);
free(up);
return (0);
}
pp->unitptr = (caddr_t)up;
/*
* Initialize miscellaneous variables
*/
peer->precision = PRECISION;
pp->clockdesc = DESCRIPTION;
memcpy((char *)&pp->refid, REFID, 4);
write(pp->io.fd, "B0", 2);
return (1);
}
/*
* arb_shutdown - shut down the clock
*/
static void
arb_shutdown(
int unit,
struct peer *peer
)
{
register struct arbunit *up;
struct refclockproc *pp;
pp = peer->procptr;
up = (struct arbunit *)pp->unitptr;
io_closeclock(&pp->io);
free(up);
}
/*
* arb_receive - receive data from the serial interface
*/
static void
arb_receive(
struct recvbuf *rbufp
)
{
register struct arbunit *up;
struct refclockproc *pp;
struct peer *peer;
l_fp trtmp;
int temp;
u_char syncchar; /* synch indicator */
char tbuf[BMAX]; /* temp buffer */
1999-12-09 13:01:21 +00:00
/*
* Initialize pointers and read the timecode and timestamp
*/
peer = (struct peer *)rbufp->recv_srcclock;
pp = peer->procptr;
up = (struct arbunit *)pp->unitptr;
temp = refclock_gtlin(rbufp, tbuf, BMAX, &trtmp);
1999-12-09 13:01:21 +00:00
/*
* Note we get a buffer and timestamp for both a <cr> and <lf>,
* but only the <cr> timestamp is retained. The program first
* sends a TQ and expects the echo followed by the time quality
* character. It then sends a B5 starting the timecode broadcast
* and expects the echo followed some time later by the on-time
* character <cr> and then the <lf> beginning the timecode
* itself. Finally, at the <cr> beginning the next timecode at
* the next second, the program sends a B0 shutting down the
* timecode broadcast.
*
* If flag4 is set, the program snatches the latitude, longitude
* and elevation and writes it to the clockstats file.
*/
if (temp == 0)
return;
1999-12-09 13:01:21 +00:00
pp->lastrec = up->laststamp;
up->laststamp = trtmp;
if (temp < 3)
return;
1999-12-09 13:01:21 +00:00
if (up->tcswitch == 0) {
/*
* Collect statistics. If nothing is recogized, just
* ignore; sometimes the clock doesn't stop spewing
* timecodes for awhile after the B0 command.
*
* If flag4 is not set, send TQ, SR, B5. If flag4 is
* sset, send TQ, SR, LA, LO, LH, DB, B5. When the
* median filter is full, send B0.
1999-12-09 13:01:21 +00:00
*/
if (!strncmp(tbuf, "TQ", 2)) {
up->qualchar = tbuf[2];
1999-12-09 13:01:21 +00:00
write(pp->io.fd, "SR", 2);
return;
} else if (!strncmp(tbuf, "SR", 2)) {
strcpy(up->status, tbuf + 2);
1999-12-09 13:01:21 +00:00
if (pp->sloppyclockflag & CLK_FLAG4)
write(pp->io.fd, "LA", 2);
else
1999-12-09 13:01:21 +00:00
write(pp->io.fd, "B5", 2);
return;
} else if (!strncmp(tbuf, "LA", 2)) {
strcpy(up->latlon, tbuf + 2);
1999-12-09 13:01:21 +00:00
write(pp->io.fd, "LO", 2);
return;
} else if (!strncmp(tbuf, "LO", 2)) {
1999-12-09 13:01:21 +00:00
strcat(up->latlon, " ");
strcat(up->latlon, tbuf + 2);
1999-12-09 13:01:21 +00:00
write(pp->io.fd, "LH", 2);
return;
} else if (!strncmp(tbuf, "LH", 2)) {
1999-12-09 13:01:21 +00:00
strcat(up->latlon, " ");
strcat(up->latlon, tbuf + 2);
1999-12-09 13:01:21 +00:00
write(pp->io.fd, "DB", 2);
return;
} else if (!strncmp(tbuf, "DB", 2)) {
1999-12-09 13:01:21 +00:00
strcat(up->latlon, " ");
strcat(up->latlon, tbuf + 2);
1999-12-09 13:01:21 +00:00
record_clock_stats(&peer->srcadr, up->latlon);
#ifdef DEBUG
if (debug)
printf("arbiter: %s\n", up->latlon);
#endif
1999-12-09 13:01:21 +00:00
write(pp->io.fd, "B5", 2);
}
}
/*
* We get down to business, check the timecode format and decode
* its contents. If the timecode has valid length, but not in
* proper format, we declare bad format and exit. If the
* timecode has invalid length, which sometimes occurs when the
* B0 amputates the broadcast, we just quietly steal away. Note
* that the time quality character and receiver status string is
* tacked on the end for clockstats display.
*/
up->tcswitch++;
if (up->tcswitch <= 1 || temp < LENARB)
return;
/*
* Timecode format B5: "i yy ddd hh:mm:ss.000 "
*/
strncpy(pp->a_lastcode, tbuf, BMAX);
pp->a_lastcode[LENARB - 2] = up->qualchar;
strcat(pp->a_lastcode, up->status);
pp->lencode = strlen(pp->a_lastcode);
syncchar = ' ';
if (sscanf(pp->a_lastcode, "%c%2d %3d %2d:%2d:%2d",
&syncchar, &pp->year, &pp->day, &pp->hour,
&pp->minute, &pp->second) != 6) {
refclock_report(peer, CEVNT_BADREPLY);
1999-12-09 13:01:21 +00:00
write(pp->io.fd, "B0", 2);
return;
}
/*
* We decode the clock dispersion from the time quality
* character.
*/
switch (up->qualchar) {
case '0': /* locked, max accuracy */
pp->disp = 1e-7;
pp->lastref = pp->lastrec;
1999-12-09 13:01:21 +00:00
break;
case '4': /* unlock accuracy < 1 us */
pp->disp = 1e-6;
break;
case '5': /* unlock accuracy < 10 us */
pp->disp = 1e-5;
break;
case '6': /* unlock accuracy < 100 us */
pp->disp = 1e-4;
break;
case '7': /* unlock accuracy < 1 ms */
pp->disp = .001;
break;
case '8': /* unlock accuracy < 10 ms */
pp->disp = .01;
break;
case '9': /* unlock accuracy < 100 ms */
pp->disp = .1;
break;
case 'A': /* unlock accuracy < 1 s */
pp->disp = 1;
break;
case 'B': /* unlock accuracy < 10 s */
pp->disp = 10;
break;
case 'F': /* clock failure */
pp->disp = MAXDISPERSE;
refclock_report(peer, CEVNT_FAULT);
write(pp->io.fd, "B0", 2);
return;
default:
pp->disp = MAXDISPERSE;
refclock_report(peer, CEVNT_BADREPLY);
write(pp->io.fd, "B0", 2);
return;
}
if (syncchar != ' ')
pp->leap = LEAP_NOTINSYNC;
else
pp->leap = LEAP_NOWARNING;
/*
* Process the new sample in the median filter and determine the
* timecode timestamp.
*/
if (!refclock_process(pp))
refclock_report(peer, CEVNT_BADTIME);
else if (peer->disp > MAXDISTANCE)
refclock_receive(peer);
if (up->tcswitch >= MAXSTAGE) {
write(pp->io.fd, "B0", 2);
}
1999-12-09 13:01:21 +00:00
}
/*
* arb_poll - called by the transmit procedure
*/
static void
arb_poll(
int unit,
struct peer *peer
)
{
register struct arbunit *up;
struct refclockproc *pp;
/*
* Time to poll the clock. The Arbiter clock responds to a "B5"
* by returning a timecode in the format specified above.
* Transmission occurs once per second, unless turned off by a
* "B0". Note there is no checking on state, since this may not
* be the only customer reading the clock. Only one customer
* need poll the clock; all others just listen in.
1999-12-09 13:01:21 +00:00
*/
pp = peer->procptr;
up = (struct arbunit *)pp->unitptr;
pp->polls++;
1999-12-09 13:01:21 +00:00
up->tcswitch = 0;
if (write(pp->io.fd, "TQ", 2) != 2)
1999-12-09 13:01:21 +00:00
refclock_report(peer, CEVNT_FAULT);
/*
* Process median filter samples. If none received, declare a
* timeout and keep going.
*/
1999-12-09 13:01:21 +00:00
if (pp->coderecv == pp->codeproc) {
refclock_report(peer, CEVNT_TIMEOUT);
return;
}
refclock_receive(peer);
2004-07-20 15:01:56 +00:00
record_clock_stats(&peer->srcadr, pp->a_lastcode);
#ifdef DEBUG
if (debug)
printf("arbiter: timecode %d %s\n",
pp->lencode, pp->a_lastcode);
#endif
1999-12-09 13:01:21 +00:00
}
#else
int refclock_arbiter_bs;
#endif /* REFCLOCK */