freebsd-skq/sys/pci/if_sis.c

1971 lines
47 KiB
C
Raw Normal View History

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
* available from http://www.sis.com.tw.
*
* This driver also supports the NatSemi DP83815. Datasheets are
* available from http://www.national.com.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The SiS 900 is a fairly simple chip. It uses bus master DMA with
* simple TX and RX descriptors of 3 longwords in size. The receiver
* has a single perfect filter entry for the station address and a
* 128-bit multicast hash table. The SiS 900 has a built-in MII-based
* transceiver while the 7016 requires an external transceiver chip.
* Both chips offer the standard bit-bang MII interface as well as
* an enchanced PHY interface which simplifies accessing MII registers.
*
* The only downside to this chipset is that RX descriptors must be
* longword aligned.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#define SIS_USEIOSPACE
#include <pci/if_sisreg.h>
MODULE_DEPEND(sis, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct sis_type sis_devs[] = {
{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP83815 10/100BaseTX" },
{ 0, 0, NULL }
};
static int sis_probe __P((device_t));
static int sis_attach __P((device_t));
static int sis_detach __P((device_t));
static int sis_newbuf __P((struct sis_softc *,
struct sis_desc *,
struct mbuf *));
static int sis_encap __P((struct sis_softc *,
struct mbuf *, u_int32_t *));
static void sis_rxeof __P((struct sis_softc *));
static void sis_rxeoc __P((struct sis_softc *));
static void sis_txeof __P((struct sis_softc *));
static void sis_intr __P((void *));
static void sis_tick __P((void *));
static void sis_start __P((struct ifnet *));
static int sis_ioctl __P((struct ifnet *, u_long, caddr_t));
static void sis_init __P((void *));
static void sis_stop __P((struct sis_softc *));
static void sis_watchdog __P((struct ifnet *));
static void sis_shutdown __P((device_t));
static int sis_ifmedia_upd __P((struct ifnet *));
static void sis_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static u_int16_t sis_reverse __P((u_int16_t));
static void sis_delay __P((struct sis_softc *));
static void sis_eeprom_idle __P((struct sis_softc *));
static void sis_eeprom_putbyte __P((struct sis_softc *, int));
static void sis_eeprom_getword __P((struct sis_softc *, int, u_int16_t *));
static void sis_read_eeprom __P((struct sis_softc *, caddr_t, int,
int, int));
#ifdef __i386__
static void sis_read_cmos __P((struct sis_softc *, device_t, caddr_t,
int, int));
static device_t sis_find_bridge __P((device_t));
#endif
static int sis_miibus_readreg __P((device_t, int, int));
static int sis_miibus_writereg __P((device_t, int, int, int));
static void sis_miibus_statchg __P((device_t));
static void sis_setmulti_sis __P((struct sis_softc *));
static void sis_setmulti_ns __P((struct sis_softc *));
static u_int32_t sis_crc __P((struct sis_softc *, caddr_t));
static void sis_reset __P((struct sis_softc *));
static int sis_list_rx_init __P((struct sis_softc *));
static int sis_list_tx_init __P((struct sis_softc *));
static void sis_dma_map_desc_ptr __P((void *, bus_dma_segment_t *,
int, int));
static void sis_dma_map_desc_next __P((void *, bus_dma_segment_t *,
int, int));
static void sis_dma_map_ring __P((void *, bus_dma_segment_t *,
int, int));
#ifdef SIS_USEIOSPACE
#define SIS_RES SYS_RES_IOPORT
#define SIS_RID SIS_PCI_LOIO
#else
#define SIS_RES SYS_RES_MEMORY
#define SIS_RID SIS_PCI_LOMEM
#endif
static device_method_t sis_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sis_probe),
DEVMETHOD(device_attach, sis_attach),
DEVMETHOD(device_detach, sis_detach),
DEVMETHOD(device_shutdown, sis_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, sis_miibus_readreg),
DEVMETHOD(miibus_writereg, sis_miibus_writereg),
DEVMETHOD(miibus_statchg, sis_miibus_statchg),
{ 0, 0 }
};
static driver_t sis_driver = {
"sis",
sis_methods,
sizeof(struct sis_softc)
};
static devclass_t sis_devclass;
#ifdef __i386__
static int sis_quick=1;
SYSCTL_INT(_hw, OID_AUTO, sis_quick, CTLFLAG_RW,
&sis_quick,0,"do not mdevget in sis driver");
#endif
DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, 0, 0);
Un-do the changes to the DRIVER_MODULE() declarations in these drivers. This whole idea isn't going to work until somebody makes the bus/kld code smarter. The idea here is to change the module's internal name from "foo" to "if_foo" so that ifconfig can tell a network driver from a non-network one. However doing this doesn't work correctly no matter how you slice it. For everything to work, you have to change the name in both the driver_t struct and the DRIVER_MODULE() declaration. The problems are: - If you change the name in both places, then the kernel thinks that the device's name is now "if_foo", so you get things like: if_foo0: <FOO ethernet> irq foo at device foo on pcifoo if_foo0: Ethernet address: foo:foo:foo:foo:foo:foo This is bogus. Now the device name doesn't agree with the logical interface name. There's no reason for this, and it violates the principle of least astonishment. - If you leave the name in the driver_t struct as "foo" and only change the names in the DRIVER_MODULE() declaration to "if_foo" then attaching drivers to child devices doesn't work because the names don't agree. This breaks miibus: drivers that need to have miibuses and PHY drivers attached never get them. In other words: damned if you do, damned if you don't. This needs to be thought through some more. Since the drivers that use miibus are broken, I have to change these all back in order to make them work again. Yes this will stop ifconfig from being able to demand load driver modules. On the whole, I'd rather have that than having the drivers not work at all.
1999-09-20 19:06:45 +00:00
DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
#define SIS_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | (x))
#define SIS_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) \
CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
#define SIO_CLR(x) \
CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
static void
sis_dma_map_desc_next(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg, error;
{
struct sis_desc *r;
r = arg;
r->sis_next = segs->ds_addr;
return;
}
static void
sis_dma_map_desc_ptr(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg, error;
{
struct sis_desc *r;
r = arg;
r->sis_ptr = segs->ds_addr;
return;
}
static void
sis_dma_map_ring(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int nseg, error;
{
u_int32_t *p;
p = arg;
*p = segs->ds_addr;
return;
}
/*
* Routine to reverse the bits in a word. Stolen almost
* verbatim from /usr/games/fortune.
*/
static u_int16_t sis_reverse(n)
u_int16_t n;
{
n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa);
n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc);
n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0);
n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00);
return(n);
}
static void sis_delay(sc)
struct sis_softc *sc;
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, SIS_CSR);
return;
}
static void sis_eeprom_idle(sc)
struct sis_softc *sc;
{
register int i;
SIO_SET(SIS_EECTL_CSEL);
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
for (i = 0; i < 25; i++) {
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
}
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_CLR(SIS_EECTL_CSEL);
sis_delay(sc);
CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
return;
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void sis_eeprom_putbyte(sc, addr)
struct sis_softc *sc;
int addr;
{
register int d, i;
d = addr | SIS_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(SIS_EECTL_DIN);
} else {
SIO_CLR(SIS_EECTL_DIN);
}
sis_delay(sc);
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void sis_eeprom_getword(sc, addr, dest)
struct sis_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Force EEPROM to idle state. */
sis_eeprom_idle(sc);
/* Enter EEPROM access mode. */
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
SIO_SET(SIS_EECTL_CSEL);
sis_delay(sc);
/*
* Send address of word we want to read.
*/
sis_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(SIS_EECTL_CLK);
sis_delay(sc);
if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
word |= i;
sis_delay(sc);
SIO_CLR(SIS_EECTL_CLK);
sis_delay(sc);
}
/* Turn off EEPROM access mode. */
sis_eeprom_idle(sc);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void sis_read_eeprom(sc, dest, off, cnt, swap)
struct sis_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
sis_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
#ifdef __i386__
static device_t sis_find_bridge(dev)
device_t dev;
{
devclass_t pci_devclass;
device_t *pci_devices;
int pci_count = 0;
device_t *pci_children;
int pci_childcount = 0;
device_t *busp, *childp;
int i, j;
if ((pci_devclass = devclass_find("pci")) == NULL)
return(NULL);
devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
pci_childcount = 0;
device_get_children(*busp, &pci_children, &pci_childcount);
for (j = 0, childp = pci_children;
j < pci_childcount; j++, childp++) {
if (pci_get_vendor(*childp) == SIS_VENDORID &&
pci_get_device(*childp) == 0x0008) {
free(pci_devices, M_TEMP);
free(pci_children, M_TEMP);
return(*childp);
}
}
}
free(pci_devices, M_TEMP);
free(pci_children, M_TEMP);
return(NULL);
}
static void sis_read_cmos(sc, dev, dest, off, cnt)
struct sis_softc *sc;
device_t dev;
caddr_t dest;
int off;
int cnt;
{
device_t bridge;
u_int8_t reg;
int i;
bus_space_tag_t btag;
bridge = sis_find_bridge(dev);
if (bridge == NULL)
return;
reg = pci_read_config(bridge, 0x48, 1);
pci_write_config(bridge, 0x48, reg|0x40, 1);
/* XXX */
btag = I386_BUS_SPACE_IO;
for (i = 0; i < cnt; i++) {
bus_space_write_1(btag, 0x0, 0x70, i + off);
*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
}
pci_write_config(bridge, 0x48, reg & ~0x40, 1);
return;
}
#endif
static int sis_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct sis_softc *sc;
int i, val = 0;
sc = device_get_softc(dev);
if (sc->sis_type == SIS_TYPE_83815) {
if (phy != 0)
return(0);
/*
* The NatSemi chip can take a while after
* a reset to come ready, during which the BMSR
* returns a value of 0. This is *never* supposed
* to happen: some of the BMSR bits are meant to
* be hardwired in the on position, and this can
* confuse the miibus code a bit during the probe
* and attach phase. So we make an effort to check
* for this condition and wait for it to clear.
*/
if (!CSR_READ_4(sc, NS_BMSR))
DELAY(1000);
val = CSR_READ_4(sc, NS_BMCR + (reg * 4));
return(val);
}
if (sc->sis_type == SIS_TYPE_900 && phy != 0)
return(0);
CSR_WRITE_4(sc, SIS_PHYCTL, (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
break;
}
if (i == SIS_TIMEOUT) {
printf("sis%d: PHY failed to come ready\n", sc->sis_unit);
return(0);
}
val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
if (val == 0xFFFF)
return(0);
return(val);
}
static int sis_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct sis_softc *sc;
int i;
sc = device_get_softc(dev);
if (sc->sis_type == SIS_TYPE_83815) {
if (phy != 0)
return(0);
CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
return(0);
}
if (sc->sis_type == SIS_TYPE_900 && phy != 0)
return(0);
CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
(reg << 6) | SIS_PHYOP_WRITE);
SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
break;
}
if (i == SIS_TIMEOUT)
printf("sis%d: PHY failed to come ready\n", sc->sis_unit);
return(0);
}
static void sis_miibus_statchg(dev)
device_t dev;
{
struct sis_softc *sc;
sc = device_get_softc(dev);
sis_init(sc);
return;
}
static u_int32_t sis_crc(sc, addr)
struct sis_softc *sc;
caddr_t addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/*
* return the filter bit position
*
* The NatSemi chip has a 512-bit filter, which is
* different than the SiS, so we special-case it.
*/
if (sc->sis_type == SIS_TYPE_83815)
return((crc >> 23) & 0x1FF);
return((crc >> 25) & 0x0000007F);
}
static void sis_setmulti_ns(sc)
struct sis_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int32_t h = 0, i, filtsave;
int bit, index;
ifp = &sc->arpcom.ac_if;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
return;
}
/*
* We have to explicitly enable the multicast hash table
* on the NatSemi chip if we want to use it, which we do.
*/
SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
/* first, zot all the existing hash bits */
for (i = 0; i < 32; i++) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
}
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = sis_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
index = h >> 3;
bit = h & 0x1F;
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
if (bit > 0xF)
bit -= 0x10;
SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
}
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
return;
}
static void sis_setmulti_sis(sc)
struct sis_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int32_t h = 0, i, filtsave;
ifp = &sc->arpcom.ac_if;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
return;
}
SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
/* first, zot all the existing hash bits */
for (i = 0; i < 8; i++) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + ((i * 16) >> 4)) << 16);
CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
}
/* now program new ones */
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = sis_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + (h >> 4)) << 16);
SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << (h & 0xF)));
}
CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
return;
}
static void sis_reset(sc)
struct sis_softc *sc;
{
register int i;
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
for (i = 0; i < SIS_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
break;
}
if (i == SIS_TIMEOUT)
printf("sis%d: reset never completed\n", sc->sis_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
/*
* If this is a NetSemi chip, make sure to clear
* PME mode.
*/
if (sc->sis_type == SIS_TYPE_83815) {
CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
CSR_WRITE_4(sc, NS_CLKRUN, 0);
}
return;
}
/*
* Probe for an SiS chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int sis_probe(dev)
device_t dev;
{
struct sis_type *t;
t = sis_devs;
while(t->sis_name != NULL) {
if ((pci_get_vendor(dev) == t->sis_vid) &&
(pci_get_device(dev) == t->sis_did)) {
device_set_desc(dev, t->sis_name);
return(0);
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int sis_attach(dev)
device_t dev;
{
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct sis_softc *sc;
struct ifnet *ifp;
int unit, error = 0, rid;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct sis_softc));
mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
SIS_LOCK(sc);
if (pci_get_device(dev) == SIS_DEVICEID_900)
sc->sis_type = SIS_TYPE_900;
if (pci_get_device(dev) == SIS_DEVICEID_7016)
sc->sis_type = SIS_TYPE_7016;
if (pci_get_vendor(dev) == NS_VENDORID)
sc->sis_type = SIS_TYPE_83815;
/*
* Handle power management nonsense.
*/
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
/* Reset the power state. */
printf("sis%d: chip is in D%d power mode "
"-- setting to D0\n", unit,
pci_get_powerstate(dev));
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
/* Restore PCI config data. */
pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
}
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
pci_enable_io(dev, SYS_RES_IOPORT);
pci_enable_io(dev, SYS_RES_MEMORY);
command = pci_read_config(dev, PCIR_COMMAND, 4);
#ifdef SIS_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("sis%d: failed to enable I/O ports!\n", unit);
error = ENXIO;;
goto fail;
}
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("sis%d: failed to enable memory mapping!\n", unit);
error = ENXIO;;
goto fail;
}
#endif
rid = SIS_RID;
sc->sis_res = bus_alloc_resource(dev, SIS_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->sis_res == NULL) {
printf("sis%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->sis_btag = rman_get_bustag(sc->sis_res);
sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
/* Allocate interrupt */
rid = 0;
sc->sis_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->sis_irq == NULL) {
printf("sis%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET,
sis_intr, sc, &sc->sis_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
printf("sis%d: couldn't set up irq\n", unit);
goto fail;
}
/* Reset the adapter. */
sis_reset(sc);
/*
* Get station address from the EEPROM.
*/
switch (pci_get_vendor(dev)) {
case NS_VENDORID:
/*
* Reading the MAC address out of the EEPROM on
* the NatSemi chip takes a bit more work than
* you'd expect. The address spans 4 16-bit words,
* with the first word containing only a single bit.
* You have to shift everything over one bit to
* get it aligned properly. Also, the bits are
* stored backwards (the LSB is really the MSB,
* and so on) so you have to reverse them in order
* to get the MAC address into the form we want.
* Why? Who the hell knows.
*/
{
u_int16_t tmp[4];
sis_read_eeprom(sc, (caddr_t)&tmp,
NS_EE_NODEADDR, 4, 0);
/* Shift everything over one bit. */
tmp[3] = tmp[3] >> 1;
tmp[3] |= tmp[2] << 15;
tmp[2] = tmp[2] >> 1;
tmp[2] |= tmp[1] << 15;
tmp[1] = tmp[1] >> 1;
tmp[1] |= tmp[0] << 15;
/* Now reverse all the bits. */
tmp[3] = sis_reverse(tmp[3]);
tmp[2] = sis_reverse(tmp[2]);
tmp[1] = sis_reverse(tmp[1]);
bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
}
break;
case SIS_VENDORID:
default:
#ifdef __i386__
/*
* If this is a SiS 630E chipset with an embedded
* SiS 900 controller, we have to read the MAC address
* from the APC CMOS RAM. Our method for doing this
* is very ugly since we have to reach out and grab
* ahold of hardware for which we cannot properly
* allocate resources. This code is only compiled on
* the i386 architecture since the SiS 630E chipset
* is for x86 motherboards only. Note that there are
* a lot of magic numbers in this hack. These are
* taken from SiS's Linux driver. I'd like to replace
* them with proper symbolic definitions, but that
* requires some datasheets that I don't have access
* to at the moment.
*/
command = pci_read_config(dev, PCIR_REVID, 1);
if (command == SIS_REV_630S ||
command == SIS_REV_630E ||
command == SIS_REV_630EA1)
sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
else
#endif
sis_read_eeprom(sc, (caddr_t)&eaddr,
SIS_EE_NODEADDR, 3, 0);
break;
}
/*
* A SiS chip was detected. Inform the world.
*/
printf("sis%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->sis_unit = unit;
callout_handle_init(&sc->sis_stat_ch);
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
#define SIS_NSEG_NEW 32
error = bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, SIS_NSEG_NEW, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
&sc->sis_parent_tag);
/*
* Now allocate a tag for the DMA descriptor lists.
* All of our lists are allocated as a contiguous block
* of memory.
*/
error = bus_dma_tag_create(sc->sis_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SIS_RX_LIST_SZ, 1, /* maxsize,nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
&sc->sis_ldata.sis_rx_tag);
error = bus_dma_tag_create(sc->sis_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SIS_TX_LIST_SZ, 1, /* maxsize,nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
&sc->sis_ldata.sis_tx_tag);
error = bus_dma_tag_create(sc->sis_parent_tag, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
SIS_TX_LIST_SZ, 1, /* maxsize,nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
&sc->sis_tag);
/*
* Now allocate a chunk of DMA-able memory based on the
* tag we just created.
*/
error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
(void **)&sc->sis_ldata.sis_tx_list, BUS_DMA_NOWAIT,
&sc->sis_ldata.sis_tx_dmamap);
if (error) {
printf("sis%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
error = ENXIO;
goto fail;
}
error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
(void **)&sc->sis_ldata.sis_rx_list, BUS_DMA_NOWAIT,
&sc->sis_ldata.sis_rx_dmamap);
if (error) {
printf("sis%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
error = ENXIO;
goto fail;
}
bzero(sc->sis_ldata.sis_tx_list, SIS_TX_LIST_SZ);
bzero(sc->sis_ldata.sis_rx_list, SIS_RX_LIST_SZ);
/*
* Obtain the physical addresses of the RX and TX
* rings which we'll need later in the init routine.
*/
bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
sc->sis_ldata.sis_tx_dmamap, &(sc->sis_ldata.sis_tx_list[0]),
sizeof(struct sis_desc), sis_dma_map_ring,
&sc->sis_cdata.sis_tx_paddr, 0);
bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_rx_dmamap, &(sc->sis_ldata.sis_rx_list[0]),
sizeof(struct sis_desc), sis_dma_map_ring,
&sc->sis_cdata.sis_rx_paddr, 0);
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "sis";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = sis_ioctl;
ifp->if_output = ether_output;
ifp->if_start = sis_start;
ifp->if_watchdog = sis_watchdog;
ifp->if_init = sis_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = SIS_TX_LIST_CNT - 1;
/*
* Do MII setup.
*/
if (mii_phy_probe(dev, &sc->sis_miibus,
sis_ifmedia_upd, sis_ifmedia_sts)) {
printf("sis%d: MII without any PHY!\n", sc->sis_unit);
bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
error = ENXIO;
goto fail;
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
callout_handle_init(&sc->sis_stat_ch);
SIS_UNLOCK(sc);
return(0);
fail:
SIS_UNLOCK(sc);
mtx_destroy(&sc->sis_mtx);
return(error);
}
static int sis_detach(dev)
device_t dev;
{
struct sis_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
SIS_LOCK(sc);
ifp = &sc->arpcom.ac_if;
sis_reset(sc);
sis_stop(sc);
ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
bus_generic_detach(dev);
device_delete_child(dev, sc->sis_miibus);
bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_rx_dmamap);
bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
sc->sis_ldata.sis_tx_dmamap);
bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
bus_dma_tag_destroy(sc->sis_parent_tag);
SIS_UNLOCK(sc);
mtx_destroy(&sc->sis_mtx);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int sis_list_tx_init(sc)
struct sis_softc *sc;
{
struct sis_list_data *ld;
struct sis_ring_data *cd;
int i, nexti;
cd = &sc->sis_cdata;
ld = &sc->sis_ldata;
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
ld->sis_tx_list[i].sis_nextdesc =
&ld->sis_tx_list[nexti];
bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
sc->sis_ldata.sis_tx_dmamap,
&ld->sis_tx_list[nexti], sizeof(struct sis_desc),
sis_dma_map_desc_next, &ld->sis_tx_list[i], 0);
ld->sis_tx_list[i].sis_mbuf = NULL;
ld->sis_tx_list[i].sis_ptr = 0;
ld->sis_tx_list[i].sis_ctl = 0;
}
cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
bus_dmamap_sync(sc->sis_ldata.sis_tx_tag,
sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int sis_list_rx_init(sc)
struct sis_softc *sc;
{
struct sis_list_data *ld;
struct sis_ring_data *cd;
int i,nexti;
ld = &sc->sis_ldata;
cd = &sc->sis_cdata;
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
return(ENOBUFS);
nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
ld->sis_rx_list[i].sis_nextdesc =
&ld->sis_rx_list[nexti];
bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_rx_dmamap,
&ld->sis_rx_list[nexti],
sizeof(struct sis_desc), sis_dma_map_desc_next,
&ld->sis_rx_list[i], 0);
}
bus_dmamap_sync(sc->sis_ldata.sis_rx_tag,
sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
cd->sis_rx_prod = 0;
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int sis_newbuf(sc, c, m)
struct sis_softc *sc;
struct sis_desc *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (c == NULL)
return(EINVAL);
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("sis%d: no memory for rx list "
"-- packet dropped!\n", sc->sis_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("sis%d: no memory for rx list "
"-- packet dropped!\n", sc->sis_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(u_int64_t));
c->sis_mbuf = m_new;
c->sis_ctl = SIS_RXLEN;
bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
bus_dmamap_load(sc->sis_tag, c->sis_map,
mtod(m_new, void *), m_new->m_len,
sis_dma_map_desc_ptr, c, 0);
bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void sis_rxeof(sc)
struct sis_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct sis_desc *cur_rx;
int i, total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
i = sc->sis_cdata.sis_rx_prod;
while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
cur_rx = &sc->sis_ldata.sis_rx_list[i];
rxstat = cur_rx->sis_rxstat;
bus_dmamap_sync(sc->sis_tag,
cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
m = cur_rx->sis_mbuf;
cur_rx->sis_mbuf = NULL;
total_len = SIS_RXBYTES(cur_rx);
SIS_INC(i, SIS_RX_LIST_CNT);
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
ifp->if_ierrors++;
if (rxstat & SIS_RXSTAT_COLL)
ifp->if_collisions++;
sis_newbuf(sc, cur_rx, m);
continue;
}
/* No errors; receive the packet. */
#ifdef __i386__
/*
* On the x86 we do not have alignment problems, so try to
* allocate a new buffer for the receive ring, and pass up
* the one where the packet is already, saving the expensive
* copy done in m_devget().
* If we are on an architecture with alignment problems, or
* if the allocation fails, then use m_devget and leave the
* existing buffer in the receive ring.
*/
if (sis_quick && sis_newbuf(sc, cur_rx, NULL) == 0) {
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
} else
#endif
{
struct mbuf *m0;
m0 = m_devget(mtod(m, char *), total_len,
ETHER_ALIGN, ifp, NULL);
sis_newbuf(sc, cur_rx, m);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m = m0;
}
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
sc->sis_cdata.sis_rx_prod = i;
return;
}
void sis_rxeoc(sc)
struct sis_softc *sc;
{
sis_rxeof(sc);
sis_init(sc);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void sis_txeof(sc)
struct sis_softc *sc;
{
struct sis_desc *cur_tx = NULL;
struct ifnet *ifp;
u_int32_t idx;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
idx = sc->sis_cdata.sis_tx_cons;
while (idx != sc->sis_cdata.sis_tx_prod) {
cur_tx = &sc->sis_ldata.sis_tx_list[idx];
if (SIS_OWNDESC(cur_tx))
break;
if (cur_tx->sis_ctl & SIS_CMDSTS_MORE) {
sc->sis_cdata.sis_tx_cnt--;
SIS_INC(idx, SIS_TX_LIST_CNT);
continue;
}
if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
ifp->if_oerrors++;
if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
ifp->if_collisions++;
if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
ifp->if_collisions++;
}
ifp->if_collisions +=
(cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
ifp->if_opackets++;
if (cur_tx->sis_mbuf != NULL) {
m_freem(cur_tx->sis_mbuf);
cur_tx->sis_mbuf = NULL;
bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
}
sc->sis_cdata.sis_tx_cnt--;
SIS_INC(idx, SIS_TX_LIST_CNT);
ifp->if_timer = 0;
}
sc->sis_cdata.sis_tx_cons = idx;
if (cur_tx != NULL)
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
static void sis_tick(xsc)
void *xsc;
{
struct sis_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
sc = xsc;
SIS_LOCK(sc);
ifp = &sc->arpcom.ac_if;
mii = device_get_softc(sc->sis_miibus);
mii_tick(mii);
if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->sis_link++;
if (ifp->if_snd.ifq_head != NULL)
sis_start(ifp);
}
sc->sis_stat_ch = timeout(sis_tick, sc, hz);
SIS_UNLOCK(sc);
return;
}
static void sis_intr(arg)
void *arg;
{
struct sis_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
SIS_LOCK(sc);
/* Supress unwanted interrupts */
if (!(ifp->if_flags & IFF_UP)) {
sis_stop(sc);
goto done;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, SIS_IER, 0);
for (;;) {
/* Reading the ISR register clears all interrupts. */
status = CSR_READ_4(sc, SIS_ISR);
if ((status & SIS_INTRS) == 0)
break;
if (status &
(SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
sis_txeof(sc);
if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
sis_rxeof(sc);
if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
sis_rxeoc(sc);
if (status & (SIS_ISR_RX_IDLE))
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
if (status & SIS_ISR_SYSERR) {
sis_reset(sc);
sis_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, SIS_IER, 1);
if (ifp->if_snd.ifq_head != NULL)
sis_start(ifp);
done:
SIS_UNLOCK(sc);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int sis_encap(sc, m_head, txidx)
struct sis_softc *sc;
struct mbuf *m_head;
u_int32_t *txidx;
{
struct sis_desc *f = NULL;
struct mbuf *m;
int frag, cur, cnt = 0;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
cur = frag = *txidx;
for (m = m_head; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if ((SIS_TX_LIST_CNT -
(sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
return(ENOBUFS);
f = &sc->sis_ldata.sis_tx_list[frag];
f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
bus_dmamap_load(sc->sis_tag, f->sis_map,
mtod(m, void *), m->m_len,
sis_dma_map_desc_ptr, f, 0);
bus_dmamap_sync(sc->sis_tag,
f->sis_map, BUS_DMASYNC_PREREAD);
if (cnt != 0)
f->sis_ctl |= SIS_CMDSTS_OWN;
cur = frag;
SIS_INC(frag, SIS_TX_LIST_CNT);
cnt++;
}
}
if (m != NULL)
return(ENOBUFS);
sc->sis_ldata.sis_tx_list[cur].sis_mbuf = m_head;
sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
sc->sis_cdata.sis_tx_cnt += cnt;
*txidx = frag;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void sis_start(ifp)
struct ifnet *ifp;
{
struct sis_softc *sc;
struct mbuf *m_head = NULL;
u_int32_t idx;
sc = ifp->if_softc;
SIS_LOCK(sc);
if (!sc->sis_link) {
SIS_UNLOCK(sc);
return;
}
idx = sc->sis_cdata.sis_tx_prod;
if (ifp->if_flags & IFF_OACTIVE) {
SIS_UNLOCK(sc);
return;
}
while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (sis_encap(sc, m_head, &idx)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, m_head);
}
/* Transmit */
sc->sis_cdata.sis_tx_prod = idx;
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
SIS_UNLOCK(sc);
return;
}
static void sis_init(xsc)
void *xsc;
{
struct sis_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
SIS_LOCK(sc);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
sis_stop(sc);
mii = device_get_softc(sc->sis_miibus);
/* Set MAC address */
if (sc->sis_type == SIS_TYPE_83815) {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
} else {
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
CSR_WRITE_4(sc, SIS_RXFILT_DATA,
((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
}
/* Init circular RX list. */
if (sis_list_rx_init(sc) == ENOBUFS) {
printf("sis%d: initialization failed: no "
"memory for rx buffers\n", sc->sis_unit);
sis_stop(sc);
SIS_UNLOCK(sc);
return;
}
/*
* Init tx descriptors.
*/
sis_list_tx_init(sc);
/*
* For the NatSemi chip, we have to explicitly enable the
* reception of ARP frames, as well as turn on the 'perfect
* match' filter where we store the station address, otherwise
* we won't receive unicasts meant for this host.
*/
if (sc->sis_type == SIS_TYPE_83815) {
SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
}
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
} else {
SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
}
/*
* Set the capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
} else {
SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
}
/*
* Load the multicast filter.
*/
if (sc->sis_type == SIS_TYPE_83815)
sis_setmulti_ns(sc);
else
sis_setmulti_sis(sc);
/* Turn the receive filter on */
SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
/*
* Load the address of the RX and TX lists.
*/
CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
/* Set RX configuration */
CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG);
/* Set TX configuration */
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
} else {
CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
}
/* Set full/half duplex mode. */
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
SIS_SETBIT(sc, SIS_TX_CFG,
(SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
} else {
SIS_CLRBIT(sc, SIS_TX_CFG,
(SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
}
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
CSR_WRITE_4(sc, SIS_IER, 1);
/* Enable receiver and transmitter. */
SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
#ifdef notdef
mii_mediachg(mii);
#endif
/*
* Page 75 of the DP83815 manual recommends the
* following register settings "for optimum
* performance." Note however that at least three
* of the registers are listed as "reserved" in
* the register map, so who knows what they do.
*/
if (sc->sis_type == SIS_TYPE_83815) {
CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->sis_stat_ch = timeout(sis_tick, sc, hz);
SIS_UNLOCK(sc);
return;
}
/*
* Set media options.
*/
static int sis_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct sis_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->sis_miibus);
sc->sis_link = 0;
if (mii->mii_instance) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
mii_mediachg(mii);
return(0);
}
/*
* Report current media status.
*/
static void sis_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct sis_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->sis_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int sis_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct sis_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
sis_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
sis_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
SIS_LOCK(sc);
if (sc->sis_type == SIS_TYPE_83815)
sis_setmulti_ns(sc);
else
sis_setmulti_sis(sc);
SIS_UNLOCK(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->sis_miibus);
SIS_LOCK(sc);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
SIS_UNLOCK(sc);
break;
default:
error = EINVAL;
break;
}
return(error);
}
static void sis_watchdog(ifp)
struct ifnet *ifp;
{
struct sis_softc *sc;
sc = ifp->if_softc;
SIS_LOCK(sc);
ifp->if_oerrors++;
printf("sis%d: watchdog timeout\n", sc->sis_unit);
sis_stop(sc);
sis_reset(sc);
sis_init(sc);
if (ifp->if_snd.ifq_head != NULL)
sis_start(ifp);
SIS_UNLOCK(sc);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void sis_stop(sc)
struct sis_softc *sc;
{
register int i;
struct ifnet *ifp;
SIS_LOCK(sc);
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
untimeout(sis_tick, sc, sc->sis_stat_ch);
CSR_WRITE_4(sc, SIS_IER, 0);
CSR_WRITE_4(sc, SIS_IMR, 0);
SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
DELAY(1000);
CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
sc->sis_link = 0;
/*
* Free data in the RX lists.
*/
for (i = 0; i < SIS_RX_LIST_CNT; i++) {
if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
bus_dmamap_unload(sc->sis_tag,
sc->sis_ldata.sis_rx_list[i].sis_map);
bus_dmamap_destroy(sc->sis_tag,
sc->sis_ldata.sis_rx_list[i].sis_map);
m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
}
}
bzero(sc->sis_ldata.sis_rx_list,
sizeof(sc->sis_ldata.sis_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < SIS_TX_LIST_CNT; i++) {
if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
bus_dmamap_unload(sc->sis_tag,
sc->sis_ldata.sis_tx_list[i].sis_map);
bus_dmamap_destroy(sc->sis_tag,
sc->sis_ldata.sis_tx_list[i].sis_map);
m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
}
}
bzero(sc->sis_ldata.sis_tx_list,
sizeof(sc->sis_ldata.sis_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
SIS_UNLOCK(sc);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void sis_shutdown(dev)
device_t dev;
{
struct sis_softc *sc;
sc = device_get_softc(dev);
SIS_LOCK(sc);
sis_reset(sc);
sis_stop(sc);
SIS_UNLOCK(sc);
return;
}