2002-10-04 20:31:23 +00:00
|
|
|
/* $FreeBSD$ */
|
|
|
|
/* $OpenBSD: cryptodev.h,v 1.31 2002/06/11 11:14:29 beck Exp $ */
|
|
|
|
|
2005-01-07 02:29:27 +00:00
|
|
|
/*-
|
2002-10-04 20:31:23 +00:00
|
|
|
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
|
2007-03-21 03:42:51 +00:00
|
|
|
* Copyright (c) 2002-2006 Sam Leffler, Errno Consulting
|
2002-10-04 20:31:23 +00:00
|
|
|
*
|
|
|
|
* This code was written by Angelos D. Keromytis in Athens, Greece, in
|
|
|
|
* February 2000. Network Security Technologies Inc. (NSTI) kindly
|
|
|
|
* supported the development of this code.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2000 Angelos D. Keromytis
|
|
|
|
*
|
|
|
|
* Permission to use, copy, and modify this software with or without fee
|
|
|
|
* is hereby granted, provided that this entire notice is included in
|
|
|
|
* all source code copies of any software which is or includes a copy or
|
|
|
|
* modification of this software.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
|
|
|
|
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
|
|
|
|
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
|
|
|
|
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
|
|
|
|
* PURPOSE.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2001 Theo de Raadt
|
2014-12-12 19:56:36 +00:00
|
|
|
* Copyright (c) 2014 The FreeBSD Foundation
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Portions of this software were developed by John-Mark Gurney
|
|
|
|
* under sponsorship of the FreeBSD Foundation and
|
|
|
|
* Rubicon Communications, LLC (Netgate).
|
2002-10-04 20:31:23 +00:00
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
|
|
* derived from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* Effort sponsored in part by the Defense Advanced Research Projects
|
|
|
|
* Agency (DARPA) and Air Force Research Laboratory, Air Force
|
|
|
|
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _CRYPTO_CRYPTO_H_
|
|
|
|
#define _CRYPTO_CRYPTO_H_
|
|
|
|
|
|
|
|
#include <sys/ioccom.h>
|
|
|
|
|
2018-07-13 23:46:07 +00:00
|
|
|
#ifdef _KERNEL
|
|
|
|
#include <opencrypto/_cryptodev.h>
|
2019-02-10 21:27:03 +00:00
|
|
|
#include <sys/_task.h>
|
2018-07-13 23:46:07 +00:00
|
|
|
#endif
|
|
|
|
|
2002-10-04 20:31:23 +00:00
|
|
|
/* Some initial values */
|
|
|
|
#define CRYPTO_DRIVERS_INITIAL 4
|
|
|
|
|
2006-06-04 14:20:47 +00:00
|
|
|
/* Hash values */
|
|
|
|
#define NULL_HASH_LEN 16
|
|
|
|
#define SHA1_HASH_LEN 20
|
|
|
|
#define RIPEMD160_HASH_LEN 20
|
2018-07-09 07:26:12 +00:00
|
|
|
#define SHA2_224_HASH_LEN 28
|
2006-06-04 14:20:47 +00:00
|
|
|
#define SHA2_256_HASH_LEN 32
|
|
|
|
#define SHA2_384_HASH_LEN 48
|
|
|
|
#define SHA2_512_HASH_LEN 64
|
2015-08-04 17:47:11 +00:00
|
|
|
#define AES_GMAC_HASH_LEN 16
|
2018-08-17 00:30:04 +00:00
|
|
|
#define POLY1305_HASH_LEN 16
|
2019-02-15 03:46:39 +00:00
|
|
|
#define AES_CBC_MAC_HASH_LEN 16
|
2006-06-04 14:25:16 +00:00
|
|
|
/* Maximum hash algorithm result length */
|
|
|
|
#define HASH_MAX_LEN SHA2_512_HASH_LEN /* Keep this updated */
|
|
|
|
|
2018-07-09 07:21:37 +00:00
|
|
|
#define SHA1_BLOCK_LEN 64
|
|
|
|
#define RIPEMD160_BLOCK_LEN 64
|
2018-07-09 07:26:12 +00:00
|
|
|
#define SHA2_224_BLOCK_LEN 64
|
2018-07-09 07:21:37 +00:00
|
|
|
#define SHA2_256_BLOCK_LEN 64
|
|
|
|
#define SHA2_384_BLOCK_LEN 128
|
|
|
|
#define SHA2_512_BLOCK_LEN 128
|
|
|
|
|
2002-10-04 20:31:23 +00:00
|
|
|
/* HMAC values */
|
2006-06-04 14:20:47 +00:00
|
|
|
#define NULL_HMAC_BLOCK_LEN 64
|
2006-06-04 14:29:42 +00:00
|
|
|
/* Maximum HMAC block length */
|
2018-07-09 07:21:37 +00:00
|
|
|
#define HMAC_MAX_BLOCK_LEN SHA2_512_BLOCK_LEN /* Keep this updated */
|
2006-06-04 14:20:47 +00:00
|
|
|
#define HMAC_IPAD_VAL 0x36
|
|
|
|
#define HMAC_OPAD_VAL 0x5C
|
2015-07-09 18:16:35 +00:00
|
|
|
/* HMAC Key Length */
|
2015-08-04 17:47:11 +00:00
|
|
|
#define AES_128_GMAC_KEY_LEN 16
|
|
|
|
#define AES_192_GMAC_KEY_LEN 24
|
|
|
|
#define AES_256_GMAC_KEY_LEN 32
|
2019-02-15 03:46:39 +00:00
|
|
|
#define AES_128_CBC_MAC_KEY_LEN 16
|
|
|
|
#define AES_192_CBC_MAC_KEY_LEN 24
|
|
|
|
#define AES_256_CBC_MAC_KEY_LEN 32
|
2002-10-04 20:31:23 +00:00
|
|
|
|
2018-08-17 00:30:04 +00:00
|
|
|
#define POLY1305_KEY_LEN 32
|
|
|
|
|
2002-10-04 20:31:23 +00:00
|
|
|
/* Encryption algorithm block sizes */
|
2015-08-04 17:47:11 +00:00
|
|
|
#define NULL_BLOCK_LEN 4 /* IPsec to maintain alignment */
|
2015-07-09 18:16:35 +00:00
|
|
|
#define RIJNDAEL128_BLOCK_LEN 16
|
|
|
|
#define AES_BLOCK_LEN 16
|
2015-07-14 07:45:18 +00:00
|
|
|
#define AES_ICM_BLOCK_LEN 1
|
2015-07-09 18:16:35 +00:00
|
|
|
#define CAMELLIA_BLOCK_LEN 16
|
2018-03-29 04:02:50 +00:00
|
|
|
#define CHACHA20_NATIVE_BLOCK_LEN 64
|
|
|
|
#define EALG_MAX_BLOCK_LEN CHACHA20_NATIVE_BLOCK_LEN /* Keep this updated */
|
2015-07-09 18:16:35 +00:00
|
|
|
|
|
|
|
/* IV Lengths */
|
|
|
|
|
2015-07-14 07:45:18 +00:00
|
|
|
#define AES_GCM_IV_LEN 12
|
2019-02-15 03:53:03 +00:00
|
|
|
#define AES_CCM_IV_LEN 12
|
2015-07-09 18:16:35 +00:00
|
|
|
#define AES_XTS_IV_LEN 8
|
|
|
|
#define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */
|
|
|
|
|
|
|
|
/* Min and Max Encryption Key Sizes */
|
|
|
|
#define NULL_MIN_KEY 0
|
|
|
|
#define NULL_MAX_KEY 256 /* 2048 bits, max key */
|
|
|
|
#define RIJNDAEL_MIN_KEY 16
|
|
|
|
#define RIJNDAEL_MAX_KEY 32
|
2015-07-14 07:45:18 +00:00
|
|
|
#define AES_MIN_KEY RIJNDAEL_MIN_KEY
|
|
|
|
#define AES_MAX_KEY RIJNDAEL_MAX_KEY
|
|
|
|
#define AES_XTS_MIN_KEY (2 * AES_MIN_KEY)
|
|
|
|
#define AES_XTS_MAX_KEY (2 * AES_MAX_KEY)
|
2020-05-22 17:21:22 +00:00
|
|
|
#define CAMELLIA_MIN_KEY 16
|
2015-07-09 18:16:35 +00:00
|
|
|
#define CAMELLIA_MAX_KEY 32
|
2002-10-04 20:31:23 +00:00
|
|
|
|
2014-12-12 19:56:36 +00:00
|
|
|
/* Maximum hash algorithm result length */
|
2015-07-09 18:16:35 +00:00
|
|
|
#define AALG_MAX_RESULT_LEN 64 /* Keep this updated */
|
2014-12-12 19:56:36 +00:00
|
|
|
|
2002-10-04 20:31:23 +00:00
|
|
|
#define CRYPTO_ALGORITHM_MIN 1
|
2014-12-12 19:56:36 +00:00
|
|
|
#define CRYPTO_DES_CBC 1
|
|
|
|
#define CRYPTO_3DES_CBC 2
|
|
|
|
#define CRYPTO_BLF_CBC 3
|
|
|
|
#define CRYPTO_CAST_CBC 4
|
|
|
|
#define CRYPTO_SKIPJACK_CBC 5
|
|
|
|
#define CRYPTO_MD5_HMAC 6
|
|
|
|
#define CRYPTO_SHA1_HMAC 7
|
|
|
|
#define CRYPTO_RIPEMD160_HMAC 8
|
|
|
|
#define CRYPTO_MD5_KPDK 9
|
|
|
|
#define CRYPTO_SHA1_KPDK 10
|
|
|
|
#define CRYPTO_RIJNDAEL128_CBC 11 /* 128 bit blocksize */
|
|
|
|
#define CRYPTO_AES_CBC 11 /* 128 bit blocksize -- the same as above */
|
|
|
|
#define CRYPTO_ARC4 12
|
2002-10-04 20:31:23 +00:00
|
|
|
#define CRYPTO_MD5 13
|
|
|
|
#define CRYPTO_SHA1 14
|
2006-05-17 18:24:17 +00:00
|
|
|
#define CRYPTO_NULL_HMAC 15
|
|
|
|
#define CRYPTO_NULL_CBC 16
|
|
|
|
#define CRYPTO_DEFLATE_COMP 17 /* Deflate compression algorithm */
|
|
|
|
#define CRYPTO_SHA2_256_HMAC 18
|
|
|
|
#define CRYPTO_SHA2_384_HMAC 19
|
|
|
|
#define CRYPTO_SHA2_512_HMAC 20
|
2014-12-12 19:56:36 +00:00
|
|
|
#define CRYPTO_CAMELLIA_CBC 21
|
2010-09-23 11:52:32 +00:00
|
|
|
#define CRYPTO_AES_XTS 22
|
2014-12-12 19:56:36 +00:00
|
|
|
#define CRYPTO_AES_ICM 23 /* commonly known as CTR mode */
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
#define CRYPTO_AES_NIST_GMAC 24 /* GMAC only */
|
2014-12-12 19:56:36 +00:00
|
|
|
#define CRYPTO_AES_NIST_GCM_16 25 /* 16 byte ICV */
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
#ifdef _KERNEL
|
2014-12-12 19:56:36 +00:00
|
|
|
#define CRYPTO_AES_128_NIST_GMAC 26 /* auth side */
|
|
|
|
#define CRYPTO_AES_192_NIST_GMAC 27 /* auth side */
|
|
|
|
#define CRYPTO_AES_256_NIST_GMAC 28 /* auth side */
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
#endif
|
Import Blake2 algorithms (blake2b, blake2s) from libb2
The upstream repository is on github BLAKE2/libb2. Files landed in
sys/contrib/libb2 are the unmodified upstream files, except for one
difference: secure_zero_memory's contents have been replaced with
explicit_bzero() only because the previous implementation broke powerpc
link. Preferential use of explicit_bzero() is in progress upstream, so
it is anticipated we will be able to drop this diff in the future.
sys/crypto/blake2 contains the source files needed to port libb2 to our
build system, a wrapped (limited) variant of the algorithm to match the API
of our auth_transform softcrypto abstraction, incorporation into the Open
Crypto Framework (OCF) cryptosoft(4) driver, as well as an x86 SSE/AVX
accelerated OCF driver, blake2(4).
Optimized variants of blake2 are compiled for a number of x86 machines
(anything from SSE2 to AVX + XOP). On those machines, FPU context will need
to be explicitly saved before using blake2(4)-provided algorithms directly.
Use via cryptodev / OCF saves FPU state automatically, and use via the
auth_transform softcrypto abstraction does not use FPU.
The intent of the OCF driver is mostly to enable testing in userspace via
/dev/crypto. ATF tests are added with published KAT test vectors to
validate correctness.
Reviewed by: jhb, markj
Obtained from: github BLAKE2/libb2
Differential Revision: https://reviews.freebsd.org/D14662
2018-03-21 16:18:14 +00:00
|
|
|
#define CRYPTO_BLAKE2B 29 /* Blake2b hash */
|
|
|
|
#define CRYPTO_BLAKE2S 30 /* Blake2s hash */
|
2018-03-29 04:02:50 +00:00
|
|
|
#define CRYPTO_CHACHA20 31 /* Chacha20 stream cipher */
|
2018-07-09 07:26:12 +00:00
|
|
|
#define CRYPTO_SHA2_224_HMAC 32
|
2018-07-09 07:28:13 +00:00
|
|
|
#define CRYPTO_RIPEMD160 33
|
|
|
|
#define CRYPTO_SHA2_224 34
|
|
|
|
#define CRYPTO_SHA2_256 35
|
|
|
|
#define CRYPTO_SHA2_384 36
|
|
|
|
#define CRYPTO_SHA2_512 37
|
2018-08-17 00:30:04 +00:00
|
|
|
#define CRYPTO_POLY1305 38
|
2019-02-15 03:46:39 +00:00
|
|
|
#define CRYPTO_AES_CCM_CBC_MAC 39 /* auth side */
|
2019-02-15 03:53:03 +00:00
|
|
|
#define CRYPTO_AES_CCM_16 40 /* cipher side */
|
|
|
|
#define CRYPTO_ALGORITHM_MAX 40 /* Keep updated - see below */
|
2014-12-12 19:56:36 +00:00
|
|
|
|
2015-07-09 18:16:35 +00:00
|
|
|
#define CRYPTO_ALGO_VALID(x) ((x) >= CRYPTO_ALGORITHM_MIN && \
|
2014-12-12 19:56:36 +00:00
|
|
|
(x) <= CRYPTO_ALGORITHM_MAX)
|
2002-10-04 20:31:23 +00:00
|
|
|
|
|
|
|
/* Algorithm flags */
|
|
|
|
#define CRYPTO_ALG_FLAG_SUPPORTED 0x01 /* Algorithm is supported */
|
|
|
|
#define CRYPTO_ALG_FLAG_RNG_ENABLE 0x02 /* Has HW RNG for DH/DSA */
|
|
|
|
#define CRYPTO_ALG_FLAG_DSA_SHA 0x04 /* Can do SHA on msg */
|
|
|
|
|
2007-03-21 03:42:51 +00:00
|
|
|
/*
|
|
|
|
* Crypto driver/device flags. They can set in the crid
|
|
|
|
* parameter when creating a session or submitting a key
|
|
|
|
* op to affect the device/driver assigned. If neither
|
|
|
|
* of these are specified then the crid is assumed to hold
|
|
|
|
* the driver id of an existing (and suitable) device that
|
|
|
|
* must be used to satisfy the request.
|
|
|
|
*/
|
|
|
|
#define CRYPTO_FLAG_HARDWARE 0x01000000 /* hardware accelerated */
|
|
|
|
#define CRYPTO_FLAG_SOFTWARE 0x02000000 /* software implementation */
|
|
|
|
|
2020-08-26 02:37:42 +00:00
|
|
|
/* Does the kernel support vmpage buffers on this platform? */
|
|
|
|
#ifdef __powerpc__
|
|
|
|
#define CRYPTO_MAY_HAVE_VMPAGE 1
|
|
|
|
#else
|
|
|
|
#define CRYPTO_MAY_HAVE_VMPAGE ( PMAP_HAS_DMAP )
|
|
|
|
#endif
|
|
|
|
/* Does the currently running system support vmpage buffers on this platform? */
|
|
|
|
#define CRYPTO_HAS_VMPAGE ( PMAP_HAS_DMAP )
|
|
|
|
|
2007-03-21 03:42:51 +00:00
|
|
|
/* NB: deprecated */
|
2002-10-04 20:31:23 +00:00
|
|
|
struct session_op {
|
2020-05-11 21:34:29 +00:00
|
|
|
u_int32_t cipher; /* ie. CRYPTO_AES_CBC */
|
2020-05-11 22:08:08 +00:00
|
|
|
u_int32_t mac; /* ie. CRYPTO_SHA2_256_HMAC */
|
2002-10-04 20:31:23 +00:00
|
|
|
|
|
|
|
u_int32_t keylen; /* cipher key */
|
2017-05-09 18:28:42 +00:00
|
|
|
c_caddr_t key;
|
2002-10-04 20:31:23 +00:00
|
|
|
int mackeylen; /* mac key */
|
2017-05-09 18:28:42 +00:00
|
|
|
c_caddr_t mackey;
|
2002-10-04 20:31:23 +00:00
|
|
|
|
|
|
|
u_int32_t ses; /* returns: session # */
|
|
|
|
};
|
|
|
|
|
2018-07-18 00:56:25 +00:00
|
|
|
/*
|
|
|
|
* session and crypt _op structs are used by userspace programs to interact
|
|
|
|
* with /dev/crypto. Confusingly, the internal kernel interface is named
|
|
|
|
* "cryptop" (no underscore).
|
|
|
|
*/
|
2007-03-21 03:42:51 +00:00
|
|
|
struct session2_op {
|
2020-05-11 21:34:29 +00:00
|
|
|
u_int32_t cipher; /* ie. CRYPTO_AES_CBC */
|
2020-05-11 22:08:08 +00:00
|
|
|
u_int32_t mac; /* ie. CRYPTO_SHA2_256_HMAC */
|
2007-03-21 03:42:51 +00:00
|
|
|
|
|
|
|
u_int32_t keylen; /* cipher key */
|
2017-05-09 18:28:42 +00:00
|
|
|
c_caddr_t key;
|
2007-03-21 03:42:51 +00:00
|
|
|
int mackeylen; /* mac key */
|
2017-05-09 18:28:42 +00:00
|
|
|
c_caddr_t mackey;
|
2007-03-21 03:42:51 +00:00
|
|
|
|
|
|
|
u_int32_t ses; /* returns: session # */
|
|
|
|
int crid; /* driver id + flags (rw) */
|
|
|
|
int pad[4]; /* for future expansion */
|
|
|
|
};
|
|
|
|
|
2002-10-04 20:31:23 +00:00
|
|
|
struct crypt_op {
|
|
|
|
u_int32_t ses;
|
|
|
|
u_int16_t op; /* i.e. COP_ENCRYPT */
|
|
|
|
#define COP_ENCRYPT 1
|
|
|
|
#define COP_DECRYPT 2
|
2003-02-23 07:25:48 +00:00
|
|
|
u_int16_t flags;
|
2017-09-22 00:21:58 +00:00
|
|
|
#define COP_F_CIPHER_FIRST 0x0001 /* Cipher before MAC. */
|
|
|
|
#define COP_F_BATCH 0x0008 /* Batch op if possible */
|
2002-10-04 20:31:23 +00:00
|
|
|
u_int len;
|
2017-05-09 18:28:42 +00:00
|
|
|
c_caddr_t src; /* become iov[] inside kernel */
|
|
|
|
caddr_t dst;
|
2002-10-04 20:31:23 +00:00
|
|
|
caddr_t mac; /* must be big enough for chosen MAC */
|
2017-05-09 18:28:42 +00:00
|
|
|
c_caddr_t iv;
|
2002-10-04 20:31:23 +00:00
|
|
|
};
|
|
|
|
|
2014-12-12 19:56:36 +00:00
|
|
|
/* op and flags the same as crypt_op */
|
|
|
|
struct crypt_aead {
|
|
|
|
u_int32_t ses;
|
|
|
|
u_int16_t op; /* i.e. COP_ENCRYPT */
|
|
|
|
u_int16_t flags;
|
|
|
|
u_int len;
|
|
|
|
u_int aadlen;
|
|
|
|
u_int ivlen;
|
2017-05-09 18:28:42 +00:00
|
|
|
c_caddr_t src; /* become iov[] inside kernel */
|
|
|
|
caddr_t dst;
|
|
|
|
c_caddr_t aad; /* additional authenticated data */
|
2014-12-12 19:56:36 +00:00
|
|
|
caddr_t tag; /* must fit for chosen TAG length */
|
2017-05-09 18:28:42 +00:00
|
|
|
c_caddr_t iv;
|
2014-12-12 19:56:36 +00:00
|
|
|
};
|
|
|
|
|
2007-03-21 03:42:51 +00:00
|
|
|
/*
|
|
|
|
* Parameters for looking up a crypto driver/device by
|
|
|
|
* device name or by id. The latter are returned for
|
|
|
|
* created sessions (crid) and completed key operations.
|
|
|
|
*/
|
|
|
|
struct crypt_find_op {
|
|
|
|
int crid; /* driver id + flags */
|
|
|
|
char name[32]; /* device/driver name */
|
|
|
|
};
|
|
|
|
|
2002-10-04 20:31:23 +00:00
|
|
|
/* bignum parameter, in packed bytes, ... */
|
|
|
|
struct crparam {
|
|
|
|
caddr_t crp_p;
|
|
|
|
u_int crp_nbits;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define CRK_MAXPARAM 8
|
|
|
|
|
|
|
|
struct crypt_kop {
|
|
|
|
u_int crk_op; /* ie. CRK_MOD_EXP or other */
|
|
|
|
u_int crk_status; /* return status */
|
|
|
|
u_short crk_iparams; /* # of input parameters */
|
|
|
|
u_short crk_oparams; /* # of output parameters */
|
2007-03-21 03:42:51 +00:00
|
|
|
u_int crk_crid; /* NB: only used by CIOCKEY2 (rw) */
|
2002-10-04 20:31:23 +00:00
|
|
|
struct crparam crk_param[CRK_MAXPARAM];
|
|
|
|
};
|
|
|
|
#define CRK_ALGORITM_MIN 0
|
|
|
|
#define CRK_MOD_EXP 0
|
|
|
|
#define CRK_MOD_EXP_CRT 1
|
|
|
|
#define CRK_DSA_SIGN 2
|
|
|
|
#define CRK_DSA_VERIFY 3
|
|
|
|
#define CRK_DH_COMPUTE_KEY 4
|
|
|
|
#define CRK_ALGORITHM_MAX 4 /* Keep updated - see below */
|
|
|
|
|
|
|
|
#define CRF_MOD_EXP (1 << CRK_MOD_EXP)
|
|
|
|
#define CRF_MOD_EXP_CRT (1 << CRK_MOD_EXP_CRT)
|
|
|
|
#define CRF_DSA_SIGN (1 << CRK_DSA_SIGN)
|
|
|
|
#define CRF_DSA_VERIFY (1 << CRK_DSA_VERIFY)
|
|
|
|
#define CRF_DH_COMPUTE_KEY (1 << CRK_DH_COMPUTE_KEY)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* done against open of /dev/crypto, to get a cloned descriptor.
|
|
|
|
* Please use F_SETFD against the cloned descriptor.
|
|
|
|
*/
|
|
|
|
#define CRIOGET _IOWR('c', 100, u_int32_t)
|
2007-03-21 03:42:51 +00:00
|
|
|
#define CRIOASYMFEAT CIOCASYMFEAT
|
|
|
|
#define CRIOFINDDEV CIOCFINDDEV
|
2002-10-04 20:31:23 +00:00
|
|
|
|
|
|
|
/* the following are done against the cloned descriptor */
|
|
|
|
#define CIOCGSESSION _IOWR('c', 101, struct session_op)
|
|
|
|
#define CIOCFSESSION _IOW('c', 102, u_int32_t)
|
|
|
|
#define CIOCCRYPT _IOWR('c', 103, struct crypt_op)
|
|
|
|
#define CIOCKEY _IOWR('c', 104, struct crypt_kop)
|
|
|
|
#define CIOCASYMFEAT _IOR('c', 105, u_int32_t)
|
2007-03-21 03:42:51 +00:00
|
|
|
#define CIOCGSESSION2 _IOWR('c', 106, struct session2_op)
|
|
|
|
#define CIOCKEY2 _IOWR('c', 107, struct crypt_kop)
|
|
|
|
#define CIOCFINDDEV _IOWR('c', 108, struct crypt_find_op)
|
2014-12-12 19:56:36 +00:00
|
|
|
#define CIOCCRYPTAEAD _IOWR('c', 109, struct crypt_aead)
|
2002-10-04 20:31:23 +00:00
|
|
|
|
2003-01-03 06:16:59 +00:00
|
|
|
struct cryptostats {
|
2020-06-30 22:01:21 +00:00
|
|
|
uint64_t cs_ops; /* symmetric crypto ops submitted */
|
|
|
|
uint64_t cs_errs; /* symmetric crypto ops that failed */
|
|
|
|
uint64_t cs_kops; /* asymetric/key ops submitted */
|
|
|
|
uint64_t cs_kerrs; /* asymetric/key ops that failed */
|
|
|
|
uint64_t cs_intrs; /* crypto swi thread activations */
|
|
|
|
uint64_t cs_rets; /* crypto return thread activations */
|
|
|
|
uint64_t cs_blocks; /* symmetric op driver block */
|
|
|
|
uint64_t cs_kblocks; /* symmetric op driver block */
|
2003-01-03 06:16:59 +00:00
|
|
|
};
|
|
|
|
|
2002-10-04 20:31:23 +00:00
|
|
|
#ifdef _KERNEL
|
2014-12-12 19:56:36 +00:00
|
|
|
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
/*
|
|
|
|
* Return values for cryptodev_probesession methods.
|
|
|
|
*/
|
|
|
|
#define CRYPTODEV_PROBE_HARDWARE (-100)
|
|
|
|
#define CRYPTODEV_PROBE_ACCEL_SOFTWARE (-200)
|
|
|
|
#define CRYPTODEV_PROBE_SOFTWARE (-500)
|
|
|
|
|
2014-12-12 19:56:36 +00:00
|
|
|
#if 0
|
2018-03-26 22:31:29 +00:00
|
|
|
#define CRYPTDEB(s, ...) do { \
|
|
|
|
printf("%s:%d: " s "\n", __FILE__, __LINE__, ## __VA_ARGS__); \
|
|
|
|
} while (0)
|
2014-12-12 19:56:36 +00:00
|
|
|
#else
|
2018-03-26 22:31:29 +00:00
|
|
|
#define CRYPTDEB(...) do { } while (0)
|
2014-12-12 19:56:36 +00:00
|
|
|
#endif
|
|
|
|
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
struct crypto_session_params {
|
|
|
|
int csp_mode; /* Type of operations to perform. */
|
|
|
|
|
|
|
|
#define CSP_MODE_NONE 0
|
|
|
|
#define CSP_MODE_COMPRESS 1 /* Compression/decompression. */
|
|
|
|
#define CSP_MODE_CIPHER 2 /* Encrypt/decrypt. */
|
|
|
|
#define CSP_MODE_DIGEST 3 /* Compute/verify digest. */
|
|
|
|
#define CSP_MODE_AEAD 4 /* Combined auth/encryption. */
|
|
|
|
#define CSP_MODE_ETA 5 /* IPsec style encrypt-then-auth */
|
|
|
|
|
|
|
|
int csp_flags;
|
|
|
|
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
#define CSP_F_SEPARATE_OUTPUT 0x0001 /* Requests can use separate output */
|
2020-06-22 23:20:43 +00:00
|
|
|
#define CSP_F_SEPARATE_AAD 0x0002 /* Requests can use separate AAD */
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
|
|
|
|
int csp_ivlen; /* IV length in bytes. */
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
|
|
|
|
int csp_cipher_alg;
|
|
|
|
int csp_cipher_klen; /* Key length in bytes. */
|
|
|
|
const void *csp_cipher_key;
|
2002-10-04 20:31:23 +00:00
|
|
|
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
int csp_auth_alg;
|
|
|
|
int csp_auth_klen; /* Key length in bytes. */
|
|
|
|
const void *csp_auth_key;
|
|
|
|
int csp_auth_mlen; /* Number of digest bytes to use.
|
|
|
|
0 means all. */
|
2002-10-04 20:31:23 +00:00
|
|
|
};
|
|
|
|
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
enum crypto_buffer_type {
|
|
|
|
CRYPTO_BUF_NONE = 0,
|
|
|
|
CRYPTO_BUF_CONTIG,
|
|
|
|
CRYPTO_BUF_UIO,
|
|
|
|
CRYPTO_BUF_MBUF,
|
2020-08-26 02:37:42 +00:00
|
|
|
CRYPTO_BUF_VMPAGE,
|
|
|
|
CRYPTO_BUF_LAST = CRYPTO_BUF_VMPAGE
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Description of a data buffer for a request. Requests can either
|
|
|
|
* have a single buffer that is modified in place or separate input
|
|
|
|
* and output buffers.
|
|
|
|
*/
|
|
|
|
struct crypto_buffer {
|
|
|
|
union {
|
|
|
|
struct {
|
|
|
|
char *cb_buf;
|
|
|
|
int cb_buf_len;
|
|
|
|
};
|
|
|
|
struct mbuf *cb_mbuf;
|
2020-08-26 02:37:42 +00:00
|
|
|
struct {
|
|
|
|
vm_page_t *cb_vm_page;
|
|
|
|
int cb_vm_page_len;
|
|
|
|
int cb_vm_page_offset;
|
|
|
|
};
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
struct uio *cb_uio;
|
|
|
|
};
|
|
|
|
enum crypto_buffer_type cb_type;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A cursor is used to iterate through a crypto request data buffer.
|
|
|
|
*/
|
|
|
|
struct crypto_buffer_cursor {
|
|
|
|
union {
|
|
|
|
char *cc_buf;
|
|
|
|
struct mbuf *cc_mbuf;
|
|
|
|
struct iovec *cc_iov;
|
2020-08-26 02:37:42 +00:00
|
|
|
vm_page_t *cc_vmpage;
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
};
|
2020-08-26 02:37:42 +00:00
|
|
|
/* Optional bytes of valid data remaining */
|
|
|
|
int cc_buf_len;
|
|
|
|
/*
|
|
|
|
* Optional offset within the current buffer segment where
|
|
|
|
* valid data begins
|
|
|
|
*/
|
|
|
|
size_t cc_offset;
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
enum crypto_buffer_type cc_type;
|
|
|
|
};
|
|
|
|
|
2002-10-04 20:31:23 +00:00
|
|
|
/* Structure describing complete operation */
|
|
|
|
struct cryptop {
|
|
|
|
TAILQ_ENTRY(cryptop) crp_next;
|
|
|
|
|
2017-11-03 10:27:22 +00:00
|
|
|
struct task crp_task;
|
|
|
|
|
2018-07-18 00:56:25 +00:00
|
|
|
crypto_session_t crp_session; /* Session */
|
2002-10-04 20:31:23 +00:00
|
|
|
int crp_olen; /* Result total length */
|
|
|
|
|
|
|
|
int crp_etype; /*
|
|
|
|
* Error type (zero means no error).
|
|
|
|
* All error codes except EAGAIN
|
|
|
|
* indicate possible data corruption (as in,
|
|
|
|
* the data have been touched). On all
|
2018-07-18 00:56:25 +00:00
|
|
|
* errors, the crp_session may have changed
|
2002-10-04 20:31:23 +00:00
|
|
|
* (reset to a new one), so the caller
|
|
|
|
* should always check and use the new
|
|
|
|
* value on future requests.
|
|
|
|
*/
|
|
|
|
int crp_flags;
|
|
|
|
|
2003-06-30 05:09:32 +00:00
|
|
|
#define CRYPTO_F_BATCH 0x0008 /* Batch op if possible */
|
|
|
|
#define CRYPTO_F_CBIMM 0x0010 /* Do callback immediately */
|
|
|
|
#define CRYPTO_F_DONE 0x0020 /* Operation completed */
|
|
|
|
#define CRYPTO_F_CBIFSYNC 0x0040 /* Do CBIMM if op is synchronous */
|
2017-11-03 10:27:22 +00:00
|
|
|
#define CRYPTO_F_ASYNC 0x0080 /* Dispatch crypto jobs on several threads
|
|
|
|
* if op is synchronous
|
|
|
|
*/
|
|
|
|
#define CRYPTO_F_ASYNC_KEEPORDER 0x0100 /*
|
|
|
|
* Dispatch the crypto jobs in the same
|
|
|
|
* order there are submitted. Applied only
|
|
|
|
* if CRYPTO_F_ASYNC flags is set
|
|
|
|
*/
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
#define CRYPTO_F_IV_SEPARATE 0x0200 /* Use crp_iv[] as IV. */
|
|
|
|
|
|
|
|
int crp_op;
|
2002-10-04 20:31:23 +00:00
|
|
|
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
struct crypto_buffer crp_buf;
|
|
|
|
struct crypto_buffer crp_obuf;
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
|
2020-06-22 23:20:43 +00:00
|
|
|
void *crp_aad; /* AAD buffer. */
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
int crp_aad_start; /* Location of AAD. */
|
|
|
|
int crp_aad_length; /* 0 => no AAD. */
|
|
|
|
int crp_iv_start; /* Location of IV. IV length is from
|
|
|
|
* the session.
|
|
|
|
*/
|
|
|
|
int crp_payload_start; /* Location of ciphertext. */
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
int crp_payload_output_start;
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
int crp_payload_length;
|
|
|
|
int crp_digest_start; /* Location of MAC/tag. Length is
|
|
|
|
* from the session.
|
|
|
|
*/
|
|
|
|
|
|
|
|
uint8_t crp_iv[EALG_MAX_BLOCK_LEN]; /* IV if IV_SEPARATE. */
|
|
|
|
|
|
|
|
const void *crp_cipher_key; /* New cipher key if non-NULL. */
|
|
|
|
const void *crp_auth_key; /* New auth key if non-NULL. */
|
|
|
|
|
|
|
|
void *crp_opaque; /* Opaque pointer, passed along */
|
2002-10-04 20:31:23 +00:00
|
|
|
|
|
|
|
int (*crp_callback)(struct cryptop *); /* Callback function */
|
|
|
|
|
2003-01-03 06:16:59 +00:00
|
|
|
struct bintime crp_tstamp; /* performance time stamp */
|
2017-11-03 10:27:22 +00:00
|
|
|
uint32_t crp_seq; /* used for ordered dispatch */
|
|
|
|
uint32_t crp_retw_id; /*
|
|
|
|
* the return worker to be used,
|
|
|
|
* used for ordered dispatch
|
|
|
|
*/
|
2002-10-04 20:31:23 +00:00
|
|
|
};
|
|
|
|
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
static __inline void
|
|
|
|
_crypto_use_buf(struct crypto_buffer *cb, void *buf, int len)
|
|
|
|
{
|
|
|
|
cb->cb_buf = buf;
|
|
|
|
cb->cb_buf_len = len;
|
|
|
|
cb->cb_type = CRYPTO_BUF_CONTIG;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline void
|
|
|
|
_crypto_use_mbuf(struct crypto_buffer *cb, struct mbuf *m)
|
|
|
|
{
|
|
|
|
cb->cb_mbuf = m;
|
|
|
|
cb->cb_type = CRYPTO_BUF_MBUF;
|
|
|
|
}
|
|
|
|
|
2020-08-26 02:37:42 +00:00
|
|
|
static __inline void
|
|
|
|
_crypto_use_vmpage(struct crypto_buffer *cb, vm_page_t *pages, int len,
|
|
|
|
int offset)
|
|
|
|
{
|
|
|
|
cb->cb_vm_page = pages;
|
|
|
|
cb->cb_vm_page_len = len;
|
|
|
|
cb->cb_vm_page_offset = offset;
|
|
|
|
cb->cb_type = CRYPTO_BUF_VMPAGE;
|
|
|
|
}
|
|
|
|
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
static __inline void
|
|
|
|
_crypto_use_uio(struct crypto_buffer *cb, struct uio *uio)
|
|
|
|
{
|
|
|
|
cb->cb_uio = uio;
|
|
|
|
cb->cb_type = CRYPTO_BUF_UIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline void
|
|
|
|
crypto_use_buf(struct cryptop *crp, void *buf, int len)
|
|
|
|
{
|
|
|
|
_crypto_use_buf(&crp->crp_buf, buf, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline void
|
|
|
|
crypto_use_mbuf(struct cryptop *crp, struct mbuf *m)
|
|
|
|
{
|
|
|
|
_crypto_use_mbuf(&crp->crp_buf, m);
|
|
|
|
}
|
|
|
|
|
2020-08-26 02:37:42 +00:00
|
|
|
static __inline void
|
|
|
|
crypto_use_vmpage(struct cryptop *crp, vm_page_t *pages, int len, int offset)
|
|
|
|
{
|
|
|
|
_crypto_use_vmpage(&crp->crp_buf, pages, len, offset);
|
|
|
|
}
|
|
|
|
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
static __inline void
|
|
|
|
crypto_use_uio(struct cryptop *crp, struct uio *uio)
|
|
|
|
{
|
|
|
|
_crypto_use_uio(&crp->crp_buf, uio);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline void
|
|
|
|
crypto_use_output_buf(struct cryptop *crp, void *buf, int len)
|
|
|
|
{
|
|
|
|
_crypto_use_buf(&crp->crp_obuf, buf, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __inline void
|
|
|
|
crypto_use_output_mbuf(struct cryptop *crp, struct mbuf *m)
|
|
|
|
{
|
|
|
|
_crypto_use_mbuf(&crp->crp_obuf, m);
|
|
|
|
}
|
|
|
|
|
2020-08-26 02:37:42 +00:00
|
|
|
static __inline void
|
|
|
|
crypto_use_output_vmpage(struct cryptop *crp, vm_page_t *pages, int len,
|
|
|
|
int offset)
|
|
|
|
{
|
|
|
|
_crypto_use_vmpage(&crp->crp_obuf, pages, len, offset);
|
|
|
|
}
|
|
|
|
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
static __inline void
|
|
|
|
crypto_use_output_uio(struct cryptop *crp, struct uio *uio)
|
|
|
|
{
|
|
|
|
_crypto_use_uio(&crp->crp_obuf, uio);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define CRYPTOP_ASYNC(crp) \
|
2017-11-03 10:27:22 +00:00
|
|
|
(((crp)->crp_flags & CRYPTO_F_ASYNC) && \
|
2018-07-18 00:56:25 +00:00
|
|
|
crypto_ses2caps((crp)->crp_session) & CRYPTOCAP_F_SYNC)
|
2017-11-03 10:27:22 +00:00
|
|
|
#define CRYPTOP_ASYNC_KEEPORDER(crp) \
|
|
|
|
(CRYPTOP_ASYNC(crp) && \
|
|
|
|
(crp)->crp_flags & CRYPTO_F_ASYNC_KEEPORDER)
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
#define CRYPTO_HAS_OUTPUT_BUFFER(crp) \
|
|
|
|
((crp)->crp_obuf.cb_type != CRYPTO_BUF_NONE)
|
2002-10-04 20:31:23 +00:00
|
|
|
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
/* Flags in crp_op. */
|
|
|
|
#define CRYPTO_OP_DECRYPT 0x0
|
|
|
|
#define CRYPTO_OP_ENCRYPT 0x1
|
|
|
|
#define CRYPTO_OP_IS_ENCRYPT(op) ((op) & CRYPTO_OP_ENCRYPT)
|
|
|
|
#define CRYPTO_OP_COMPUTE_DIGEST 0x0
|
|
|
|
#define CRYPTO_OP_VERIFY_DIGEST 0x2
|
|
|
|
#define CRYPTO_OP_DECOMPRESS CRYPTO_OP_DECRYPT
|
|
|
|
#define CRYPTO_OP_COMPRESS CRYPTO_OP_ENCRYPT
|
|
|
|
#define CRYPTO_OP_IS_COMPRESS(op) ((op) & CRYPTO_OP_COMPRESS)
|
2002-10-04 20:31:23 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Hints passed to process methods.
|
|
|
|
*/
|
|
|
|
#define CRYPTO_HINT_MORE 0x1 /* more ops coming shortly */
|
|
|
|
|
|
|
|
struct cryptkop {
|
|
|
|
TAILQ_ENTRY(cryptkop) krp_next;
|
|
|
|
|
|
|
|
u_int krp_op; /* ie. CRK_MOD_EXP or other */
|
|
|
|
u_int krp_status; /* return status */
|
|
|
|
u_short krp_iparams; /* # of input parameters */
|
|
|
|
u_short krp_oparams; /* # of output parameters */
|
2007-03-21 03:42:51 +00:00
|
|
|
u_int krp_crid; /* desired device, etc. */
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
uint32_t krp_hid; /* device used */
|
2002-10-04 20:31:23 +00:00
|
|
|
struct crparam krp_param[CRK_MAXPARAM]; /* kvm */
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
void (*krp_callback)(struct cryptkop *);
|
|
|
|
struct cryptocap *krp_cap;
|
2002-10-04 20:31:23 +00:00
|
|
|
};
|
|
|
|
|
2018-07-18 00:56:25 +00:00
|
|
|
uint32_t crypto_ses2hid(crypto_session_t crypto_session);
|
|
|
|
uint32_t crypto_ses2caps(crypto_session_t crypto_session);
|
|
|
|
void *crypto_get_driver_session(crypto_session_t crypto_session);
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
const struct crypto_session_params *crypto_get_params(
|
|
|
|
crypto_session_t crypto_session);
|
|
|
|
struct auth_hash *crypto_auth_hash(const struct crypto_session_params *csp);
|
|
|
|
struct enc_xform *crypto_cipher(const struct crypto_session_params *csp);
|
2003-06-27 20:07:10 +00:00
|
|
|
|
2002-10-04 20:31:23 +00:00
|
|
|
MALLOC_DECLARE(M_CRYPTO_DATA);
|
|
|
|
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
extern int crypto_newsession(crypto_session_t *cses,
|
|
|
|
const struct crypto_session_params *params, int hard);
|
2018-07-18 00:56:25 +00:00
|
|
|
extern void crypto_freesession(crypto_session_t cses);
|
2014-12-12 19:56:36 +00:00
|
|
|
#define CRYPTOCAP_F_HARDWARE CRYPTO_FLAG_HARDWARE
|
|
|
|
#define CRYPTOCAP_F_SOFTWARE CRYPTO_FLAG_SOFTWARE
|
|
|
|
#define CRYPTOCAP_F_SYNC 0x04000000 /* operates synchronously */
|
2020-06-09 22:26:07 +00:00
|
|
|
#define CRYPTOCAP_F_ACCEL_SOFTWARE 0x08000000
|
2018-07-18 00:56:25 +00:00
|
|
|
extern int32_t crypto_get_driverid(device_t dev, size_t session_size,
|
|
|
|
int flags);
|
2007-03-21 03:42:51 +00:00
|
|
|
extern int crypto_find_driver(const char *);
|
|
|
|
extern device_t crypto_find_device_byhid(int hid);
|
|
|
|
extern int crypto_getcaps(int hid);
|
|
|
|
extern int crypto_kregister(u_int32_t, int, u_int32_t);
|
2002-10-04 20:31:23 +00:00
|
|
|
extern int crypto_unregister_all(u_int32_t driverid);
|
|
|
|
extern int crypto_dispatch(struct cryptop *crp);
|
|
|
|
extern int crypto_kdispatch(struct cryptkop *);
|
|
|
|
#define CRYPTO_SYMQ 0x1
|
|
|
|
#define CRYPTO_ASYMQ 0x2
|
|
|
|
extern int crypto_unblock(u_int32_t, int);
|
|
|
|
extern void crypto_done(struct cryptop *crp);
|
|
|
|
extern void crypto_kdone(struct cryptkop *);
|
|
|
|
extern int crypto_getfeat(int *);
|
|
|
|
|
2020-07-16 21:30:46 +00:00
|
|
|
extern void crypto_destroyreq(struct cryptop *crp);
|
|
|
|
extern void crypto_initreq(struct cryptop *crp, crypto_session_t cses);
|
2002-10-04 20:31:23 +00:00
|
|
|
extern void crypto_freereq(struct cryptop *crp);
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
extern struct cryptop *crypto_getreq(crypto_session_t cses, int how);
|
2002-10-04 20:31:23 +00:00
|
|
|
|
|
|
|
extern int crypto_usercrypto; /* userland may do crypto requests */
|
|
|
|
extern int crypto_userasymcrypto; /* userland may do asym crypto reqs */
|
|
|
|
extern int crypto_devallowsoft; /* only use hardware crypto */
|
|
|
|
|
2020-05-25 22:18:33 +00:00
|
|
|
#ifdef SYSCTL_DECL
|
|
|
|
SYSCTL_DECL(_kern_crypto);
|
|
|
|
#endif
|
|
|
|
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
/* Helper routines for drivers to initialize auth contexts for HMAC. */
|
|
|
|
struct auth_hash;
|
|
|
|
|
|
|
|
void hmac_init_ipad(struct auth_hash *axf, const char *key, int klen,
|
|
|
|
void *auth_ctx);
|
|
|
|
void hmac_init_opad(struct auth_hash *axf, const char *key, int klen,
|
|
|
|
void *auth_ctx);
|
|
|
|
|
2002-10-04 20:31:23 +00:00
|
|
|
/*
|
|
|
|
* Crypto-related utility routines used mainly by drivers.
|
|
|
|
*
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
* Similar to m_copyback/data, *_copyback copy data from the 'src'
|
|
|
|
* buffer into the crypto request's data buffer while *_copydata copy
|
|
|
|
* data from the crypto request's data buffer into the the 'dst'
|
|
|
|
* buffer.
|
2002-10-04 20:31:23 +00:00
|
|
|
*/
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
void crypto_copyback(struct cryptop *crp, int off, int size,
|
|
|
|
const void *src);
|
|
|
|
void crypto_copydata(struct cryptop *crp, int off, int size, void *dst);
|
|
|
|
int crypto_apply(struct cryptop *crp, int off, int len,
|
2020-06-10 21:18:19 +00:00
|
|
|
int (*f)(void *, const void *, u_int), void *arg);
|
Refactor driver and consumer interfaces for OCF (in-kernel crypto).
- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:
- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)
Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)
The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)
- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.
Once a driver is chosen, 'crypto_newsession' is invoked as before.
- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.
A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).
Try to make the flags related to IV handling less insane:
- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.
- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.
If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.
The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).
crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.
If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.
Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.
To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.
- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.
- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.
- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.
- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.
- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.
- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.
- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.
It does split up GCM vs CCM which I think is more readable even if there
is some duplication.
- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.
- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.
- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.
- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.
- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:
- cryptosoft
- aesni (AES only)
- blake2
- ccr
and the following consumers:
- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)
I have not tested the following:
- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)
Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
|
|
|
void *crypto_contiguous_subsegment(struct cryptop *crp, size_t skip,
|
|
|
|
size_t len);
|
2018-12-13 04:40:53 +00:00
|
|
|
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
int crypto_apply_buf(struct crypto_buffer *cb, int off, int len,
|
2020-06-10 21:18:19 +00:00
|
|
|
int (*f)(void *, const void *, u_int), void *arg);
|
Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer. Using a separate output buffer avoids this copy.
- Create a new 'struct crypto_buffer' describing a crypto buffer
containing a type and type-specific fields. crp_ilen is gone,
instead buffers that use a flat kernel buffer have a cb_buf_len
field for their length. The length of other buffer types is
inferred from the backing store (e.g. uio_resid for a uio).
Requests now have two such structures: crp_buf for the input buffer,
and crp_obuf for the output buffer.
- Consumers now use helper functions (crypto_use_*,
e.g. crypto_use_mbuf()) to configure the input buffer. If an output
buffer is not configured, the request still modifies the input
buffer in-place. A consumer uses a second set of helper functions
(crypto_use_output_*) to configure an output buffer.
- Consumers must request support for separate output buffers when
creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
only permitted to queue a request with a separate output buffer on
sessions with this flag set. Existing drivers already reject
sessions with unknown flags, so this permits drivers to be modified
to support this extension without requiring all drivers to change.
- Several data-related functions now have matching versions that
operate on an explicit buffer (e.g. crypto_apply_buf,
crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).
- Most of the existing data-related functions operate on the input
buffer. However crypto_copyback always writes to the output buffer
if a request uses a separate output buffer.
- For the regions in input/output buffers, the following conventions
are followed:
- AAD and IV are always present in input only and their
fields are offsets into the input buffer.
- payload is always present in both buffers. If a request uses a
separate output buffer, it must set a new crp_payload_start_output
field to the offset of the payload in the output buffer.
- digest is in the input buffer for verify operations, and in the
output buffer for compute operations. crp_digest_start is relative
to the appropriate buffer.
- Add a crypto buffer cursor abstraction. This is a more general form
of some bits in the cryptosoft driver that tried to always use uio's.
However, compared to the original code, this avoids rewalking the uio
iovec array for requests with multiple vectors. It also avoids
allocate an iovec array for mbufs and populating it by instead walking
the mbuf chain directly.
- Update the cryptosoft(4) driver to support separate output buffers
making use of the cursor abstraction.
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00
|
|
|
void *crypto_buffer_contiguous_subsegment(struct crypto_buffer *cb,
|
|
|
|
size_t skip, size_t len);
|
|
|
|
size_t crypto_buffer_len(struct crypto_buffer *cb);
|
|
|
|
void crypto_cursor_init(struct crypto_buffer_cursor *cc,
|
|
|
|
const struct crypto_buffer *cb);
|
|
|
|
void crypto_cursor_advance(struct crypto_buffer_cursor *cc, size_t amount);
|
|
|
|
void *crypto_cursor_segbase(struct crypto_buffer_cursor *cc);
|
|
|
|
size_t crypto_cursor_seglen(struct crypto_buffer_cursor *cc);
|
|
|
|
void crypto_cursor_copyback(struct crypto_buffer_cursor *cc, int size,
|
|
|
|
const void *vsrc);
|
|
|
|
void crypto_cursor_copydata(struct crypto_buffer_cursor *cc, int size,
|
|
|
|
void *vdst);
|
|
|
|
void crypto_cursor_copydata_noadv(struct crypto_buffer_cursor *cc, int size,
|
|
|
|
void *vdst);
|
|
|
|
|
2020-04-20 22:24:49 +00:00
|
|
|
static __inline void
|
|
|
|
crypto_read_iv(struct cryptop *crp, void *iv)
|
|
|
|
{
|
|
|
|
const struct crypto_session_params *csp;
|
|
|
|
|
|
|
|
csp = crypto_get_params(crp->crp_session);
|
|
|
|
if (crp->crp_flags & CRYPTO_F_IV_SEPARATE)
|
|
|
|
memcpy(iv, crp->crp_iv, csp->csp_ivlen);
|
|
|
|
else
|
|
|
|
crypto_copydata(crp, crp->crp_iv_start, csp->csp_ivlen, iv);
|
|
|
|
}
|
|
|
|
|
2002-10-04 20:31:23 +00:00
|
|
|
#endif /* _KERNEL */
|
|
|
|
#endif /* _CRYPTO_CRYPTO_H_ */
|