2005-01-07 02:29:27 +00:00
|
|
|
/*-
|
2017-11-30 15:48:35 +00:00
|
|
|
* SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
|
2017-11-20 19:43:44 +00:00
|
|
|
*
|
1994-05-24 10:09:53 +00:00
|
|
|
* Copyright (c) 1991, 1993
|
|
|
|
* The Regents of the University of California. All rights reserved.
|
|
|
|
*
|
|
|
|
* This code is derived from software contributed to Berkeley by
|
|
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
2017-02-28 23:42:47 +00:00
|
|
|
* 3. Neither the name of the University nor the names of its contributors
|
1994-05-24 10:09:53 +00:00
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
1994-08-02 07:55:43 +00:00
|
|
|
* from: @(#)vm_pager.c 8.6 (Berkeley) 1/12/94
|
1994-05-24 10:09:53 +00:00
|
|
|
*
|
|
|
|
*
|
|
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
*
|
1994-05-24 10:09:53 +00:00
|
|
|
* Permission to use, copy, modify and distribute this software and
|
|
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
|
|
* notice and this permission notice appear in all copies of the
|
|
|
|
* software, derivative works or modified versions, and any portions
|
|
|
|
* thereof, and that both notices appear in supporting documentation.
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
*
|
|
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
1994-05-24 10:09:53 +00:00
|
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
*
|
1994-05-24 10:09:53 +00:00
|
|
|
* Carnegie Mellon requests users of this software to return to
|
|
|
|
*
|
|
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
|
|
* School of Computer Science
|
|
|
|
* Carnegie Mellon University
|
|
|
|
* Pittsburgh PA 15213-3890
|
|
|
|
*
|
|
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
|
|
* rights to redistribute these changes.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Paging space routine stubs. Emulates a matchmaker-like interface
|
|
|
|
* for builtin pagers.
|
|
|
|
*/
|
|
|
|
|
2003-06-11 23:50:51 +00:00
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
1998-11-10 09:16:29 +00:00
|
|
|
#include <sys/kernel.h>
|
1999-03-14 09:20:01 +00:00
|
|
|
#include <sys/vnode.h>
|
2000-05-05 09:59:14 +00:00
|
|
|
#include <sys/bio.h>
|
1994-08-06 09:15:42 +00:00
|
|
|
#include <sys/buf.h>
|
2000-12-02 12:03:58 +00:00
|
|
|
#include <sys/ucred.h>
|
1997-10-12 20:26:33 +00:00
|
|
|
#include <sys/malloc.h>
|
2013-02-20 10:38:34 +00:00
|
|
|
#include <sys/rwlock.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
#include <vm/vm.h>
|
1995-12-07 12:48:31 +00:00
|
|
|
#include <vm/vm_param.h>
|
2013-06-28 03:51:20 +00:00
|
|
|
#include <vm/vm_kern.h>
|
1995-12-07 12:48:31 +00:00
|
|
|
#include <vm/vm_object.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
#include <vm/vm_page.h>
|
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct
proc or any VM system structure will have to be rebuilt!!!
Much needed overhaul of the VM system. Included in this first round of
changes:
1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
haspage, and sync operations are supported. The haspage interface now
provides information about clusterability. All pager routines now take
struct vm_object's instead of "pagers".
2) Improved data structures. In the previous paradigm, there is constant
confusion caused by pagers being both a data structure ("allocate a
pager") and a collection of routines. The idea of a pager structure has
escentially been eliminated. Objects now have types, and this type is
used to index the appropriate pager. In most cases, items in the pager
structure were duplicated in the object data structure and thus were
unnecessary. In the few cases that remained, a un_pager structure union
was created in the object to contain these items.
3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
be removed. For instance, vm_object_enter(), vm_object_lookup(),
vm_object_remove(), and the associated object hash list were some of the
things that were removed.
4) simple_lock's removed. Discussion with several people reveals that the
SMP locking primitives used in the VM system aren't likely the mechanism
that we'll be adopting. Even if it were, the locking that was in the code
was very inadequate and would have to be mostly re-done anyway. The
locking in a uni-processor kernel was a no-op but went a long way toward
making the code difficult to read and debug.
5) Places that attempted to kludge-up the fact that we don't have kernel
thread support have been fixed to reflect the reality that we are really
dealing with processes, not threads. The VM system didn't have complete
thread support, so the comments and mis-named routines were just wrong.
We now use tsleep and wakeup directly in the lock routines, for instance.
6) Where appropriate, the pagers have been improved, especially in the
pager_alloc routines. Most of the pager_allocs have been rewritten and
are now faster and easier to maintain.
7) The pagedaemon pageout clustering algorithm has been rewritten and
now tries harder to output an even number of pages before and after
the requested page. This is sort of the reverse of the ideal pagein
algorithm and should provide better overall performance.
8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
have been removed. Some other unnecessary casts have also been removed.
9) Some almost useless debugging code removed.
10) Terminology of shadow objects vs. backing objects straightened out.
The fact that the vm_object data structure escentially had this
backwards really confused things. The use of "shadow" and "backing
object" throughout the code is now internally consistent and correct
in the Mach terminology.
11) Several minor bug fixes, including one in the vm daemon that caused
0 RSS objects to not get purged as intended.
12) A "default pager" has now been created which cleans up the transition
of objects to the "swap" type. The previous checks throughout the code
for swp->pg_data != NULL were really ugly. This change also provides
the rudiments for future backing of "anonymous" memory by something
other than the swap pager (via the vnode pager, for example), and it
allows the decision about which of these pagers to use to be made
dynamically (although will need some additional decision code to do
this, of course).
13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
object" code has been removed. MAP_COPY was undocumented and non-
standard. It was furthermore broken in several ways which caused its
behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
continue to work correctly, but via the slightly different semantics
of MAP_PRIVATE.
14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
threads design can be worked around in other ways. Both #12 and #13
were done to simplify the code and improve readability and maintain-
ability. (As were most all of these changes)
TODO:
1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
this will reduce the vnode pager to a mere fraction of its current size.
2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
information provided by the new haspage pager interface. This will
substantially reduce the overhead by eliminating a large number of
VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
improved to provide both a "behind" and "ahead" indication of
contiguousness.
3) Implement the extended features of pager_haspage in swap_pager_haspage().
It currently just says 0 pages ahead/behind.
4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
via a much more general mechanism that could also be used for disk
striping of regular filesystems.
5) Do something to improve the architecture of vm_object_collapse(). The
fact that it makes calls into the swap pager and knows too much about
how the swap pager operates really bothers me. It also doesn't allow
for collapsing of non-swap pager objects ("unnamed" objects backed by
other pagers).
1995-07-13 08:48:48 +00:00
|
|
|
#include <vm/vm_pager.h>
|
1995-12-07 12:48:31 +00:00
|
|
|
#include <vm/vm_extern.h>
|
1994-05-24 10:09:53 +00:00
|
|
|
|
1999-01-21 08:29:12 +00:00
|
|
|
int cluster_pbuf_freecnt = -1; /* unlimited to begin with */
|
|
|
|
|
2015-07-29 02:26:57 +00:00
|
|
|
struct buf *swbuf;
|
|
|
|
|
A change to KPI of vm_pager_get_pages() and underlying VOP_GETPAGES().
o With new KPI consumers can request contiguous ranges of pages, and
unlike before, all pages will be kept busied on return, like it was
done before with the 'reqpage' only. Now the reqpage goes away. With
new interface it is easier to implement code protected from race
conditions.
Such arrayed requests for now should be preceeded by a call to
vm_pager_haspage() to make sure that request is possible. This
could be improved later, making vm_pager_haspage() obsolete.
Strenghtening the promises on the business of the array of pages
allows us to remove such hacks as swp_pager_free_nrpage() and
vm_pager_free_nonreq().
o New KPI accepts two integer pointers that may optionally point at
values for read ahead and read behind, that a pager may do, if it
can. These pages are completely owned by pager, and not controlled
by the caller.
This shifts the UFS-specific readahead logic from vm_fault.c, which
should be file system agnostic, into vnode_pager.c. It also removes
one VOP_BMAP() request per hard fault.
Discussed with: kib, alc, jeff, scottl
Sponsored by: Nginx, Inc.
Sponsored by: Netflix
2015-12-16 21:30:45 +00:00
|
|
|
static int dead_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
|
2002-03-19 22:20:14 +00:00
|
|
|
static vm_object_t dead_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
|
Implement global and per-uid accounting of the anonymous memory. Add
rlimit RLIMIT_SWAP that limits the amount of swap that may be reserved
for the uid.
The accounting information (charge) is associated with either map entry,
or vm object backing the entry, assuming the object is the first one
in the shadow chain and entry does not require COW. Charge is moved
from entry to object on allocation of the object, e.g. during the mmap,
assuming the object is allocated, or on the first page fault on the
entry. It moves back to the entry on forks due to COW setup.
The per-entry granularity of accounting makes the charge process fair
for processes that change uid during lifetime, and decrements charge
for proper uid when region is unmapped.
The interface of vm_pager_allocate(9) is extended by adding struct ucred *,
that is used to charge appropriate uid when allocation if performed by
kernel, e.g. md(4).
Several syscalls, among them is fork(2), may now return ENOMEM when
global or per-uid limits are enforced.
In collaboration with: pho
Reviewed by: alc
Approved by: re (kensmith)
2009-06-23 20:45:22 +00:00
|
|
|
vm_ooffset_t, struct ucred *);
|
2002-03-19 22:20:14 +00:00
|
|
|
static void dead_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
|
|
|
|
static boolean_t dead_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
|
|
|
|
static void dead_pager_dealloc(vm_object_t);
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
|
1999-01-24 02:32:15 +00:00
|
|
|
static int
|
A change to KPI of vm_pager_get_pages() and underlying VOP_GETPAGES().
o With new KPI consumers can request contiguous ranges of pages, and
unlike before, all pages will be kept busied on return, like it was
done before with the 'reqpage' only. Now the reqpage goes away. With
new interface it is easier to implement code protected from race
conditions.
Such arrayed requests for now should be preceeded by a call to
vm_pager_haspage() to make sure that request is possible. This
could be improved later, making vm_pager_haspage() obsolete.
Strenghtening the promises on the business of the array of pages
allows us to remove such hacks as swp_pager_free_nrpage() and
vm_pager_free_nonreq().
o New KPI accepts two integer pointers that may optionally point at
values for read ahead and read behind, that a pager may do, if it
can. These pages are completely owned by pager, and not controlled
by the caller.
This shifts the UFS-specific readahead logic from vm_fault.c, which
should be file system agnostic, into vnode_pager.c. It also removes
one VOP_BMAP() request per hard fault.
Discussed with: kib, alc, jeff, scottl
Sponsored by: Nginx, Inc.
Sponsored by: Netflix
2015-12-16 21:30:45 +00:00
|
|
|
dead_pager_getpages(vm_object_t obj, vm_page_t *ma, int count, int *rbehind,
|
|
|
|
int *rahead)
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
{
|
A change to KPI of vm_pager_get_pages() and underlying VOP_GETPAGES().
o With new KPI consumers can request contiguous ranges of pages, and
unlike before, all pages will be kept busied on return, like it was
done before with the 'reqpage' only. Now the reqpage goes away. With
new interface it is easier to implement code protected from race
conditions.
Such arrayed requests for now should be preceeded by a call to
vm_pager_haspage() to make sure that request is possible. This
could be improved later, making vm_pager_haspage() obsolete.
Strenghtening the promises on the business of the array of pages
allows us to remove such hacks as swp_pager_free_nrpage() and
vm_pager_free_nonreq().
o New KPI accepts two integer pointers that may optionally point at
values for read ahead and read behind, that a pager may do, if it
can. These pages are completely owned by pager, and not controlled
by the caller.
This shifts the UFS-specific readahead logic from vm_fault.c, which
should be file system agnostic, into vnode_pager.c. It also removes
one VOP_BMAP() request per hard fault.
Discussed with: kib, alc, jeff, scottl
Sponsored by: Nginx, Inc.
Sponsored by: Netflix
2015-12-16 21:30:45 +00:00
|
|
|
|
|
|
|
return (VM_PAGER_FAIL);
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
}
|
|
|
|
|
1999-01-24 02:32:15 +00:00
|
|
|
static vm_object_t
|
2009-02-24 18:09:31 +00:00
|
|
|
dead_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
|
Implement global and per-uid accounting of the anonymous memory. Add
rlimit RLIMIT_SWAP that limits the amount of swap that may be reserved
for the uid.
The accounting information (charge) is associated with either map entry,
or vm object backing the entry, assuming the object is the first one
in the shadow chain and entry does not require COW. Charge is moved
from entry to object on allocation of the object, e.g. during the mmap,
assuming the object is allocated, or on the first page fault on the
entry. It moves back to the entry on forks due to COW setup.
The per-entry granularity of accounting makes the charge process fair
for processes that change uid during lifetime, and decrements charge
for proper uid when region is unmapped.
The interface of vm_pager_allocate(9) is extended by adding struct ucred *,
that is used to charge appropriate uid when allocation if performed by
kernel, e.g. md(4).
Several syscalls, among them is fork(2), may now return ENOMEM when
global or per-uid limits are enforced.
In collaboration with: pho
Reviewed by: alc
Approved by: re (kensmith)
2009-06-23 20:45:22 +00:00
|
|
|
vm_ooffset_t off, struct ucred *cred)
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
{
|
2016-12-31 19:30:22 +00:00
|
|
|
|
|
|
|
return (NULL);
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
}
|
|
|
|
|
1999-01-24 02:32:15 +00:00
|
|
|
static void
|
2016-12-31 19:30:22 +00:00
|
|
|
dead_pager_putpages(vm_object_t object, vm_page_t *m, int count,
|
|
|
|
int flags, int *rtvals)
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
{
|
|
|
|
int i;
|
1999-01-24 02:32:15 +00:00
|
|
|
|
2016-12-31 19:30:22 +00:00
|
|
|
for (i = 0; i < count; i++)
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
rtvals[i] = VM_PAGER_AGAIN;
|
|
|
|
}
|
|
|
|
|
1999-01-24 02:32:15 +00:00
|
|
|
static int
|
2016-12-31 19:30:22 +00:00
|
|
|
dead_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *prev, int *next)
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
{
|
2016-12-31 19:30:22 +00:00
|
|
|
|
|
|
|
if (prev != NULL)
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
*prev = 0;
|
2016-12-31 19:30:22 +00:00
|
|
|
if (next != NULL)
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
*next = 0;
|
2016-12-31 19:30:22 +00:00
|
|
|
return (FALSE);
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
}
|
|
|
|
|
1999-01-24 02:32:15 +00:00
|
|
|
static void
|
2016-12-31 19:30:22 +00:00
|
|
|
dead_pager_dealloc(vm_object_t object)
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
{
|
2016-12-31 19:30:22 +00:00
|
|
|
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
}
|
|
|
|
|
1999-04-11 02:16:27 +00:00
|
|
|
static struct pagerops deadpagerops = {
|
2003-08-05 06:51:26 +00:00
|
|
|
.pgo_alloc = dead_pager_alloc,
|
|
|
|
.pgo_dealloc = dead_pager_dealloc,
|
|
|
|
.pgo_getpages = dead_pager_getpages,
|
|
|
|
.pgo_putpages = dead_pager_putpages,
|
|
|
|
.pgo_haspage = dead_pager_haspage,
|
Some VM improvements, including elimination of alot of Sig-11
problems. Tor Egge and others have helped with various VM bugs
lately, but don't blame him -- blame me!!!
pmap.c:
1) Create an object for kernel page table allocations. This
fixes a bogus allocation method previously used for such, by
grabbing pages from the kernel object, using bogus pindexes.
(This was a code cleanup, and perhaps a minor system stability
issue.)
pmap.c:
2) Pre-set the modify and accessed bits when prudent. This will
decrease bus traffic under certain circumstances.
vfs_bio.c, vfs_cluster.c:
3) Rather than calculating the beginning virtual byte offset
multiple times, stick the offset into the buffer header, so
that the calculated offset can be reused. (Long long multiplies
are often expensive, and this is a probably unmeasurable performance
improvement, and code cleanup.)
vfs_bio.c:
4) Handle write recursion more intelligently (but not perfectly) so
that it is less likely to cause a system panic, and is also
much more robust.
vfs_bio.c:
5) getblk incorrectly wrote out blocks that are incorrectly sized.
The problem is fixed, and writes blocks out ONLY when B_DELWRI
is true.
vfs_bio.c:
6) Check that already constituted buffers have fully valid pages. If
not, then make sure that the B_CACHE bit is not set. (This was
a major source of Sig-11 type problems.)
vfs_bio.c:
7) Fix a potential system deadlock due to an incorrectly specified
sleep priority while waiting for a buffer write operation. The
change that I made opens the system up to serious problems, and
we need to examine the issue of process sleep priorities.
vfs_cluster.c, vfs_bio.c:
8) Make clustered reads work more correctly (and more completely)
when buffers are already constituted, but not fully valid.
(This was another system reliability issue.)
vfs_subr.c, ffs_inode.c:
9) Create a vtruncbuf function, which is used by filesystems that
can truncate files. The vinvalbuf forced a file sync type operation,
while vtruncbuf only invalidates the buffers past the new end of file,
and also invalidates the appropriate pages. (This was a system reliabiliy
and performance issue.)
10) Modify FFS to use vtruncbuf.
vm_object.c:
11) Make the object rundown mechanism for OBJT_VNODE type objects work
more correctly. Included in that fix, create pager entries for
the OBJT_DEAD pager type, so that paging requests that might slip
in during race conditions are properly handled. (This was a system
reliability issue.)
vm_page.c:
12) Make some of the page validation routines be a little less picky
about arguments passed to them. Also, support page invalidation
change the object generation count so that we handle generation
counts a little more robustly.
vm_pageout.c:
13) Further reduce pageout daemon activity when the system doesn't
need help from it. There should be no additional performance
decrease even when the pageout daemon is running. (This was
a significant performance issue.)
vnode_pager.c:
14) Teach the vnode pager to handle race conditions during vnode
deallocations.
1998-03-16 01:56:03 +00:00
|
|
|
};
|
|
|
|
|
1999-01-21 08:29:12 +00:00
|
|
|
struct pagerops *pagertab[] = {
|
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct
proc or any VM system structure will have to be rebuilt!!!
Much needed overhaul of the VM system. Included in this first round of
changes:
1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
haspage, and sync operations are supported. The haspage interface now
provides information about clusterability. All pager routines now take
struct vm_object's instead of "pagers".
2) Improved data structures. In the previous paradigm, there is constant
confusion caused by pagers being both a data structure ("allocate a
pager") and a collection of routines. The idea of a pager structure has
escentially been eliminated. Objects now have types, and this type is
used to index the appropriate pager. In most cases, items in the pager
structure were duplicated in the object data structure and thus were
unnecessary. In the few cases that remained, a un_pager structure union
was created in the object to contain these items.
3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
be removed. For instance, vm_object_enter(), vm_object_lookup(),
vm_object_remove(), and the associated object hash list were some of the
things that were removed.
4) simple_lock's removed. Discussion with several people reveals that the
SMP locking primitives used in the VM system aren't likely the mechanism
that we'll be adopting. Even if it were, the locking that was in the code
was very inadequate and would have to be mostly re-done anyway. The
locking in a uni-processor kernel was a no-op but went a long way toward
making the code difficult to read and debug.
5) Places that attempted to kludge-up the fact that we don't have kernel
thread support have been fixed to reflect the reality that we are really
dealing with processes, not threads. The VM system didn't have complete
thread support, so the comments and mis-named routines were just wrong.
We now use tsleep and wakeup directly in the lock routines, for instance.
6) Where appropriate, the pagers have been improved, especially in the
pager_alloc routines. Most of the pager_allocs have been rewritten and
are now faster and easier to maintain.
7) The pagedaemon pageout clustering algorithm has been rewritten and
now tries harder to output an even number of pages before and after
the requested page. This is sort of the reverse of the ideal pagein
algorithm and should provide better overall performance.
8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
have been removed. Some other unnecessary casts have also been removed.
9) Some almost useless debugging code removed.
10) Terminology of shadow objects vs. backing objects straightened out.
The fact that the vm_object data structure escentially had this
backwards really confused things. The use of "shadow" and "backing
object" throughout the code is now internally consistent and correct
in the Mach terminology.
11) Several minor bug fixes, including one in the vm daemon that caused
0 RSS objects to not get purged as intended.
12) A "default pager" has now been created which cleans up the transition
of objects to the "swap" type. The previous checks throughout the code
for swp->pg_data != NULL were really ugly. This change also provides
the rudiments for future backing of "anonymous" memory by something
other than the swap pager (via the vnode pager, for example), and it
allows the decision about which of these pagers to use to be made
dynamically (although will need some additional decision code to do
this, of course).
13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
object" code has been removed. MAP_COPY was undocumented and non-
standard. It was furthermore broken in several ways which caused its
behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
continue to work correctly, but via the slightly different semantics
of MAP_PRIVATE.
14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
threads design can be worked around in other ways. Both #12 and #13
were done to simplify the code and improve readability and maintain-
ability. (As were most all of these changes)
TODO:
1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
this will reduce the vnode pager to a mere fraction of its current size.
2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
information provided by the new haspage pager interface. This will
substantially reduce the overhead by eliminating a large number of
VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
improved to provide both a "behind" and "ahead" indication of
contiguousness.
3) Implement the extended features of pager_haspage in swap_pager_haspage().
It currently just says 0 pages ahead/behind.
4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
via a much more general mechanism that could also be used for disk
striping of regular filesystems.
5) Do something to improve the architecture of vm_object_collapse(). The
fact that it makes calls into the swap pager and knows too much about
how the swap pager operates really bothers me. It also doesn't allow
for collapsing of non-swap pager objects ("unnamed" objects backed by
other pagers).
1995-07-13 08:48:48 +00:00
|
|
|
&defaultpagerops, /* OBJT_DEFAULT */
|
|
|
|
&swappagerops, /* OBJT_SWAP */
|
|
|
|
&vnodepagerops, /* OBJT_VNODE */
|
|
|
|
&devicepagerops, /* OBJT_DEVICE */
|
2000-05-21 13:41:29 +00:00
|
|
|
&physpagerops, /* OBJT_PHYS */
|
2009-07-24 13:50:29 +00:00
|
|
|
&deadpagerops, /* OBJT_DEAD */
|
2012-05-12 20:49:58 +00:00
|
|
|
&sgpagerops, /* OBJT_SG */
|
|
|
|
&mgtdevicepagerops, /* OBJT_MGTDEVICE */
|
1994-05-24 10:09:53 +00:00
|
|
|
};
|
1999-01-21 08:29:12 +00:00
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* Kernel address space for mapping pages.
|
|
|
|
* Used by pagers where KVAs are needed for IO.
|
|
|
|
*
|
|
|
|
* XXX needs to be large enough to support the number of pending async
|
|
|
|
* cleaning requests (NPENDINGIO == 64) * the maximum swap cluster size
|
|
|
|
* (MAXPHYS == 64k) if you want to get the most efficiency.
|
|
|
|
*/
|
2017-09-06 20:28:18 +00:00
|
|
|
struct mtx_padalign __exclusive_cache_line pbuf_mtx;
|
2002-03-05 18:20:58 +00:00
|
|
|
static TAILQ_HEAD(swqueue, buf) bswlist;
|
2013-06-28 03:51:20 +00:00
|
|
|
static int bswneeded;
|
|
|
|
vm_offset_t swapbkva; /* swap buffers kva */
|
1994-05-24 10:09:53 +00:00
|
|
|
|
|
|
|
void
|
2016-12-31 19:30:22 +00:00
|
|
|
vm_pager_init(void)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
|
|
|
struct pagerops **pgops;
|
|
|
|
|
2002-03-05 18:20:58 +00:00
|
|
|
TAILQ_INIT(&bswlist);
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* Initialize known pagers
|
|
|
|
*/
|
2016-04-21 15:38:28 +00:00
|
|
|
for (pgops = pagertab; pgops < &pagertab[nitems(pagertab)]; pgops++)
|
2011-11-15 14:09:53 +00:00
|
|
|
if ((*pgops)->pgo_init != NULL)
|
2016-12-31 19:30:22 +00:00
|
|
|
(*(*pgops)->pgo_init)();
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
1994-08-06 09:15:42 +00:00
|
|
|
void
|
2016-12-31 19:30:22 +00:00
|
|
|
vm_pager_bufferinit(void)
|
1994-08-06 09:15:42 +00:00
|
|
|
{
|
|
|
|
struct buf *bp;
|
|
|
|
int i;
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
|
2002-04-04 21:03:38 +00:00
|
|
|
mtx_init(&pbuf_mtx, "pbuf mutex", NULL, MTX_DEF);
|
1994-08-06 09:15:42 +00:00
|
|
|
bp = swbuf;
|
|
|
|
/*
|
|
|
|
* Now set up swap and physical I/O buffer headers.
|
|
|
|
*/
|
1998-01-24 02:01:46 +00:00
|
|
|
for (i = 0; i < nswbuf; i++, bp++) {
|
1994-08-06 09:15:42 +00:00
|
|
|
TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
|
1999-06-26 02:47:16 +00:00
|
|
|
BUF_LOCKINIT(bp);
|
|
|
|
LIST_INIT(&bp->b_dep);
|
1994-08-06 09:15:42 +00:00
|
|
|
bp->b_rcred = bp->b_wcred = NOCRED;
|
1998-10-31 15:31:29 +00:00
|
|
|
bp->b_xflags = 0;
|
1994-08-06 09:15:42 +00:00
|
|
|
}
|
|
|
|
|
1999-01-21 08:29:12 +00:00
|
|
|
cluster_pbuf_freecnt = nswbuf / 2;
|
2005-08-13 20:21:33 +00:00
|
|
|
vnode_pbuf_freecnt = nswbuf / 2 + 1;
|
2015-03-06 14:15:30 +00:00
|
|
|
vnode_async_pbuf_freecnt = nswbuf / 2;
|
1994-08-06 09:15:42 +00:00
|
|
|
}
|
|
|
|
|
1994-05-24 10:09:53 +00:00
|
|
|
/*
|
|
|
|
* Allocate an instance of a pager of the given type.
|
|
|
|
* Size, protection and offset parameters are passed in for pagers that
|
|
|
|
* need to perform page-level validation (e.g. the device pager).
|
|
|
|
*/
|
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct
proc or any VM system structure will have to be rebuilt!!!
Much needed overhaul of the VM system. Included in this first round of
changes:
1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
haspage, and sync operations are supported. The haspage interface now
provides information about clusterability. All pager routines now take
struct vm_object's instead of "pagers".
2) Improved data structures. In the previous paradigm, there is constant
confusion caused by pagers being both a data structure ("allocate a
pager") and a collection of routines. The idea of a pager structure has
escentially been eliminated. Objects now have types, and this type is
used to index the appropriate pager. In most cases, items in the pager
structure were duplicated in the object data structure and thus were
unnecessary. In the few cases that remained, a un_pager structure union
was created in the object to contain these items.
3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
be removed. For instance, vm_object_enter(), vm_object_lookup(),
vm_object_remove(), and the associated object hash list were some of the
things that were removed.
4) simple_lock's removed. Discussion with several people reveals that the
SMP locking primitives used in the VM system aren't likely the mechanism
that we'll be adopting. Even if it were, the locking that was in the code
was very inadequate and would have to be mostly re-done anyway. The
locking in a uni-processor kernel was a no-op but went a long way toward
making the code difficult to read and debug.
5) Places that attempted to kludge-up the fact that we don't have kernel
thread support have been fixed to reflect the reality that we are really
dealing with processes, not threads. The VM system didn't have complete
thread support, so the comments and mis-named routines were just wrong.
We now use tsleep and wakeup directly in the lock routines, for instance.
6) Where appropriate, the pagers have been improved, especially in the
pager_alloc routines. Most of the pager_allocs have been rewritten and
are now faster and easier to maintain.
7) The pagedaemon pageout clustering algorithm has been rewritten and
now tries harder to output an even number of pages before and after
the requested page. This is sort of the reverse of the ideal pagein
algorithm and should provide better overall performance.
8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
have been removed. Some other unnecessary casts have also been removed.
9) Some almost useless debugging code removed.
10) Terminology of shadow objects vs. backing objects straightened out.
The fact that the vm_object data structure escentially had this
backwards really confused things. The use of "shadow" and "backing
object" throughout the code is now internally consistent and correct
in the Mach terminology.
11) Several minor bug fixes, including one in the vm daemon that caused
0 RSS objects to not get purged as intended.
12) A "default pager" has now been created which cleans up the transition
of objects to the "swap" type. The previous checks throughout the code
for swp->pg_data != NULL were really ugly. This change also provides
the rudiments for future backing of "anonymous" memory by something
other than the swap pager (via the vnode pager, for example), and it
allows the decision about which of these pagers to use to be made
dynamically (although will need some additional decision code to do
this, of course).
13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
object" code has been removed. MAP_COPY was undocumented and non-
standard. It was furthermore broken in several ways which caused its
behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
continue to work correctly, but via the slightly different semantics
of MAP_PRIVATE.
14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
threads design can be worked around in other ways. Both #12 and #13
were done to simplify the code and improve readability and maintain-
ability. (As were most all of these changes)
TODO:
1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
this will reduce the vnode pager to a mere fraction of its current size.
2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
information provided by the new haspage pager interface. This will
substantially reduce the overhead by eliminating a large number of
VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
improved to provide both a "behind" and "ahead" indication of
contiguousness.
3) Implement the extended features of pager_haspage in swap_pager_haspage().
It currently just says 0 pages ahead/behind.
4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
via a much more general mechanism that could also be used for disk
striping of regular filesystems.
5) Do something to improve the architecture of vm_object_collapse(). The
fact that it makes calls into the swap pager and knows too much about
how the swap pager operates really bothers me. It also doesn't allow
for collapsing of non-swap pager objects ("unnamed" objects backed by
other pagers).
1995-07-13 08:48:48 +00:00
|
|
|
vm_object_t
|
2001-05-19 01:28:09 +00:00
|
|
|
vm_pager_allocate(objtype_t type, void *handle, vm_ooffset_t size,
|
Implement global and per-uid accounting of the anonymous memory. Add
rlimit RLIMIT_SWAP that limits the amount of swap that may be reserved
for the uid.
The accounting information (charge) is associated with either map entry,
or vm object backing the entry, assuming the object is the first one
in the shadow chain and entry does not require COW. Charge is moved
from entry to object on allocation of the object, e.g. during the mmap,
assuming the object is allocated, or on the first page fault on the
entry. It moves back to the entry on forks due to COW setup.
The per-entry granularity of accounting makes the charge process fair
for processes that change uid during lifetime, and decrements charge
for proper uid when region is unmapped.
The interface of vm_pager_allocate(9) is extended by adding struct ucred *,
that is used to charge appropriate uid when allocation if performed by
kernel, e.g. md(4).
Several syscalls, among them is fork(2), may now return ENOMEM when
global or per-uid limits are enforced.
In collaboration with: pho
Reviewed by: alc
Approved by: re (kensmith)
2009-06-23 20:45:22 +00:00
|
|
|
vm_prot_t prot, vm_ooffset_t off, struct ucred *cred)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
2001-05-19 01:28:09 +00:00
|
|
|
vm_object_t ret;
|
1994-05-24 10:09:53 +00:00
|
|
|
struct pagerops *ops;
|
|
|
|
|
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct
proc or any VM system structure will have to be rebuilt!!!
Much needed overhaul of the VM system. Included in this first round of
changes:
1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
haspage, and sync operations are supported. The haspage interface now
provides information about clusterability. All pager routines now take
struct vm_object's instead of "pagers".
2) Improved data structures. In the previous paradigm, there is constant
confusion caused by pagers being both a data structure ("allocate a
pager") and a collection of routines. The idea of a pager structure has
escentially been eliminated. Objects now have types, and this type is
used to index the appropriate pager. In most cases, items in the pager
structure were duplicated in the object data structure and thus were
unnecessary. In the few cases that remained, a un_pager structure union
was created in the object to contain these items.
3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
be removed. For instance, vm_object_enter(), vm_object_lookup(),
vm_object_remove(), and the associated object hash list were some of the
things that were removed.
4) simple_lock's removed. Discussion with several people reveals that the
SMP locking primitives used in the VM system aren't likely the mechanism
that we'll be adopting. Even if it were, the locking that was in the code
was very inadequate and would have to be mostly re-done anyway. The
locking in a uni-processor kernel was a no-op but went a long way toward
making the code difficult to read and debug.
5) Places that attempted to kludge-up the fact that we don't have kernel
thread support have been fixed to reflect the reality that we are really
dealing with processes, not threads. The VM system didn't have complete
thread support, so the comments and mis-named routines were just wrong.
We now use tsleep and wakeup directly in the lock routines, for instance.
6) Where appropriate, the pagers have been improved, especially in the
pager_alloc routines. Most of the pager_allocs have been rewritten and
are now faster and easier to maintain.
7) The pagedaemon pageout clustering algorithm has been rewritten and
now tries harder to output an even number of pages before and after
the requested page. This is sort of the reverse of the ideal pagein
algorithm and should provide better overall performance.
8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
have been removed. Some other unnecessary casts have also been removed.
9) Some almost useless debugging code removed.
10) Terminology of shadow objects vs. backing objects straightened out.
The fact that the vm_object data structure escentially had this
backwards really confused things. The use of "shadow" and "backing
object" throughout the code is now internally consistent and correct
in the Mach terminology.
11) Several minor bug fixes, including one in the vm daemon that caused
0 RSS objects to not get purged as intended.
12) A "default pager" has now been created which cleans up the transition
of objects to the "swap" type. The previous checks throughout the code
for swp->pg_data != NULL were really ugly. This change also provides
the rudiments for future backing of "anonymous" memory by something
other than the swap pager (via the vnode pager, for example), and it
allows the decision about which of these pagers to use to be made
dynamically (although will need some additional decision code to do
this, of course).
13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
object" code has been removed. MAP_COPY was undocumented and non-
standard. It was furthermore broken in several ways which caused its
behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
continue to work correctly, but via the slightly different semantics
of MAP_PRIVATE.
14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
threads design can be worked around in other ways. Both #12 and #13
were done to simplify the code and improve readability and maintain-
ability. (As were most all of these changes)
TODO:
1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
this will reduce the vnode pager to a mere fraction of its current size.
2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
information provided by the new haspage pager interface. This will
substantially reduce the overhead by eliminating a large number of
VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
improved to provide both a "behind" and "ahead" indication of
contiguousness.
3) Implement the extended features of pager_haspage in swap_pager_haspage().
It currently just says 0 pages ahead/behind.
4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
via a much more general mechanism that could also be used for disk
striping of regular filesystems.
5) Do something to improve the architecture of vm_object_collapse(). The
fact that it makes calls into the swap pager and knows too much about
how the swap pager operates really bothers me. It also doesn't allow
for collapsing of non-swap pager objects ("unnamed" objects backed by
other pagers).
1995-07-13 08:48:48 +00:00
|
|
|
ops = pagertab[type];
|
1994-05-24 10:09:53 +00:00
|
|
|
if (ops)
|
2016-12-31 19:30:22 +00:00
|
|
|
ret = (*ops->pgo_alloc)(handle, size, prot, off, cred);
|
2001-05-19 01:28:09 +00:00
|
|
|
else
|
|
|
|
ret = NULL;
|
|
|
|
return (ret);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
2003-05-06 02:45:28 +00:00
|
|
|
/*
|
|
|
|
* The object must be locked.
|
|
|
|
*/
|
1994-05-24 10:09:53 +00:00
|
|
|
void
|
2016-12-31 19:30:22 +00:00
|
|
|
vm_pager_deallocate(vm_object_t object)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
2003-05-06 02:45:28 +00:00
|
|
|
|
2013-02-21 21:54:53 +00:00
|
|
|
VM_OBJECT_ASSERT_WLOCKED(object);
|
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct
proc or any VM system structure will have to be rebuilt!!!
Much needed overhaul of the VM system. Included in this first round of
changes:
1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
haspage, and sync operations are supported. The haspage interface now
provides information about clusterability. All pager routines now take
struct vm_object's instead of "pagers".
2) Improved data structures. In the previous paradigm, there is constant
confusion caused by pagers being both a data structure ("allocate a
pager") and a collection of routines. The idea of a pager structure has
escentially been eliminated. Objects now have types, and this type is
used to index the appropriate pager. In most cases, items in the pager
structure were duplicated in the object data structure and thus were
unnecessary. In the few cases that remained, a un_pager structure union
was created in the object to contain these items.
3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
be removed. For instance, vm_object_enter(), vm_object_lookup(),
vm_object_remove(), and the associated object hash list were some of the
things that were removed.
4) simple_lock's removed. Discussion with several people reveals that the
SMP locking primitives used in the VM system aren't likely the mechanism
that we'll be adopting. Even if it were, the locking that was in the code
was very inadequate and would have to be mostly re-done anyway. The
locking in a uni-processor kernel was a no-op but went a long way toward
making the code difficult to read and debug.
5) Places that attempted to kludge-up the fact that we don't have kernel
thread support have been fixed to reflect the reality that we are really
dealing with processes, not threads. The VM system didn't have complete
thread support, so the comments and mis-named routines were just wrong.
We now use tsleep and wakeup directly in the lock routines, for instance.
6) Where appropriate, the pagers have been improved, especially in the
pager_alloc routines. Most of the pager_allocs have been rewritten and
are now faster and easier to maintain.
7) The pagedaemon pageout clustering algorithm has been rewritten and
now tries harder to output an even number of pages before and after
the requested page. This is sort of the reverse of the ideal pagein
algorithm and should provide better overall performance.
8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
have been removed. Some other unnecessary casts have also been removed.
9) Some almost useless debugging code removed.
10) Terminology of shadow objects vs. backing objects straightened out.
The fact that the vm_object data structure escentially had this
backwards really confused things. The use of "shadow" and "backing
object" throughout the code is now internally consistent and correct
in the Mach terminology.
11) Several minor bug fixes, including one in the vm daemon that caused
0 RSS objects to not get purged as intended.
12) A "default pager" has now been created which cleans up the transition
of objects to the "swap" type. The previous checks throughout the code
for swp->pg_data != NULL were really ugly. This change also provides
the rudiments for future backing of "anonymous" memory by something
other than the swap pager (via the vnode pager, for example), and it
allows the decision about which of these pagers to use to be made
dynamically (although will need some additional decision code to do
this, of course).
13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
object" code has been removed. MAP_COPY was undocumented and non-
standard. It was furthermore broken in several ways which caused its
behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
continue to work correctly, but via the slightly different semantics
of MAP_PRIVATE.
14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
threads design can be worked around in other ways. Both #12 and #13
were done to simplify the code and improve readability and maintain-
ability. (As were most all of these changes)
TODO:
1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
this will reduce the vnode pager to a mere fraction of its current size.
2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
information provided by the new haspage pager interface. This will
substantially reduce the overhead by eliminating a large number of
VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
improved to provide both a "behind" and "ahead" indication of
contiguousness.
3) Implement the extended features of pager_haspage in swap_pager_haspage().
It currently just says 0 pages ahead/behind.
4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
via a much more general mechanism that could also be used for disk
striping of regular filesystems.
5) Do something to improve the architecture of vm_object_collapse(). The
fact that it makes calls into the swap pager and knows too much about
how the swap pager operates really bothers me. It also doesn't allow
for collapsing of non-swap pager objects ("unnamed" objects backed by
other pagers).
1995-07-13 08:48:48 +00:00
|
|
|
(*pagertab[object->type]->pgo_dealloc) (object);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
2015-06-17 22:44:27 +00:00
|
|
|
static void
|
|
|
|
vm_pager_assert_in(vm_object_t object, vm_page_t *m, int count)
|
|
|
|
{
|
|
|
|
#ifdef INVARIANTS
|
|
|
|
|
|
|
|
VM_OBJECT_ASSERT_WLOCKED(object);
|
|
|
|
KASSERT(count > 0, ("%s: 0 count", __func__));
|
|
|
|
/*
|
|
|
|
* All pages must be busied, not mapped, not fully valid,
|
|
|
|
* not dirty and belong to the proper object.
|
|
|
|
*/
|
|
|
|
for (int i = 0 ; i < count; i++) {
|
2016-12-09 21:21:24 +00:00
|
|
|
if (m[i] == bogus_page)
|
|
|
|
continue;
|
2015-06-17 22:44:27 +00:00
|
|
|
vm_page_assert_xbusied(m[i]);
|
|
|
|
KASSERT(!pmap_page_is_mapped(m[i]),
|
|
|
|
("%s: page %p is mapped", __func__, m[i]));
|
|
|
|
KASSERT(m[i]->valid != VM_PAGE_BITS_ALL,
|
|
|
|
("%s: request for a valid page %p", __func__, m[i]));
|
|
|
|
KASSERT(m[i]->dirty == 0,
|
|
|
|
("%s: page %p is dirty", __func__, m[i]));
|
|
|
|
KASSERT(m[i]->object == object,
|
|
|
|
("%s: wrong object %p/%p", __func__, object, m[i]->object));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Page in the pages for the object using its associated pager.
|
|
|
|
* The requested page must be fully valid on successful return.
|
|
|
|
*/
|
|
|
|
int
|
A change to KPI of vm_pager_get_pages() and underlying VOP_GETPAGES().
o With new KPI consumers can request contiguous ranges of pages, and
unlike before, all pages will be kept busied on return, like it was
done before with the 'reqpage' only. Now the reqpage goes away. With
new interface it is easier to implement code protected from race
conditions.
Such arrayed requests for now should be preceeded by a call to
vm_pager_haspage() to make sure that request is possible. This
could be improved later, making vm_pager_haspage() obsolete.
Strenghtening the promises on the business of the array of pages
allows us to remove such hacks as swp_pager_free_nrpage() and
vm_pager_free_nonreq().
o New KPI accepts two integer pointers that may optionally point at
values for read ahead and read behind, that a pager may do, if it
can. These pages are completely owned by pager, and not controlled
by the caller.
This shifts the UFS-specific readahead logic from vm_fault.c, which
should be file system agnostic, into vnode_pager.c. It also removes
one VOP_BMAP() request per hard fault.
Discussed with: kib, alc, jeff, scottl
Sponsored by: Nginx, Inc.
Sponsored by: Netflix
2015-12-16 21:30:45 +00:00
|
|
|
vm_pager_get_pages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
|
|
|
|
int *rahead)
|
2015-06-17 22:44:27 +00:00
|
|
|
{
|
A change to KPI of vm_pager_get_pages() and underlying VOP_GETPAGES().
o With new KPI consumers can request contiguous ranges of pages, and
unlike before, all pages will be kept busied on return, like it was
done before with the 'reqpage' only. Now the reqpage goes away. With
new interface it is easier to implement code protected from race
conditions.
Such arrayed requests for now should be preceeded by a call to
vm_pager_haspage() to make sure that request is possible. This
could be improved later, making vm_pager_haspage() obsolete.
Strenghtening the promises on the business of the array of pages
allows us to remove such hacks as swp_pager_free_nrpage() and
vm_pager_free_nonreq().
o New KPI accepts two integer pointers that may optionally point at
values for read ahead and read behind, that a pager may do, if it
can. These pages are completely owned by pager, and not controlled
by the caller.
This shifts the UFS-specific readahead logic from vm_fault.c, which
should be file system agnostic, into vnode_pager.c. It also removes
one VOP_BMAP() request per hard fault.
Discussed with: kib, alc, jeff, scottl
Sponsored by: Nginx, Inc.
Sponsored by: Netflix
2015-12-16 21:30:45 +00:00
|
|
|
#ifdef INVARIANTS
|
|
|
|
vm_pindex_t pindex = m[0]->pindex;
|
|
|
|
#endif
|
2015-06-17 22:44:27 +00:00
|
|
|
int r;
|
|
|
|
|
|
|
|
vm_pager_assert_in(object, m, count);
|
|
|
|
|
A change to KPI of vm_pager_get_pages() and underlying VOP_GETPAGES().
o With new KPI consumers can request contiguous ranges of pages, and
unlike before, all pages will be kept busied on return, like it was
done before with the 'reqpage' only. Now the reqpage goes away. With
new interface it is easier to implement code protected from race
conditions.
Such arrayed requests for now should be preceeded by a call to
vm_pager_haspage() to make sure that request is possible. This
could be improved later, making vm_pager_haspage() obsolete.
Strenghtening the promises on the business of the array of pages
allows us to remove such hacks as swp_pager_free_nrpage() and
vm_pager_free_nonreq().
o New KPI accepts two integer pointers that may optionally point at
values for read ahead and read behind, that a pager may do, if it
can. These pages are completely owned by pager, and not controlled
by the caller.
This shifts the UFS-specific readahead logic from vm_fault.c, which
should be file system agnostic, into vnode_pager.c. It also removes
one VOP_BMAP() request per hard fault.
Discussed with: kib, alc, jeff, scottl
Sponsored by: Nginx, Inc.
Sponsored by: Netflix
2015-12-16 21:30:45 +00:00
|
|
|
r = (*pagertab[object->type]->pgo_getpages)(object, m, count, rbehind,
|
|
|
|
rahead);
|
2015-06-17 22:44:27 +00:00
|
|
|
if (r != VM_PAGER_OK)
|
|
|
|
return (r);
|
|
|
|
|
A change to KPI of vm_pager_get_pages() and underlying VOP_GETPAGES().
o With new KPI consumers can request contiguous ranges of pages, and
unlike before, all pages will be kept busied on return, like it was
done before with the 'reqpage' only. Now the reqpage goes away. With
new interface it is easier to implement code protected from race
conditions.
Such arrayed requests for now should be preceeded by a call to
vm_pager_haspage() to make sure that request is possible. This
could be improved later, making vm_pager_haspage() obsolete.
Strenghtening the promises on the business of the array of pages
allows us to remove such hacks as swp_pager_free_nrpage() and
vm_pager_free_nonreq().
o New KPI accepts two integer pointers that may optionally point at
values for read ahead and read behind, that a pager may do, if it
can. These pages are completely owned by pager, and not controlled
by the caller.
This shifts the UFS-specific readahead logic from vm_fault.c, which
should be file system agnostic, into vnode_pager.c. It also removes
one VOP_BMAP() request per hard fault.
Discussed with: kib, alc, jeff, scottl
Sponsored by: Nginx, Inc.
Sponsored by: Netflix
2015-12-16 21:30:45 +00:00
|
|
|
for (int i = 0; i < count; i++) {
|
|
|
|
/*
|
|
|
|
* If pager has replaced a page, assert that it had
|
|
|
|
* updated the array.
|
|
|
|
*/
|
|
|
|
KASSERT(m[i] == vm_page_lookup(object, pindex++),
|
|
|
|
("%s: mismatch page %p pindex %ju", __func__,
|
|
|
|
m[i], (uintmax_t )pindex - 1));
|
|
|
|
/*
|
|
|
|
* Zero out partially filled data.
|
|
|
|
*/
|
|
|
|
if (m[i]->valid != VM_PAGE_BITS_ALL)
|
|
|
|
vm_page_zero_invalid(m[i], TRUE);
|
|
|
|
}
|
2015-06-17 22:44:27 +00:00
|
|
|
return (VM_PAGER_OK);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
vm_pager_get_pages_async(vm_object_t object, vm_page_t *m, int count,
|
A change to KPI of vm_pager_get_pages() and underlying VOP_GETPAGES().
o With new KPI consumers can request contiguous ranges of pages, and
unlike before, all pages will be kept busied on return, like it was
done before with the 'reqpage' only. Now the reqpage goes away. With
new interface it is easier to implement code protected from race
conditions.
Such arrayed requests for now should be preceeded by a call to
vm_pager_haspage() to make sure that request is possible. This
could be improved later, making vm_pager_haspage() obsolete.
Strenghtening the promises on the business of the array of pages
allows us to remove such hacks as swp_pager_free_nrpage() and
vm_pager_free_nonreq().
o New KPI accepts two integer pointers that may optionally point at
values for read ahead and read behind, that a pager may do, if it
can. These pages are completely owned by pager, and not controlled
by the caller.
This shifts the UFS-specific readahead logic from vm_fault.c, which
should be file system agnostic, into vnode_pager.c. It also removes
one VOP_BMAP() request per hard fault.
Discussed with: kib, alc, jeff, scottl
Sponsored by: Nginx, Inc.
Sponsored by: Netflix
2015-12-16 21:30:45 +00:00
|
|
|
int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
|
2015-06-17 22:44:27 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
vm_pager_assert_in(object, m, count);
|
|
|
|
|
|
|
|
return ((*pagertab[object->type]->pgo_getpages_async)(object, m,
|
A change to KPI of vm_pager_get_pages() and underlying VOP_GETPAGES().
o With new KPI consumers can request contiguous ranges of pages, and
unlike before, all pages will be kept busied on return, like it was
done before with the 'reqpage' only. Now the reqpage goes away. With
new interface it is easier to implement code protected from race
conditions.
Such arrayed requests for now should be preceeded by a call to
vm_pager_haspage() to make sure that request is possible. This
could be improved later, making vm_pager_haspage() obsolete.
Strenghtening the promises on the business of the array of pages
allows us to remove such hacks as swp_pager_free_nrpage() and
vm_pager_free_nonreq().
o New KPI accepts two integer pointers that may optionally point at
values for read ahead and read behind, that a pager may do, if it
can. These pages are completely owned by pager, and not controlled
by the caller.
This shifts the UFS-specific readahead logic from vm_fault.c, which
should be file system agnostic, into vnode_pager.c. It also removes
one VOP_BMAP() request per hard fault.
Discussed with: kib, alc, jeff, scottl
Sponsored by: Nginx, Inc.
Sponsored by: Netflix
2015-12-16 21:30:45 +00:00
|
|
|
count, rbehind, rahead, iodone, arg));
|
2015-06-17 22:44:27 +00:00
|
|
|
}
|
|
|
|
|
1999-01-21 08:29:12 +00:00
|
|
|
/*
|
|
|
|
* vm_pager_put_pages() - inline, see vm/vm_pager.h
|
|
|
|
* vm_pager_has_page() - inline, see vm/vm_pager.h
|
|
|
|
*/
|
1994-05-25 09:21:21 +00:00
|
|
|
|
Consider a scenario in which one processor, call it Pt, is performing
vm_object_terminate() on a device-backed object at the same time that
another processor, call it Pa, is performing dev_pager_alloc() on the
same device. The problem is that vm_pager_object_lookup() should not be
allowed to return a doomed object, i.e., an object with OBJ_DEAD set,
but it does. In detail, the unfortunate sequence of events is: Pt in
vm_object_terminate() holds the doomed object's lock and sets OBJ_DEAD
on the object. Pa in dev_pager_alloc() holds dev_pager_sx and calls
vm_pager_object_lookup(), which returns the doomed object. Next, Pa
calls vm_object_reference(), which requires the doomed object's lock, so
Pa waits for Pt to release the doomed object's lock. Pt proceeds to the
point in vm_object_terminate() where it releases the doomed object's
lock. Pa is now able to complete vm_object_reference() because it can
now complete the acquisition of the doomed object's lock. So, now the
doomed object has a reference count of one! Pa releases dev_pager_sx
and returns the doomed object from dev_pager_alloc(). Pt now acquires
dev_pager_mtx, removes the doomed object from dev_pager_object_list,
releases dev_pager_mtx, and finally calls uma_zfree with the doomed
object. However, the doomed object is still in use by Pa.
Repeating my key point, vm_pager_object_lookup() must not return a
doomed object. Moreover, the test for the object's state, i.e.,
doomed or not, and the increment of the object's reference count
should be carried out atomically.
Reviewed by: kib
Approved by: re (kensmith)
MFC after: 3 weeks
2007-08-05 21:04:32 +00:00
|
|
|
/*
|
|
|
|
* Search the specified pager object list for an object with the
|
|
|
|
* specified handle. If an object with the specified handle is found,
|
|
|
|
* increase its reference count and return it. Otherwise, return NULL.
|
|
|
|
*
|
|
|
|
* The pager object list must be locked.
|
|
|
|
*/
|
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct
proc or any VM system structure will have to be rebuilt!!!
Much needed overhaul of the VM system. Included in this first round of
changes:
1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
haspage, and sync operations are supported. The haspage interface now
provides information about clusterability. All pager routines now take
struct vm_object's instead of "pagers".
2) Improved data structures. In the previous paradigm, there is constant
confusion caused by pagers being both a data structure ("allocate a
pager") and a collection of routines. The idea of a pager structure has
escentially been eliminated. Objects now have types, and this type is
used to index the appropriate pager. In most cases, items in the pager
structure were duplicated in the object data structure and thus were
unnecessary. In the few cases that remained, a un_pager structure union
was created in the object to contain these items.
3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
be removed. For instance, vm_object_enter(), vm_object_lookup(),
vm_object_remove(), and the associated object hash list were some of the
things that were removed.
4) simple_lock's removed. Discussion with several people reveals that the
SMP locking primitives used in the VM system aren't likely the mechanism
that we'll be adopting. Even if it were, the locking that was in the code
was very inadequate and would have to be mostly re-done anyway. The
locking in a uni-processor kernel was a no-op but went a long way toward
making the code difficult to read and debug.
5) Places that attempted to kludge-up the fact that we don't have kernel
thread support have been fixed to reflect the reality that we are really
dealing with processes, not threads. The VM system didn't have complete
thread support, so the comments and mis-named routines were just wrong.
We now use tsleep and wakeup directly in the lock routines, for instance.
6) Where appropriate, the pagers have been improved, especially in the
pager_alloc routines. Most of the pager_allocs have been rewritten and
are now faster and easier to maintain.
7) The pagedaemon pageout clustering algorithm has been rewritten and
now tries harder to output an even number of pages before and after
the requested page. This is sort of the reverse of the ideal pagein
algorithm and should provide better overall performance.
8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
have been removed. Some other unnecessary casts have also been removed.
9) Some almost useless debugging code removed.
10) Terminology of shadow objects vs. backing objects straightened out.
The fact that the vm_object data structure escentially had this
backwards really confused things. The use of "shadow" and "backing
object" throughout the code is now internally consistent and correct
in the Mach terminology.
11) Several minor bug fixes, including one in the vm daemon that caused
0 RSS objects to not get purged as intended.
12) A "default pager" has now been created which cleans up the transition
of objects to the "swap" type. The previous checks throughout the code
for swp->pg_data != NULL were really ugly. This change also provides
the rudiments for future backing of "anonymous" memory by something
other than the swap pager (via the vnode pager, for example), and it
allows the decision about which of these pagers to use to be made
dynamically (although will need some additional decision code to do
this, of course).
13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
object" code has been removed. MAP_COPY was undocumented and non-
standard. It was furthermore broken in several ways which caused its
behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
continue to work correctly, but via the slightly different semantics
of MAP_PRIVATE.
14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
threads design can be worked around in other ways. Both #12 and #13
were done to simplify the code and improve readability and maintain-
ability. (As were most all of these changes)
TODO:
1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
this will reduce the vnode pager to a mere fraction of its current size.
2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
information provided by the new haspage pager interface. This will
substantially reduce the overhead by eliminating a large number of
VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
improved to provide both a "behind" and "ahead" indication of
contiguousness.
3) Implement the extended features of pager_haspage in swap_pager_haspage().
It currently just says 0 pages ahead/behind.
4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
via a much more general mechanism that could also be used for disk
striping of regular filesystems.
5) Do something to improve the architecture of vm_object_collapse(). The
fact that it makes calls into the swap pager and knows too much about
how the swap pager operates really bothers me. It also doesn't allow
for collapsing of non-swap pager objects ("unnamed" objects backed by
other pagers).
1995-07-13 08:48:48 +00:00
|
|
|
vm_object_t
|
Consider a scenario in which one processor, call it Pt, is performing
vm_object_terminate() on a device-backed object at the same time that
another processor, call it Pa, is performing dev_pager_alloc() on the
same device. The problem is that vm_pager_object_lookup() should not be
allowed to return a doomed object, i.e., an object with OBJ_DEAD set,
but it does. In detail, the unfortunate sequence of events is: Pt in
vm_object_terminate() holds the doomed object's lock and sets OBJ_DEAD
on the object. Pa in dev_pager_alloc() holds dev_pager_sx and calls
vm_pager_object_lookup(), which returns the doomed object. Next, Pa
calls vm_object_reference(), which requires the doomed object's lock, so
Pa waits for Pt to release the doomed object's lock. Pt proceeds to the
point in vm_object_terminate() where it releases the doomed object's
lock. Pa is now able to complete vm_object_reference() because it can
now complete the acquisition of the doomed object's lock. So, now the
doomed object has a reference count of one! Pa releases dev_pager_sx
and returns the doomed object from dev_pager_alloc(). Pt now acquires
dev_pager_mtx, removes the doomed object from dev_pager_object_list,
releases dev_pager_mtx, and finally calls uma_zfree with the doomed
object. However, the doomed object is still in use by Pa.
Repeating my key point, vm_pager_object_lookup() must not return a
doomed object. Moreover, the test for the object's state, i.e.,
doomed or not, and the increment of the object's reference count
should be carried out atomically.
Reviewed by: kib
Approved by: re (kensmith)
MFC after: 3 weeks
2007-08-05 21:04:32 +00:00
|
|
|
vm_pager_object_lookup(struct pagerlst *pg_list, void *handle)
|
1994-05-24 10:09:53 +00:00
|
|
|
{
|
2001-07-04 19:00:13 +00:00
|
|
|
vm_object_t object;
|
1994-05-24 10:09:53 +00:00
|
|
|
|
Consider a scenario in which one processor, call it Pt, is performing
vm_object_terminate() on a device-backed object at the same time that
another processor, call it Pa, is performing dev_pager_alloc() on the
same device. The problem is that vm_pager_object_lookup() should not be
allowed to return a doomed object, i.e., an object with OBJ_DEAD set,
but it does. In detail, the unfortunate sequence of events is: Pt in
vm_object_terminate() holds the doomed object's lock and sets OBJ_DEAD
on the object. Pa in dev_pager_alloc() holds dev_pager_sx and calls
vm_pager_object_lookup(), which returns the doomed object. Next, Pa
calls vm_object_reference(), which requires the doomed object's lock, so
Pa waits for Pt to release the doomed object's lock. Pt proceeds to the
point in vm_object_terminate() where it releases the doomed object's
lock. Pa is now able to complete vm_object_reference() because it can
now complete the acquisition of the doomed object's lock. So, now the
doomed object has a reference count of one! Pa releases dev_pager_sx
and returns the doomed object from dev_pager_alloc(). Pt now acquires
dev_pager_mtx, removes the doomed object from dev_pager_object_list,
releases dev_pager_mtx, and finally calls uma_zfree with the doomed
object. However, the doomed object is still in use by Pa.
Repeating my key point, vm_pager_object_lookup() must not return a
doomed object. Moreover, the test for the object's state, i.e.,
doomed or not, and the increment of the object's reference count
should be carried out atomically.
Reviewed by: kib
Approved by: re (kensmith)
MFC after: 3 weeks
2007-08-05 21:04:32 +00:00
|
|
|
TAILQ_FOREACH(object, pg_list, pager_object_list) {
|
2012-05-23 12:51:49 +00:00
|
|
|
if (object->handle == handle) {
|
2013-02-20 12:03:20 +00:00
|
|
|
VM_OBJECT_WLOCK(object);
|
2012-05-23 12:51:49 +00:00
|
|
|
if ((object->flags & OBJ_DEAD) == 0) {
|
|
|
|
vm_object_reference_locked(object);
|
2013-02-20 12:03:20 +00:00
|
|
|
VM_OBJECT_WUNLOCK(object);
|
2012-05-23 12:51:49 +00:00
|
|
|
break;
|
|
|
|
}
|
2013-02-20 12:03:20 +00:00
|
|
|
VM_OBJECT_WUNLOCK(object);
|
Consider a scenario in which one processor, call it Pt, is performing
vm_object_terminate() on a device-backed object at the same time that
another processor, call it Pa, is performing dev_pager_alloc() on the
same device. The problem is that vm_pager_object_lookup() should not be
allowed to return a doomed object, i.e., an object with OBJ_DEAD set,
but it does. In detail, the unfortunate sequence of events is: Pt in
vm_object_terminate() holds the doomed object's lock and sets OBJ_DEAD
on the object. Pa in dev_pager_alloc() holds dev_pager_sx and calls
vm_pager_object_lookup(), which returns the doomed object. Next, Pa
calls vm_object_reference(), which requires the doomed object's lock, so
Pa waits for Pt to release the doomed object's lock. Pt proceeds to the
point in vm_object_terminate() where it releases the doomed object's
lock. Pa is now able to complete vm_object_reference() because it can
now complete the acquisition of the doomed object's lock. So, now the
doomed object has a reference count of one! Pa releases dev_pager_sx
and returns the doomed object from dev_pager_alloc(). Pt now acquires
dev_pager_mtx, removes the doomed object from dev_pager_object_list,
releases dev_pager_mtx, and finally calls uma_zfree with the doomed
object. However, the doomed object is still in use by Pa.
Repeating my key point, vm_pager_object_lookup() must not return a
doomed object. Moreover, the test for the object's state, i.e.,
doomed or not, and the increment of the object's reference count
should be carried out atomically.
Reviewed by: kib
Approved by: re (kensmith)
MFC after: 3 weeks
2007-08-05 21:04:32 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return (object);
|
1994-05-24 10:09:53 +00:00
|
|
|
}
|
|
|
|
|
1996-11-30 22:41:49 +00:00
|
|
|
/*
|
|
|
|
* initialize a physical buffer
|
|
|
|
*/
|
|
|
|
|
2002-03-05 18:20:58 +00:00
|
|
|
/*
|
|
|
|
* XXX This probably belongs in vfs_bio.c
|
|
|
|
*/
|
1996-11-30 22:41:49 +00:00
|
|
|
static void
|
1999-06-27 11:44:22 +00:00
|
|
|
initpbuf(struct buf *bp)
|
|
|
|
{
|
2016-12-31 19:30:22 +00:00
|
|
|
|
2004-11-15 08:33:09 +00:00
|
|
|
KASSERT(bp->b_bufobj == NULL, ("initpbuf with bufobj"));
|
|
|
|
KASSERT(bp->b_vp == NULL, ("initpbuf with vp"));
|
1996-11-30 22:41:49 +00:00
|
|
|
bp->b_rcred = NOCRED;
|
|
|
|
bp->b_wcred = NOCRED;
|
2002-03-05 18:20:58 +00:00
|
|
|
bp->b_qindex = 0; /* On no queue (QUEUE_NONE) */
|
2016-12-31 19:30:22 +00:00
|
|
|
bp->b_kvabase = (caddr_t)(MAXPHYS * (bp - swbuf)) + swapbkva;
|
2015-07-23 19:13:41 +00:00
|
|
|
bp->b_data = bp->b_kvabase;
|
1996-11-30 22:41:49 +00:00
|
|
|
bp->b_kvasize = MAXPHYS;
|
1999-06-26 02:47:16 +00:00
|
|
|
bp->b_flags = 0;
|
2015-07-23 19:13:41 +00:00
|
|
|
bp->b_xflags = 0;
|
2000-04-02 15:24:56 +00:00
|
|
|
bp->b_ioflags = 0;
|
2000-03-20 10:44:49 +00:00
|
|
|
bp->b_iodone = NULL;
|
1999-06-26 02:47:16 +00:00
|
|
|
bp->b_error = 0;
|
2003-02-25 03:37:48 +00:00
|
|
|
BUF_LOCK(bp, LK_EXCLUSIVE, NULL);
|
2016-10-31 23:09:52 +00:00
|
|
|
buf_track(bp, __func__);
|
1996-11-30 22:41:49 +00:00
|
|
|
}
|
|
|
|
|
1994-08-06 09:15:42 +00:00
|
|
|
/*
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
* allocate a physical buffer
|
1999-01-21 08:29:12 +00:00
|
|
|
*
|
|
|
|
* There are a limited number (nswbuf) of physical buffers. We need
|
|
|
|
* to make sure that no single subsystem is able to hog all of them,
|
|
|
|
* so each subsystem implements a counter which is typically initialized
|
|
|
|
* to 1/2 nswbuf. getpbuf() decrements this counter in allocation and
|
|
|
|
* increments it on release, and blocks if the counter hits zero. A
|
|
|
|
* subsystem may initialize the counter to -1 to disable the feature,
|
|
|
|
* but it must still be sure to match up all uses of getpbuf() with
|
|
|
|
* relpbuf() using the same variable.
|
|
|
|
*
|
|
|
|
* NOTE: pfreecnt can be NULL, but this 'feature' will be removed
|
|
|
|
* relatively soon when the rest of the subsystems get smart about it. XXX
|
1994-08-06 09:15:42 +00:00
|
|
|
*/
|
|
|
|
struct buf *
|
2004-11-15 08:22:38 +00:00
|
|
|
getpbuf(int *pfreecnt)
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
{
|
1994-08-06 09:15:42 +00:00
|
|
|
struct buf *bp;
|
|
|
|
|
2001-04-13 10:23:32 +00:00
|
|
|
mtx_lock(&pbuf_mtx);
|
1999-07-05 12:50:54 +00:00
|
|
|
for (;;) {
|
2016-12-31 19:30:22 +00:00
|
|
|
if (pfreecnt != NULL) {
|
1999-07-05 12:50:54 +00:00
|
|
|
while (*pfreecnt == 0) {
|
2001-04-13 10:23:32 +00:00
|
|
|
msleep(pfreecnt, &pbuf_mtx, PVM, "wswbuf0", 0);
|
1999-07-05 12:50:54 +00:00
|
|
|
}
|
1999-01-21 08:29:12 +00:00
|
|
|
}
|
|
|
|
|
1999-07-05 12:50:54 +00:00
|
|
|
/* get a bp from the swap buffer header pool */
|
|
|
|
if ((bp = TAILQ_FIRST(&bswlist)) != NULL)
|
|
|
|
break;
|
|
|
|
|
1994-08-06 09:15:42 +00:00
|
|
|
bswneeded = 1;
|
2001-04-13 10:23:32 +00:00
|
|
|
msleep(&bswneeded, &pbuf_mtx, PVM, "wswbuf1", 0);
|
1999-07-05 12:50:54 +00:00
|
|
|
/* loop in case someone else grabbed one */
|
1994-08-06 09:15:42 +00:00
|
|
|
}
|
|
|
|
TAILQ_REMOVE(&bswlist, bp, b_freelist);
|
1999-01-21 08:29:12 +00:00
|
|
|
if (pfreecnt)
|
|
|
|
--*pfreecnt;
|
2001-04-13 10:23:32 +00:00
|
|
|
mtx_unlock(&pbuf_mtx);
|
1996-11-30 22:41:49 +00:00
|
|
|
initpbuf(bp);
|
2016-12-31 19:30:22 +00:00
|
|
|
return (bp);
|
1994-08-06 09:15:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
1999-01-21 08:29:12 +00:00
|
|
|
* allocate a physical buffer, if one is available.
|
|
|
|
*
|
|
|
|
* Note that there is no NULL hack here - all subsystems using this
|
|
|
|
* call understand how to use pfreecnt.
|
1994-08-06 09:15:42 +00:00
|
|
|
*/
|
|
|
|
struct buf *
|
2004-11-15 08:22:38 +00:00
|
|
|
trypbuf(int *pfreecnt)
|
These changes embody the support of the fully coherent merged VM buffer cache,
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
|
|
|
{
|
1994-08-06 09:15:42 +00:00
|
|
|
struct buf *bp;
|
|
|
|
|
2001-04-13 10:23:32 +00:00
|
|
|
mtx_lock(&pbuf_mtx);
|
1999-01-21 08:29:12 +00:00
|
|
|
if (*pfreecnt == 0 || (bp = TAILQ_FIRST(&bswlist)) == NULL) {
|
2001-04-13 10:23:32 +00:00
|
|
|
mtx_unlock(&pbuf_mtx);
|
1994-08-06 09:15:42 +00:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
TAILQ_REMOVE(&bswlist, bp, b_freelist);
|
1999-01-21 08:29:12 +00:00
|
|
|
--*pfreecnt;
|
2001-04-13 10:23:32 +00:00
|
|
|
mtx_unlock(&pbuf_mtx);
|
1996-11-30 22:41:49 +00:00
|
|
|
initpbuf(bp);
|
2016-12-31 19:30:22 +00:00
|
|
|
return (bp);
|
1994-08-06 09:15:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* release a physical buffer
|
1999-01-21 08:29:12 +00:00
|
|
|
*
|
|
|
|
* NOTE: pfreecnt can be NULL, but this 'feature' will be removed
|
|
|
|
* relatively soon when the rest of the subsystems get smart about it. XXX
|
1994-08-06 09:15:42 +00:00
|
|
|
*/
|
|
|
|
void
|
2004-11-15 08:22:38 +00:00
|
|
|
relpbuf(struct buf *bp, int *pfreecnt)
|
1994-08-06 09:15:42 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
if (bp->b_rcred != NOCRED) {
|
|
|
|
crfree(bp->b_rcred);
|
|
|
|
bp->b_rcred = NOCRED;
|
|
|
|
}
|
|
|
|
if (bp->b_wcred != NOCRED) {
|
|
|
|
crfree(bp->b_wcred);
|
|
|
|
bp->b_wcred = NOCRED;
|
|
|
|
}
|
1999-01-21 08:29:12 +00:00
|
|
|
|
2004-11-15 08:33:09 +00:00
|
|
|
KASSERT(bp->b_vp == NULL, ("relpbuf with vp"));
|
|
|
|
KASSERT(bp->b_bufobj == NULL, ("relpbuf with bufobj"));
|
|
|
|
|
2016-10-31 23:09:52 +00:00
|
|
|
buf_track(bp, __func__);
|
1999-06-26 02:47:16 +00:00
|
|
|
BUF_UNLOCK(bp);
|
1994-12-19 00:02:56 +00:00
|
|
|
|
2003-04-05 21:01:16 +00:00
|
|
|
mtx_lock(&pbuf_mtx);
|
1994-08-06 09:15:42 +00:00
|
|
|
TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
|
|
|
|
|
|
|
|
if (bswneeded) {
|
|
|
|
bswneeded = 0;
|
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct
proc or any VM system structure will have to be rebuilt!!!
Much needed overhaul of the VM system. Included in this first round of
changes:
1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
haspage, and sync operations are supported. The haspage interface now
provides information about clusterability. All pager routines now take
struct vm_object's instead of "pagers".
2) Improved data structures. In the previous paradigm, there is constant
confusion caused by pagers being both a data structure ("allocate a
pager") and a collection of routines. The idea of a pager structure has
escentially been eliminated. Objects now have types, and this type is
used to index the appropriate pager. In most cases, items in the pager
structure were duplicated in the object data structure and thus were
unnecessary. In the few cases that remained, a un_pager structure union
was created in the object to contain these items.
3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
be removed. For instance, vm_object_enter(), vm_object_lookup(),
vm_object_remove(), and the associated object hash list were some of the
things that were removed.
4) simple_lock's removed. Discussion with several people reveals that the
SMP locking primitives used in the VM system aren't likely the mechanism
that we'll be adopting. Even if it were, the locking that was in the code
was very inadequate and would have to be mostly re-done anyway. The
locking in a uni-processor kernel was a no-op but went a long way toward
making the code difficult to read and debug.
5) Places that attempted to kludge-up the fact that we don't have kernel
thread support have been fixed to reflect the reality that we are really
dealing with processes, not threads. The VM system didn't have complete
thread support, so the comments and mis-named routines were just wrong.
We now use tsleep and wakeup directly in the lock routines, for instance.
6) Where appropriate, the pagers have been improved, especially in the
pager_alloc routines. Most of the pager_allocs have been rewritten and
are now faster and easier to maintain.
7) The pagedaemon pageout clustering algorithm has been rewritten and
now tries harder to output an even number of pages before and after
the requested page. This is sort of the reverse of the ideal pagein
algorithm and should provide better overall performance.
8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
have been removed. Some other unnecessary casts have also been removed.
9) Some almost useless debugging code removed.
10) Terminology of shadow objects vs. backing objects straightened out.
The fact that the vm_object data structure escentially had this
backwards really confused things. The use of "shadow" and "backing
object" throughout the code is now internally consistent and correct
in the Mach terminology.
11) Several minor bug fixes, including one in the vm daemon that caused
0 RSS objects to not get purged as intended.
12) A "default pager" has now been created which cleans up the transition
of objects to the "swap" type. The previous checks throughout the code
for swp->pg_data != NULL were really ugly. This change also provides
the rudiments for future backing of "anonymous" memory by something
other than the swap pager (via the vnode pager, for example), and it
allows the decision about which of these pagers to use to be made
dynamically (although will need some additional decision code to do
this, of course).
13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
object" code has been removed. MAP_COPY was undocumented and non-
standard. It was furthermore broken in several ways which caused its
behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
continue to work correctly, but via the slightly different semantics
of MAP_PRIVATE.
14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
threads design can be worked around in other ways. Both #12 and #13
were done to simplify the code and improve readability and maintain-
ability. (As were most all of these changes)
TODO:
1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
this will reduce the vnode pager to a mere fraction of its current size.
2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
information provided by the new haspage pager interface. This will
substantially reduce the overhead by eliminating a large number of
VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
improved to provide both a "behind" and "ahead" indication of
contiguousness.
3) Implement the extended features of pager_haspage in swap_pager_haspage().
It currently just says 0 pages ahead/behind.
4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
via a much more general mechanism that could also be used for disk
striping of regular filesystems.
5) Do something to improve the architecture of vm_object_collapse(). The
fact that it makes calls into the swap pager and knows too much about
how the swap pager operates really bothers me. It also doesn't allow
for collapsing of non-swap pager objects ("unnamed" objects backed by
other pagers).
1995-07-13 08:48:48 +00:00
|
|
|
wakeup(&bswneeded);
|
1994-08-06 09:15:42 +00:00
|
|
|
}
|
1999-01-21 08:29:12 +00:00
|
|
|
if (pfreecnt) {
|
|
|
|
if (++*pfreecnt == 1)
|
|
|
|
wakeup(pfreecnt);
|
|
|
|
}
|
2001-04-13 10:23:32 +00:00
|
|
|
mtx_unlock(&pbuf_mtx);
|
1994-08-06 09:15:42 +00:00
|
|
|
}
|
2004-11-15 08:12:50 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Associate a p-buffer with a vnode.
|
|
|
|
*
|
|
|
|
* Also sets B_PAGING flag to indicate that vnode is not fully associated
|
|
|
|
* with the buffer. i.e. the bp has not been linked into the vnode or
|
|
|
|
* ref-counted.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
pbgetvp(struct vnode *vp, struct buf *bp)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
|
2004-11-15 08:33:09 +00:00
|
|
|
KASSERT(bp->b_bufobj == NULL, ("pbgetvp: not free (bufobj)"));
|
2004-11-15 08:12:50 +00:00
|
|
|
|
|
|
|
bp->b_vp = vp;
|
|
|
|
bp->b_flags |= B_PAGING;
|
|
|
|
bp->b_bufobj = &vp->v_bufobj;
|
|
|
|
}
|
|
|
|
|
2004-11-15 08:47:18 +00:00
|
|
|
/*
|
|
|
|
* Associate a p-buffer with a vnode.
|
|
|
|
*
|
|
|
|
* Also sets B_PAGING flag to indicate that vnode is not fully associated
|
|
|
|
* with the buffer. i.e. the bp has not been linked into the vnode or
|
|
|
|
* ref-counted.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
pbgetbo(struct bufobj *bo, struct buf *bp)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT(bp->b_vp == NULL, ("pbgetbo: not free (vnode)"));
|
|
|
|
KASSERT(bp->b_bufobj == NULL, ("pbgetbo: not free (bufobj)"));
|
|
|
|
|
|
|
|
bp->b_flags |= B_PAGING;
|
|
|
|
bp->b_bufobj = bo;
|
|
|
|
}
|
|
|
|
|
2004-11-15 08:12:50 +00:00
|
|
|
/*
|
|
|
|
* Disassociate a p-buffer from a vnode.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
pbrelvp(struct buf *bp)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
|
|
|
|
KASSERT(bp->b_bufobj != NULL, ("pbrelvp: NULL bufobj"));
|
2013-04-06 22:21:23 +00:00
|
|
|
KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
|
|
|
|
("pbrelvp: pager buf on vnode list."));
|
2004-11-15 08:12:50 +00:00
|
|
|
|
|
|
|
bp->b_vp = NULL;
|
|
|
|
bp->b_bufobj = NULL;
|
|
|
|
bp->b_flags &= ~B_PAGING;
|
|
|
|
}
|
2004-11-15 08:47:18 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Disassociate a p-buffer from a bufobj.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
pbrelbo(struct buf *bp)
|
|
|
|
{
|
|
|
|
|
|
|
|
KASSERT(bp->b_vp == NULL, ("pbrelbo: vnode"));
|
|
|
|
KASSERT(bp->b_bufobj != NULL, ("pbrelbo: NULL bufobj"));
|
2013-04-06 22:21:23 +00:00
|
|
|
KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
|
|
|
|
("pbrelbo: pager buf on vnode list."));
|
2004-11-15 08:47:18 +00:00
|
|
|
|
|
|
|
bp->b_bufobj = NULL;
|
|
|
|
bp->b_flags &= ~B_PAGING;
|
|
|
|
}
|