4991 lines
130 KiB
C
Raw Normal View History

/* Language-independent node constructors for parse phase of GNU compiler.
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* This file contains the low level primitives for operating on tree nodes,
including allocation, list operations, interning of identifiers,
construction of data type nodes and statement nodes,
and construction of type conversion nodes. It also contains
tables index by tree code that describe how to take apart
nodes of that code.
It is intended to be language-independent, but occasionally
calls language-dependent routines defined (for C) in typecheck.c.
The low-level allocation routines oballoc and permalloc
are used also for allocating many other kinds of objects
by all passes of the compiler. */
#include "config.h"
1999-08-26 09:30:50 +00:00
#include "system.h"
#include "flags.h"
#include "tree.h"
#include "tm_p.h"
1999-08-26 09:30:50 +00:00
#include "function.h"
#include "obstack.h"
#include "toplev.h"
#include "ggc.h"
#include "hashtab.h"
#include "output.h"
#include "target.h"
#include "langhooks.h"
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
/* obstack.[ch] explicitly declined to prototype this. */
extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
static void unsave_expr_now_r PARAMS ((tree));
/* Objects allocated on this obstack last forever. */
struct obstack permanent_obstack;
/* Table indexed by tree code giving a string containing a character
classifying the tree code. Possibilities are
t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
1999-08-26 09:30:50 +00:00
char tree_code_type[MAX_TREE_CODES] = {
#include "tree.def"
};
#undef DEFTREECODE
/* Table indexed by tree code giving number of expression
operands beyond the fixed part of the node structure.
Not used for types or decls. */
#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
1999-08-26 09:30:50 +00:00
int tree_code_length[MAX_TREE_CODES] = {
#include "tree.def"
};
#undef DEFTREECODE
/* Names of tree components.
Used for printing out the tree and error messages. */
#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
const char *tree_code_name[MAX_TREE_CODES] = {
#include "tree.def"
};
#undef DEFTREECODE
/* Statistics-gathering stuff. */
typedef enum
{
d_kind,
t_kind,
b_kind,
s_kind,
r_kind,
e_kind,
c_kind,
id_kind,
perm_list_kind,
temp_list_kind,
vec_kind,
x_kind,
lang_decl,
lang_type,
all_kinds
} tree_node_kind;
int tree_node_counts[(int) all_kinds];
int tree_node_sizes[(int) all_kinds];
static const char * const tree_node_kind_names[] = {
"decls",
"types",
"blocks",
"stmts",
"refs",
"exprs",
"constants",
"identifiers",
"perm_tree_lists",
"temp_tree_lists",
"vecs",
"random kinds",
"lang_decl kinds",
"lang_type kinds"
};
/* Unique id for next decl created. */
static int next_decl_uid;
/* Unique id for next type created. */
static int next_type_uid = 1;
/* Since we cannot rehash a type after it is in the table, we have to
keep the hash code. */
struct type_hash
{
unsigned long hash;
tree type;
};
1999-08-26 09:30:50 +00:00
/* Initial size of the hash table (rounded to next prime). */
#define TYPE_HASH_INITIAL_SIZE 1000
/* Now here is the hash table. When recording a type, it is added to
the slot whose index is the hash code. Note that the hash table is
used for several kinds of types (function types, array types and
array index range types, for now). While all these live in the
same table, they are completely independent, and the hash code is
computed differently for each of these. */
htab_t type_hash_table;
static void build_real_from_int_cst_1 PARAMS ((PTR));
static void set_type_quals PARAMS ((tree, int));
static void append_random_chars PARAMS ((char *));
static int type_hash_eq PARAMS ((const void*, const void*));
static unsigned int type_hash_hash PARAMS ((const void*));
static void print_type_hash_statistics PARAMS((void));
static void finish_vector_type PARAMS((tree));
static tree make_vector PARAMS ((enum machine_mode, tree, int));
static int type_hash_marked_p PARAMS ((const void *));
static void type_hash_mark PARAMS ((const void *));
static int mark_tree_hashtable_entry PARAMS((void **, void *));
/* If non-null, these are language-specific helper functions for
unsave_expr_now. If present, LANG_UNSAVE is called before its
argument (an UNSAVE_EXPR) is to be unsaved, and all other
processing in unsave_expr_now is aborted. LANG_UNSAVE_EXPR_NOW is
called from unsave_expr_1 for language-specific tree codes. */
void (*lang_unsave) PARAMS ((tree *));
void (*lang_unsave_expr_now) PARAMS ((tree));
/* If non-null, these are language-specific helper functions for
unsafe_for_reeval. Return negative to not handle some tree. */
int (*lang_unsafe_for_reeval) PARAMS ((tree));
/* Set the DECL_ASSEMBLER_NAME for a node. If it is the sort of thing
that the assembler should talk about, set DECL_ASSEMBLER_NAME to an
appropriate IDENTIFIER_NODE. Otherwise, set it to the
ERROR_MARK_NODE to ensure that the assembler does not talk about
it. */
void (*lang_set_decl_assembler_name) PARAMS ((tree));
tree global_trees[TI_MAX];
tree integer_types[itk_none];
/* Set the DECL_ASSEMBLER_NAME for DECL. */
void
set_decl_assembler_name (decl)
tree decl;
{
/* The language-independent code should never use the
DECL_ASSEMBLER_NAME for lots of DECLs. Only FUNCTION_DECLs and
VAR_DECLs for variables with static storage duration need a real
DECL_ASSEMBLER_NAME. */
if (TREE_CODE (decl) == FUNCTION_DECL
|| (TREE_CODE (decl) == VAR_DECL
&& (TREE_STATIC (decl)
|| DECL_EXTERNAL (decl)
|| TREE_PUBLIC (decl))))
/* By default, assume the name to use in assembly code is the
same as that used in the source language. (That's correct
for C, and GCC used to set DECL_ASSEMBLER_NAME to the same
value as DECL_NAME in build_decl, so this choice provides
backwards compatibility with existing front-ends. */
SET_DECL_ASSEMBLER_NAME (decl, DECL_NAME (decl));
else
/* Nobody should ever be asking for the DECL_ASSEMBLER_NAME of
these DECLs -- unless they're in language-dependent code, in
which case lang_set_decl_assembler_name should handle things. */
abort ();
}
/* Init the principal obstacks. */
void
init_obstacks ()
{
gcc_obstack_init (&permanent_obstack);
/* Initialize the hash table of types. */
type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
type_hash_eq, 0);
ggc_add_deletable_htab (type_hash_table, type_hash_marked_p,
type_hash_mark);
ggc_add_tree_root (global_trees, TI_MAX);
ggc_add_tree_root (integer_types, itk_none);
/* Set lang_set_decl_set_assembler_name to a default value. */
lang_set_decl_assembler_name = set_decl_assembler_name;
}
/* Allocate SIZE bytes in the permanent obstack
and return a pointer to them. */
char *
permalloc (size)
int size;
{
return (char *) obstack_alloc (&permanent_obstack, size);
}
/* Allocate NELEM items of SIZE bytes in the permanent obstack
and return a pointer to them. The storage is cleared before
returning the value. */
char *
perm_calloc (nelem, size)
int nelem;
long size;
{
char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
memset (rval, 0, nelem * size);
return rval;
}
/* Compute the number of bytes occupied by 'node'. This routine only
looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
size_t
tree_size (node)
tree node;
{
enum tree_code code = TREE_CODE (node);
switch (TREE_CODE_CLASS (code))
{
case 'd': /* A decl node */
return sizeof (struct tree_decl);
case 't': /* a type node */
return sizeof (struct tree_type);
case 'b': /* a lexical block node */
return sizeof (struct tree_block);
case 'r': /* a reference */
case 'e': /* an expression */
case 's': /* an expression with side effects */
case '<': /* a comparison expression */
case '1': /* a unary arithmetic expression */
case '2': /* a binary arithmetic expression */
return (sizeof (struct tree_exp)
+ (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
case 'c': /* a constant */
/* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
words is machine-dependent due to varying length of HOST_WIDE_INT,
which might be wider than a pointer (e.g., long long). Similarly
for REAL_CST, since the number of words is machine-dependent due
to varying size and alignment of `double'. */
if (code == INTEGER_CST)
return sizeof (struct tree_int_cst);
else if (code == REAL_CST)
return sizeof (struct tree_real_cst);
else
return (sizeof (struct tree_common)
+ TREE_CODE_LENGTH (code) * sizeof (char *));
case 'x': /* something random, like an identifier. */
{
size_t length;
length = (sizeof (struct tree_common)
+ TREE_CODE_LENGTH (code) * sizeof (char *));
if (code == TREE_VEC)
length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
return length;
}
default:
abort ();
}
}
/* Return a newly allocated node of code CODE.
For decl and type nodes, some other fields are initialized.
The rest of the node is initialized to zero.
Achoo! I got a code in the node. */
tree
make_node (code)
enum tree_code code;
{
tree t;
int type = TREE_CODE_CLASS (code);
size_t length;
1999-08-26 09:30:50 +00:00
#ifdef GATHER_STATISTICS
tree_node_kind kind;
1999-08-26 09:30:50 +00:00
#endif
struct tree_common ttmp;
/* We can't allocate a TREE_VEC without knowing how many elements
it will have. */
if (code == TREE_VEC)
abort ();
TREE_SET_CODE ((tree)&ttmp, code);
length = tree_size ((tree)&ttmp);
#ifdef GATHER_STATISTICS
switch (type)
{
case 'd': /* A decl node */
kind = d_kind;
break;
case 't': /* a type node */
kind = t_kind;
break;
case 'b': /* a lexical block */
kind = b_kind;
break;
case 's': /* an expression with side effects */
kind = s_kind;
break;
case 'r': /* a reference */
kind = r_kind;
break;
case 'e': /* an expression */
case '<': /* a comparison expression */
case '1': /* a unary arithmetic expression */
case '2': /* a binary arithmetic expression */
kind = e_kind;
break;
case 'c': /* a constant */
kind = c_kind;
break;
case 'x': /* something random, like an identifier. */
if (code == IDENTIFIER_NODE)
kind = id_kind;
else if (code == TREE_VEC)
kind = vec_kind;
else
kind = x_kind;
break;
default:
abort ();
}
tree_node_counts[(int) kind]++;
tree_node_sizes[(int) kind] += length;
#endif
t = ggc_alloc_tree (length);
memset ((PTR) t, 0, length);
TREE_SET_CODE (t, code);
switch (type)
{
case 's':
TREE_SIDE_EFFECTS (t) = 1;
TREE_TYPE (t) = void_type_node;
break;
case 'd':
if (code != FUNCTION_DECL)
DECL_ALIGN (t) = 1;
DECL_USER_ALIGN (t) = 0;
DECL_IN_SYSTEM_HEADER (t) = in_system_header;
DECL_SOURCE_LINE (t) = lineno;
DECL_SOURCE_FILE (t) =
(input_filename) ? input_filename : "<built-in>";
DECL_UID (t) = next_decl_uid++;
/* We have not yet computed the alias set for this declaration. */
DECL_POINTER_ALIAS_SET (t) = -1;
break;
case 't':
TYPE_UID (t) = next_type_uid++;
TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
TYPE_USER_ALIGN (t) = 0;
TYPE_MAIN_VARIANT (t) = t;
/* Default to no attributes for type, but let target change that. */
TYPE_ATTRIBUTES (t) = NULL_TREE;
(*targetm.set_default_type_attributes) (t);
/* We have not yet computed the alias set for this type. */
1999-08-26 09:30:50 +00:00
TYPE_ALIAS_SET (t) = -1;
break;
case 'c':
TREE_CONSTANT (t) = 1;
break;
case 'e':
switch (code)
{
case INIT_EXPR:
case MODIFY_EXPR:
case VA_ARG_EXPR:
case RTL_EXPR:
case PREDECREMENT_EXPR:
case PREINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
case POSTINCREMENT_EXPR:
/* All of these have side-effects, no matter what their
operands are. */
TREE_SIDE_EFFECTS (t) = 1;
break;
default:
break;
}
break;
}
return t;
}
/* A front-end can reset this to an appropriate function if types need
special handling. */
tree (*make_lang_type_fn) PARAMS ((enum tree_code)) = make_node;
/* Return a new type (with the indicated CODE), doing whatever
language-specific processing is required. */
tree
make_lang_type (code)
enum tree_code code;
{
return (*make_lang_type_fn) (code);
}
/* Return a new node with the same contents as NODE except that its
TREE_CHAIN is zero and it has a fresh uid. */
tree
copy_node (node)
tree node;
{
tree t;
enum tree_code code = TREE_CODE (node);
size_t length;
length = tree_size (node);
t = ggc_alloc_tree (length);
memcpy (t, node, length);
TREE_CHAIN (t) = 0;
1999-08-26 09:30:50 +00:00
TREE_ASM_WRITTEN (t) = 0;
if (TREE_CODE_CLASS (code) == 'd')
DECL_UID (t) = next_decl_uid++;
else if (TREE_CODE_CLASS (code) == 't')
{
TYPE_UID (t) = next_type_uid++;
1999-08-26 09:30:50 +00:00
/* The following is so that the debug code for
the copy is different from the original type.
The two statements usually duplicate each other
(because they clear fields of the same union),
but the optimizer should catch that. */
TYPE_SYMTAB_POINTER (t) = 0;
TYPE_SYMTAB_ADDRESS (t) = 0;
}
return t;
}
/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
For example, this can copy a list made of TREE_LIST nodes. */
tree
copy_list (list)
tree list;
{
tree head;
tree prev, next;
if (list == 0)
return 0;
head = prev = copy_node (list);
next = TREE_CHAIN (list);
while (next)
{
TREE_CHAIN (prev) = copy_node (next);
prev = TREE_CHAIN (prev);
next = TREE_CHAIN (next);
}
return head;
}
/* Return a newly constructed INTEGER_CST node whose constant value
is specified by the two ints LOW and HI.
The TREE_TYPE is set to `int'.
This function should be used via the `build_int_2' macro. */
tree
build_int_2_wide (low, hi)
unsigned HOST_WIDE_INT low;
HOST_WIDE_INT hi;
{
tree t = make_node (INTEGER_CST);
TREE_INT_CST_LOW (t) = low;
TREE_INT_CST_HIGH (t) = hi;
TREE_TYPE (t) = integer_type_node;
return t;
}
/* Return a new VECTOR_CST node whose type is TYPE and whose values
are in a list pointed by VALS. */
tree
build_vector (type, vals)
tree type, vals;
{
tree v = make_node (VECTOR_CST);
int over1 = 0, over2 = 0;
tree link;
TREE_VECTOR_CST_ELTS (v) = vals;
TREE_TYPE (v) = type;
/* Iterate through elements and check for overflow. */
for (link = vals; link; link = TREE_CHAIN (link))
{
tree value = TREE_VALUE (link);
over1 |= TREE_OVERFLOW (value);
over2 |= TREE_CONSTANT_OVERFLOW (value);
}
TREE_OVERFLOW (v) = over1;
TREE_CONSTANT_OVERFLOW (v) = over2;
return v;
}
/* Return a new REAL_CST node whose type is TYPE and value is D. */
tree
build_real (type, d)
tree type;
REAL_VALUE_TYPE d;
{
tree v;
int overflow = 0;
/* Check for valid float value for this type on this target machine;
if not, can print error message and store a valid value in D. */
#ifdef CHECK_FLOAT_VALUE
CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
#endif
v = make_node (REAL_CST);
TREE_TYPE (v) = type;
TREE_REAL_CST (v) = d;
TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
return v;
}
/* Return a new REAL_CST node whose type is TYPE
and whose value is the integer value of the INTEGER_CST node I. */
#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
REAL_VALUE_TYPE
1999-08-26 09:30:50 +00:00
real_value_from_int_cst (type, i)
tree type ATTRIBUTE_UNUSED, i;
{
REAL_VALUE_TYPE d;
#ifdef REAL_ARITHMETIC
/* Clear all bits of the real value type so that we can later do
bitwise comparisons to see if two values are the same. */
memset ((char *) &d, 0, sizeof d);
if (! TREE_UNSIGNED (TREE_TYPE (i)))
1999-08-26 09:30:50 +00:00
REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
TYPE_MODE (type));
else
1999-08-26 09:30:50 +00:00
REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
TREE_INT_CST_HIGH (i), TYPE_MODE (type));
#else /* not REAL_ARITHMETIC */
1999-08-26 09:30:50 +00:00
/* Some 386 compilers mishandle unsigned int to float conversions,
so introduce a temporary variable E to avoid those bugs. */
if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
{
1999-08-26 09:30:50 +00:00
REAL_VALUE_TYPE e;
d = (double) (~TREE_INT_CST_HIGH (i));
e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
* (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
d *= e;
e = (double) (~TREE_INT_CST_LOW (i));
d += e;
d = (- d - 1.0);
}
else
{
1999-08-26 09:30:50 +00:00
REAL_VALUE_TYPE e;
d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
* (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
d *= e;
e = (double) TREE_INT_CST_LOW (i);
d += e;
}
#endif /* not REAL_ARITHMETIC */
return d;
}
/* Args to pass to and from build_real_from_int_cst_1. */
struct brfic_args
{
tree type; /* Input: type to conver to. */
tree i; /* Input: operand to convert. */
REAL_VALUE_TYPE d; /* Output: floating point value. */
};
/* Convert an integer to a floating point value while protected by a floating
point exception handler. */
static void
build_real_from_int_cst_1 (data)
PTR data;
{
struct brfic_args *args = (struct brfic_args *) data;
#ifdef REAL_ARITHMETIC
args->d = real_value_from_int_cst (args->type, args->i);
#else
args->d
= REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
real_value_from_int_cst (args->type, args->i));
#endif
}
/* Given a tree representing an integer constant I, return a tree
representing the same value as a floating-point constant of type TYPE.
We cannot perform this operation if there is no way of doing arithmetic
on floating-point values. */
tree
build_real_from_int_cst (type, i)
tree type;
tree i;
{
tree v;
int overflow = TREE_OVERFLOW (i);
REAL_VALUE_TYPE d;
struct brfic_args args;
v = make_node (REAL_CST);
TREE_TYPE (v) = type;
/* Setup input for build_real_from_int_cst_1() */
args.type = type;
args.i = i;
if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
/* Receive output from build_real_from_int_cst_1() */
d = args.d;
else
{
/* We got an exception from build_real_from_int_cst_1() */
d = dconst0;
overflow = 1;
}
/* Check for valid float value for this type on this target machine. */
#ifdef CHECK_FLOAT_VALUE
CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
#endif
TREE_REAL_CST (v) = d;
TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
return v;
}
#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
/* Return a newly constructed STRING_CST node whose value is
the LEN characters at STR.
The TREE_TYPE is not initialized. */
tree
build_string (len, str)
int len;
const char *str;
{
tree s = make_node (STRING_CST);
TREE_STRING_LENGTH (s) = len;
TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
return s;
}
/* Return a newly constructed COMPLEX_CST node whose value is
specified by the real and imaginary parts REAL and IMAG.
1999-08-26 09:30:50 +00:00
Both REAL and IMAG should be constant nodes. TYPE, if specified,
will be the type of the COMPLEX_CST; otherwise a new type will be made. */
tree
1999-08-26 09:30:50 +00:00
build_complex (type, real, imag)
tree type;
tree real, imag;
{
tree t = make_node (COMPLEX_CST);
TREE_REALPART (t) = real;
TREE_IMAGPART (t) = imag;
1999-08-26 09:30:50 +00:00
TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
TREE_CONSTANT_OVERFLOW (t)
= TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
return t;
}
/* Build a newly constructed TREE_VEC node of length LEN. */
1999-08-26 09:30:50 +00:00
tree
make_tree_vec (len)
int len;
{
tree t;
int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
#ifdef GATHER_STATISTICS
tree_node_counts[(int)vec_kind]++;
tree_node_sizes[(int)vec_kind] += length;
#endif
t = ggc_alloc_tree (length);
memset ((PTR) t, 0, length);
TREE_SET_CODE (t, TREE_VEC);
TREE_VEC_LENGTH (t) = len;
return t;
}
/* Return 1 if EXPR is the integer constant zero or a complex constant
of zero. */
int
integer_zerop (expr)
tree expr;
{
STRIP_NOPS (expr);
return ((TREE_CODE (expr) == INTEGER_CST
1999-08-26 09:30:50 +00:00
&& ! TREE_CONSTANT_OVERFLOW (expr)
&& TREE_INT_CST_LOW (expr) == 0
&& TREE_INT_CST_HIGH (expr) == 0)
|| (TREE_CODE (expr) == COMPLEX_CST
&& integer_zerop (TREE_REALPART (expr))
&& integer_zerop (TREE_IMAGPART (expr))));
}
/* Return 1 if EXPR is the integer constant one or the corresponding
complex constant. */
int
integer_onep (expr)
tree expr;
{
STRIP_NOPS (expr);
return ((TREE_CODE (expr) == INTEGER_CST
1999-08-26 09:30:50 +00:00
&& ! TREE_CONSTANT_OVERFLOW (expr)
&& TREE_INT_CST_LOW (expr) == 1
&& TREE_INT_CST_HIGH (expr) == 0)
|| (TREE_CODE (expr) == COMPLEX_CST
&& integer_onep (TREE_REALPART (expr))
&& integer_zerop (TREE_IMAGPART (expr))));
}
/* Return 1 if EXPR is an integer containing all 1's in as much precision as
it contains. Likewise for the corresponding complex constant. */
int
integer_all_onesp (expr)
tree expr;
{
int prec;
int uns;
STRIP_NOPS (expr);
if (TREE_CODE (expr) == COMPLEX_CST
&& integer_all_onesp (TREE_REALPART (expr))
&& integer_zerop (TREE_IMAGPART (expr)))
return 1;
1999-08-26 09:30:50 +00:00
else if (TREE_CODE (expr) != INTEGER_CST
|| TREE_CONSTANT_OVERFLOW (expr))
return 0;
uns = TREE_UNSIGNED (TREE_TYPE (expr));
if (!uns)
return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
&& TREE_INT_CST_HIGH (expr) == -1);
/* Note that using TYPE_PRECISION here is wrong. We care about the
actual bits, not the (arbitrary) range of the type. */
prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
if (prec >= HOST_BITS_PER_WIDE_INT)
{
HOST_WIDE_INT high_value;
int shift_amount;
shift_amount = prec - HOST_BITS_PER_WIDE_INT;
if (shift_amount > HOST_BITS_PER_WIDE_INT)
/* Can not handle precisions greater than twice the host int size. */
abort ();
else if (shift_amount == HOST_BITS_PER_WIDE_INT)
/* Shifting by the host word size is undefined according to the ANSI
standard, so we must handle this as a special case. */
high_value = -1;
else
high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
&& TREE_INT_CST_HIGH (expr) == high_value);
}
else
return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
}
/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
one bit on). */
int
integer_pow2p (expr)
tree expr;
{
1999-08-26 09:30:50 +00:00
int prec;
HOST_WIDE_INT high, low;
STRIP_NOPS (expr);
if (TREE_CODE (expr) == COMPLEX_CST
&& integer_pow2p (TREE_REALPART (expr))
&& integer_zerop (TREE_IMAGPART (expr)))
return 1;
1999-08-26 09:30:50 +00:00
if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
return 0;
1999-08-26 09:30:50 +00:00
prec = (POINTER_TYPE_P (TREE_TYPE (expr))
? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
high = TREE_INT_CST_HIGH (expr);
low = TREE_INT_CST_LOW (expr);
1999-08-26 09:30:50 +00:00
/* First clear all bits that are beyond the type's precision in case
we've been sign extended. */
if (prec == 2 * HOST_BITS_PER_WIDE_INT)
;
else if (prec > HOST_BITS_PER_WIDE_INT)
high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
else
{
high = 0;
if (prec < HOST_BITS_PER_WIDE_INT)
low &= ~((HOST_WIDE_INT) (-1) << prec);
}
if (high == 0 && low == 0)
return 0;
return ((high == 0 && (low & (low - 1)) == 0)
|| (low == 0 && (high & (high - 1)) == 0));
}
1999-08-26 09:30:50 +00:00
/* Return the power of two represented by a tree node known to be a
power of two. */
int
tree_log2 (expr)
tree expr;
{
int prec;
HOST_WIDE_INT high, low;
STRIP_NOPS (expr);
if (TREE_CODE (expr) == COMPLEX_CST)
return tree_log2 (TREE_REALPART (expr));
prec = (POINTER_TYPE_P (TREE_TYPE (expr))
? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
high = TREE_INT_CST_HIGH (expr);
low = TREE_INT_CST_LOW (expr);
/* First clear all bits that are beyond the type's precision in case
we've been sign extended. */
if (prec == 2 * HOST_BITS_PER_WIDE_INT)
;
else if (prec > HOST_BITS_PER_WIDE_INT)
high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
else
{
high = 0;
if (prec < HOST_BITS_PER_WIDE_INT)
low &= ~((HOST_WIDE_INT) (-1) << prec);
}
return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
: exact_log2 (low));
}
/* Similar, but return the largest integer Y such that 2 ** Y is less
than or equal to EXPR. */
int
tree_floor_log2 (expr)
tree expr;
{
int prec;
HOST_WIDE_INT high, low;
STRIP_NOPS (expr);
if (TREE_CODE (expr) == COMPLEX_CST)
return tree_log2 (TREE_REALPART (expr));
prec = (POINTER_TYPE_P (TREE_TYPE (expr))
? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
high = TREE_INT_CST_HIGH (expr);
low = TREE_INT_CST_LOW (expr);
/* First clear all bits that are beyond the type's precision in case
we've been sign extended. Ignore if type's precision hasn't been set
since what we are doing is setting it. */
if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
;
else if (prec > HOST_BITS_PER_WIDE_INT)
high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
else
{
high = 0;
if (prec < HOST_BITS_PER_WIDE_INT)
low &= ~((HOST_WIDE_INT) (-1) << prec);
}
return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
: floor_log2 (low));
1999-08-26 09:30:50 +00:00
}
/* Return 1 if EXPR is the real constant zero. */
int
real_zerop (expr)
tree expr;
{
STRIP_NOPS (expr);
return ((TREE_CODE (expr) == REAL_CST
1999-08-26 09:30:50 +00:00
&& ! TREE_CONSTANT_OVERFLOW (expr)
&& REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
|| (TREE_CODE (expr) == COMPLEX_CST
&& real_zerop (TREE_REALPART (expr))
&& real_zerop (TREE_IMAGPART (expr))));
}
/* Return 1 if EXPR is the real constant one in real or complex form. */
int
real_onep (expr)
tree expr;
{
STRIP_NOPS (expr);
return ((TREE_CODE (expr) == REAL_CST
1999-08-26 09:30:50 +00:00
&& ! TREE_CONSTANT_OVERFLOW (expr)
&& REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
|| (TREE_CODE (expr) == COMPLEX_CST
&& real_onep (TREE_REALPART (expr))
&& real_zerop (TREE_IMAGPART (expr))));
}
/* Return 1 if EXPR is the real constant two. */
int
real_twop (expr)
tree expr;
{
STRIP_NOPS (expr);
return ((TREE_CODE (expr) == REAL_CST
1999-08-26 09:30:50 +00:00
&& ! TREE_CONSTANT_OVERFLOW (expr)
&& REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
|| (TREE_CODE (expr) == COMPLEX_CST
&& real_twop (TREE_REALPART (expr))
&& real_zerop (TREE_IMAGPART (expr))));
}
/* Nonzero if EXP is a constant or a cast of a constant. */
int
really_constant_p (exp)
tree exp;
{
/* This is not quite the same as STRIP_NOPS. It does more. */
while (TREE_CODE (exp) == NOP_EXPR
|| TREE_CODE (exp) == CONVERT_EXPR
|| TREE_CODE (exp) == NON_LVALUE_EXPR)
exp = TREE_OPERAND (exp, 0);
return TREE_CONSTANT (exp);
}
/* Return first list element whose TREE_VALUE is ELEM.
Return 0 if ELEM is not in LIST. */
tree
value_member (elem, list)
tree elem, list;
{
while (list)
{
if (elem == TREE_VALUE (list))
return list;
list = TREE_CHAIN (list);
}
return NULL_TREE;
}
/* Return first list element whose TREE_PURPOSE is ELEM.
Return 0 if ELEM is not in LIST. */
tree
purpose_member (elem, list)
tree elem, list;
{
while (list)
{
if (elem == TREE_PURPOSE (list))
return list;
list = TREE_CHAIN (list);
}
return NULL_TREE;
}
/* Return first list element whose BINFO_TYPE is ELEM.
Return 0 if ELEM is not in LIST. */
tree
binfo_member (elem, list)
tree elem, list;
{
while (list)
{
if (elem == BINFO_TYPE (list))
return list;
list = TREE_CHAIN (list);
}
return NULL_TREE;
}
1999-08-26 09:30:50 +00:00
/* Return nonzero if ELEM is part of the chain CHAIN. */
int
chain_member (elem, chain)
tree elem, chain;
{
while (chain)
{
if (elem == chain)
return 1;
chain = TREE_CHAIN (chain);
}
return 0;
}
/* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
chain CHAIN. This and the next function are currently unused, but
are retained for completeness. */
int
chain_member_value (elem, chain)
tree elem, chain;
{
while (chain)
{
if (elem == TREE_VALUE (chain))
return 1;
chain = TREE_CHAIN (chain);
}
return 0;
}
/* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1999-08-26 09:30:50 +00:00
for any piece of chain CHAIN. */
int
chain_member_purpose (elem, chain)
tree elem, chain;
{
while (chain)
{
if (elem == TREE_PURPOSE (chain))
return 1;
chain = TREE_CHAIN (chain);
}
return 0;
}
/* Return the length of a chain of nodes chained through TREE_CHAIN.
We expect a null pointer to mark the end of the chain.
This is the Lisp primitive `length'. */
int
list_length (t)
tree t;
{
tree tail;
int len = 0;
for (tail = t; tail; tail = TREE_CHAIN (tail))
len++;
return len;
}
/* Returns the number of FIELD_DECLs in TYPE. */
int
fields_length (type)
tree type;
{
tree t = TYPE_FIELDS (type);
int count = 0;
for (; t; t = TREE_CHAIN (t))
if (TREE_CODE (t) == FIELD_DECL)
++count;
return count;
}
/* Concatenate two chains of nodes (chained through TREE_CHAIN)
by modifying the last node in chain 1 to point to chain 2.
This is the Lisp primitive `nconc'. */
tree
chainon (op1, op2)
tree op1, op2;
{
if (op1)
{
tree t1;
#ifdef ENABLE_TREE_CHECKING
tree t2;
#endif
for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
;
TREE_CHAIN (t1) = op2;
#ifdef ENABLE_TREE_CHECKING
for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
if (t2 == t1)
abort (); /* Circularity created. */
#endif
return op1;
}
else
return op2;
}
/* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
tree
tree_last (chain)
tree chain;
{
tree next;
if (chain)
1999-08-26 09:30:50 +00:00
while ((next = TREE_CHAIN (chain)))
chain = next;
return chain;
}
/* Reverse the order of elements in the chain T,
and return the new head of the chain (old last element). */
tree
nreverse (t)
tree t;
{
tree prev = 0, decl, next;
for (decl = t; decl; decl = next)
{
next = TREE_CHAIN (decl);
TREE_CHAIN (decl) = prev;
prev = decl;
}
return prev;
}
/* Given a chain CHAIN of tree nodes,
construct and return a list of those nodes. */
tree
listify (chain)
tree chain;
{
tree result = NULL_TREE;
tree in_tail = chain;
tree out_tail = NULL_TREE;
while (in_tail)
{
tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
if (out_tail)
TREE_CHAIN (out_tail) = next;
else
result = next;
out_tail = next;
in_tail = TREE_CHAIN (in_tail);
}
return result;
}
/* Return a newly created TREE_LIST node whose
purpose and value fields are PARM and VALUE. */
1999-08-26 09:30:50 +00:00
tree
build_tree_list (parm, value)
1999-08-26 09:30:50 +00:00
tree parm, value;
{
tree t = make_node (TREE_LIST);
TREE_PURPOSE (t) = parm;
TREE_VALUE (t) = value;
return t;
1999-08-26 09:30:50 +00:00
}
/* Return a newly created TREE_LIST node whose
purpose and value fields are PARM and VALUE
and whose TREE_CHAIN is CHAIN. */
tree
tree_cons (purpose, value, chain)
tree purpose, value, chain;
{
tree node;
node = ggc_alloc_tree (sizeof (struct tree_list));
memset (node, 0, sizeof (struct tree_common));
#ifdef GATHER_STATISTICS
tree_node_counts[(int) x_kind]++;
tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
#endif
TREE_SET_CODE (node, TREE_LIST);
TREE_CHAIN (node) = chain;
TREE_PURPOSE (node) = purpose;
TREE_VALUE (node) = value;
return node;
}
/* Return the size nominally occupied by an object of type TYPE
when it resides in memory. The value is measured in units of bytes,
and its data type is that normally used for type sizes
(which is the first type created by make_signed_type or
make_unsigned_type). */
tree
size_in_bytes (type)
tree type;
{
tree t;
if (type == error_mark_node)
return integer_zero_node;
1999-08-26 09:30:50 +00:00
type = TYPE_MAIN_VARIANT (type);
1999-08-26 09:30:50 +00:00
t = TYPE_SIZE_UNIT (type);
1999-08-26 09:30:50 +00:00
if (t == 0)
{
incomplete_type_error (NULL_TREE, type);
return size_zero_node;
}
if (TREE_CODE (t) == INTEGER_CST)
force_fit_type (t, 0);
1999-08-26 09:30:50 +00:00
return t;
}
1999-08-26 09:30:50 +00:00
/* Return the size of TYPE (in bytes) as a wide integer
or return -1 if the size can vary or is larger than an integer. */
1999-08-26 09:30:50 +00:00
HOST_WIDE_INT
int_size_in_bytes (type)
tree type;
{
1999-08-26 09:30:50 +00:00
tree t;
if (type == error_mark_node)
return 0;
1999-08-26 09:30:50 +00:00
type = TYPE_MAIN_VARIANT (type);
1999-08-26 09:30:50 +00:00
t = TYPE_SIZE_UNIT (type);
if (t == 0
|| TREE_CODE (t) != INTEGER_CST
|| TREE_OVERFLOW (t)
|| TREE_INT_CST_HIGH (t) != 0
/* If the result would appear negative, it's too big to represent. */
|| (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
return -1;
1999-08-26 09:30:50 +00:00
return TREE_INT_CST_LOW (t);
}
/* Return the bit position of FIELD, in bits from the start of the record.
This is a tree of type bitsizetype. */
tree
bit_position (field)
tree field;
{
return bit_from_pos (DECL_FIELD_OFFSET (field),
DECL_FIELD_BIT_OFFSET (field));
}
/* Likewise, but return as an integer. Abort if it cannot be represented
in that way (since it could be a signed value, we don't have the option
of returning -1 like int_size_in_byte can. */
HOST_WIDE_INT
int_bit_position (field)
tree field;
{
return tree_low_cst (bit_position (field), 0);
}
/* Return the byte position of FIELD, in bytes from the start of the record.
This is a tree of type sizetype. */
tree
byte_position (field)
tree field;
{
return byte_from_pos (DECL_FIELD_OFFSET (field),
DECL_FIELD_BIT_OFFSET (field));
}
/* Likewise, but return as an integer. Abort if it cannot be represented
in that way (since it could be a signed value, we don't have the option
of returning -1 like int_size_in_byte can. */
HOST_WIDE_INT
int_byte_position (field)
tree field;
{
return tree_low_cst (byte_position (field), 0);
}
/* Return the strictest alignment, in bits, that T is known to have. */
unsigned int
expr_align (t)
tree t;
{
unsigned int align0, align1;
switch (TREE_CODE (t))
{
case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
/* If we have conversions, we know that the alignment of the
object must meet each of the alignments of the types. */
align0 = expr_align (TREE_OPERAND (t, 0));
align1 = TYPE_ALIGN (TREE_TYPE (t));
return MAX (align0, align1);
case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
/* These don't change the alignment of an object. */
return expr_align (TREE_OPERAND (t, 0));
case COND_EXPR:
/* The best we can do is say that the alignment is the least aligned
of the two arms. */
align0 = expr_align (TREE_OPERAND (t, 1));
align1 = expr_align (TREE_OPERAND (t, 2));
return MIN (align0, align1);
case LABEL_DECL: case CONST_DECL:
case VAR_DECL: case PARM_DECL: case RESULT_DECL:
if (DECL_ALIGN (t) != 0)
return DECL_ALIGN (t);
break;
case FUNCTION_DECL:
return FUNCTION_BOUNDARY;
default:
break;
}
1999-08-26 09:30:50 +00:00
/* Otherwise take the alignment from that of the type. */
return TYPE_ALIGN (TREE_TYPE (t));
}
/* Return, as a tree node, the number of elements for TYPE (which is an
ARRAY_TYPE) minus one. This counts only elements of the top array. */
tree
array_type_nelts (type)
tree type;
{
1999-08-26 09:30:50 +00:00
tree index_type, min, max;
/* If they did it with unspecified bounds, then we should have already
given an error about it before we got here. */
if (! TYPE_DOMAIN (type))
return error_mark_node;
index_type = TYPE_DOMAIN (type);
min = TYPE_MIN_VALUE (index_type);
max = TYPE_MAX_VALUE (index_type);
return (integer_zerop (min)
? max
: fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
}
/* Return nonzero if arg is static -- a reference to an object in
static storage. This is not the same as the C meaning of `static'. */
int
staticp (arg)
tree arg;
{
switch (TREE_CODE (arg))
{
case FUNCTION_DECL:
/* Nested functions aren't static, since taking their address
involves a trampoline. */
return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
&& ! DECL_NON_ADDR_CONST_P (arg);
1999-08-26 09:30:50 +00:00
case VAR_DECL:
1999-08-26 09:30:50 +00:00
return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
&& ! DECL_NON_ADDR_CONST_P (arg);
case CONSTRUCTOR:
return TREE_STATIC (arg);
case LABEL_DECL:
case STRING_CST:
return 1;
1999-08-26 09:30:50 +00:00
/* If we are referencing a bitfield, we can't evaluate an
ADDR_EXPR at compile time and so it isn't a constant. */
case COMPONENT_REF:
1999-08-26 09:30:50 +00:00
return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
&& staticp (TREE_OPERAND (arg, 0)));
case BIT_FIELD_REF:
1999-08-26 09:30:50 +00:00
return 0;
#if 0
/* This case is technically correct, but results in setting
TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
compile time. */
case INDIRECT_REF:
return TREE_CONSTANT (TREE_OPERAND (arg, 0));
#endif
case ARRAY_REF:
case ARRAY_RANGE_REF:
if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
&& TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
return staticp (TREE_OPERAND (arg, 0));
1999-08-26 09:30:50 +00:00
default:
if ((unsigned int) TREE_CODE (arg)
>= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
return (*lang_hooks.staticp) (arg);
else
return 0;
1999-08-26 09:30:50 +00:00
}
}
/* Wrap a SAVE_EXPR around EXPR, if appropriate.
Do this to any expression which may be used in more than one place,
but must be evaluated only once.
Normally, expand_expr would reevaluate the expression each time.
Calling save_expr produces something that is evaluated and recorded
the first time expand_expr is called on it. Subsequent calls to
expand_expr just reuse the recorded value.
The call to expand_expr that generates code that actually computes
the value is the first call *at compile time*. Subsequent calls
*at compile time* generate code to use the saved value.
This produces correct result provided that *at run time* control
always flows through the insns made by the first expand_expr
before reaching the other places where the save_expr was evaluated.
You, the caller of save_expr, must make sure this is so.
Constants, and certain read-only nodes, are returned with no
SAVE_EXPR because that is safe. Expressions containing placeholders
are not touched; see tree.def for an explanation of what these
are used for. */
tree
save_expr (expr)
tree expr;
{
tree t = fold (expr);
tree inner;
/* We don't care about whether this can be used as an lvalue in this
context. */
while (TREE_CODE (t) == NON_LVALUE_EXPR)
t = TREE_OPERAND (t, 0);
/* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
a constant, it will be more efficient to not make another SAVE_EXPR since
it will allow better simplification and GCSE will be able to merge the
computations if they actualy occur. */
for (inner = t;
(TREE_CODE_CLASS (TREE_CODE (inner)) == '1'
|| (TREE_CODE_CLASS (TREE_CODE (inner)) == '2'
&& TREE_CONSTANT (TREE_OPERAND (inner, 1))));
inner = TREE_OPERAND (inner, 0))
;
/* If the tree evaluates to a constant, then we don't want to hide that
fact (i.e. this allows further folding, and direct checks for constants).
However, a read-only object that has side effects cannot be bypassed.
Since it is no problem to reevaluate literals, we just return the
1999-08-26 09:30:50 +00:00
literal node. */
if (TREE_CONSTANT (inner)
|| (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
|| TREE_CODE (inner) == SAVE_EXPR || TREE_CODE (inner) == ERROR_MARK)
return t;
/* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
it means that the size or offset of some field of an object depends on
the value within another field.
Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
and some variable since it would then need to be both evaluated once and
evaluated more than once. Front-ends must assure this case cannot
happen by surrounding any such subexpressions in their own SAVE_EXPR
and forcing evaluation at the proper time. */
if (contains_placeholder_p (t))
return t;
t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
/* This expression might be placed ahead of a jump to ensure that the
value was computed on both sides of the jump. So make sure it isn't
eliminated as dead. */
TREE_SIDE_EFFECTS (t) = 1;
TREE_READONLY (t) = 1;
return t;
}
1999-08-26 09:30:50 +00:00
/* Arrange for an expression to be expanded multiple independent
times. This is useful for cleanup actions, as the backend can
expand them multiple times in different places. */
1999-08-26 09:30:50 +00:00
tree
unsave_expr (expr)
tree expr;
{
1999-08-26 09:30:50 +00:00
tree t;
1999-08-26 09:30:50 +00:00
/* If this is already protected, no sense in protecting it again. */
if (TREE_CODE (expr) == UNSAVE_EXPR)
return expr;
1999-08-26 09:30:50 +00:00
t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
return t;
}
1999-08-26 09:30:50 +00:00
/* Returns the index of the first non-tree operand for CODE, or the number
of operands if all are trees. */
1999-08-26 09:30:50 +00:00
int
first_rtl_op (code)
enum tree_code code;
{
switch (code)
{
case SAVE_EXPR:
return 2;
case GOTO_SUBROUTINE_EXPR:
1999-08-26 09:30:50 +00:00
case RTL_EXPR:
return 0;
case WITH_CLEANUP_EXPR:
return 2;
1999-08-26 09:30:50 +00:00
case METHOD_CALL_EXPR:
return 3;
default:
return TREE_CODE_LENGTH (code);
}
}
/* Perform any modifications to EXPR required when it is unsaved. Does
not recurse into EXPR's subtrees. */
void
unsave_expr_1 (expr)
tree expr;
{
switch (TREE_CODE (expr))
{
case SAVE_EXPR:
if (! SAVE_EXPR_PERSISTENT_P (expr))
SAVE_EXPR_RTL (expr) = 0;
break;
case TARGET_EXPR:
/* Don't mess with a TARGET_EXPR that hasn't been expanded.
It's OK for this to happen if it was part of a subtree that
isn't immediately expanded, such as operand 2 of another
TARGET_EXPR. */
if (TREE_OPERAND (expr, 1))
break;
TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
TREE_OPERAND (expr, 3) = NULL_TREE;
break;
case RTL_EXPR:
/* I don't yet know how to emit a sequence multiple times. */
if (RTL_EXPR_SEQUENCE (expr) != 0)
abort ();
break;
default:
if (lang_unsave_expr_now != 0)
(*lang_unsave_expr_now) (expr);
break;
}
}
/* Helper function for unsave_expr_now. */
static void
unsave_expr_now_r (expr)
tree expr;
{
enum tree_code code;
/* There's nothing to do for NULL_TREE. */
if (expr == 0)
return;
unsave_expr_1 (expr);
code = TREE_CODE (expr);
switch (TREE_CODE_CLASS (code))
{
case 'c': /* a constant */
case 't': /* a type node */
case 'd': /* A decl node */
case 'b': /* A block node */
break;
case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
if (code == TREE_LIST)
{
unsave_expr_now_r (TREE_VALUE (expr));
unsave_expr_now_r (TREE_CHAIN (expr));
}
break;
case 'e': /* an expression */
case 'r': /* a reference */
case 's': /* an expression with side effects */
case '<': /* a comparison expression */
case '2': /* a binary arithmetic expression */
case '1': /* a unary arithmetic expression */
{
int i;
for (i = first_rtl_op (code) - 1; i >= 0; i--)
unsave_expr_now_r (TREE_OPERAND (expr, i));
}
break;
default:
abort ();
1999-08-26 09:30:50 +00:00
}
}
1999-08-26 09:30:50 +00:00
/* Modify a tree in place so that all the evaluate only once things
are cleared out. Return the EXPR given. */
tree
1999-08-26 09:30:50 +00:00
unsave_expr_now (expr)
tree expr;
{
if (lang_unsave!= 0)
(*lang_unsave) (&expr);
else
unsave_expr_now_r (expr);
return expr;
}
/* Return 0 if it is safe to evaluate EXPR multiple times,
return 1 if it is safe if EXPR is unsaved afterward, or
return 2 if it is completely unsafe.
This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
an expression tree, so that it safe to unsave them and the surrounding
context will be correct.
SAVE_EXPRs basically *only* appear replicated in an expression tree,
occasionally across the whole of a function. It is therefore only
safe to unsave a SAVE_EXPR if you know that all occurrences appear
below the UNSAVE_EXPR.
RTL_EXPRs consume their rtl during evaluation. It is therefore
never possible to unsave them. */
int
unsafe_for_reeval (expr)
tree expr;
{
int unsafeness = 0;
1999-08-26 09:30:50 +00:00
enum tree_code code;
int i, tmp;
tree exp;
1999-08-26 09:30:50 +00:00
int first_rtl;
1999-08-26 09:30:50 +00:00
if (expr == NULL_TREE)
return 1;
1999-08-26 09:30:50 +00:00
code = TREE_CODE (expr);
first_rtl = first_rtl_op (code);
1999-08-26 09:30:50 +00:00
switch (code)
{
1999-08-26 09:30:50 +00:00
case SAVE_EXPR:
case RTL_EXPR:
return 2;
1999-08-26 09:30:50 +00:00
case TREE_LIST:
for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1999-08-26 09:30:50 +00:00
{
tmp = unsafe_for_reeval (TREE_VALUE (exp));
unsafeness = MAX (tmp, unsafeness);
1999-08-26 09:30:50 +00:00
}
return unsafeness;
case CALL_EXPR:
tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
return MAX (tmp, 1);
case TARGET_EXPR:
unsafeness = 1;
1999-08-26 09:30:50 +00:00
break;
default:
if (lang_unsafe_for_reeval != 0)
{
tmp = (*lang_unsafe_for_reeval) (expr);
if (tmp >= 0)
return tmp;
}
1999-08-26 09:30:50 +00:00
break;
}
switch (TREE_CODE_CLASS (code))
{
case 'c': /* a constant */
case 't': /* a type node */
case 'x': /* something random, like an identifier or an ERROR_MARK. */
case 'd': /* A decl node */
case 'b': /* A block node */
return 0;
1999-08-26 09:30:50 +00:00
case 'e': /* an expression */
case 'r': /* a reference */
case 's': /* an expression with side effects */
case '<': /* a comparison expression */
case '2': /* a binary arithmetic expression */
case '1': /* a unary arithmetic expression */
for (i = first_rtl - 1; i >= 0; i--)
{
tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
unsafeness = MAX (tmp, unsafeness);
}
return unsafeness;
1999-08-26 09:30:50 +00:00
default:
return 2;
1999-08-26 09:30:50 +00:00
}
}
/* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
or offset that depends on a field within a record. */
int
contains_placeholder_p (exp)
tree exp;
{
enum tree_code code;
1999-08-26 09:30:50 +00:00
int result;
if (!exp)
return 0;
1999-08-26 09:30:50 +00:00
/* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
in it since it is supplying a value for it. */
code = TREE_CODE (exp);
1999-08-26 09:30:50 +00:00
if (code == WITH_RECORD_EXPR)
return 0;
else if (code == PLACEHOLDER_EXPR)
return 1;
switch (TREE_CODE_CLASS (code))
{
case 'r':
/* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
position computations since they will be converted into a
WITH_RECORD_EXPR involving the reference, which will assume
here will be valid. */
return contains_placeholder_p (TREE_OPERAND (exp, 0));
case 'x':
if (code == TREE_LIST)
return (contains_placeholder_p (TREE_VALUE (exp))
|| (TREE_CHAIN (exp) != 0
&& contains_placeholder_p (TREE_CHAIN (exp))));
break;
1999-08-26 09:30:50 +00:00
case '1':
case '2': case '<':
case 'e':
switch (code)
{
case COMPOUND_EXPR:
/* Ignoring the first operand isn't quite right, but works best. */
1999-08-26 09:30:50 +00:00
return contains_placeholder_p (TREE_OPERAND (exp, 1));
case RTL_EXPR:
case CONSTRUCTOR:
return 0;
case COND_EXPR:
return (contains_placeholder_p (TREE_OPERAND (exp, 0))
|| contains_placeholder_p (TREE_OPERAND (exp, 1))
|| contains_placeholder_p (TREE_OPERAND (exp, 2)));
case SAVE_EXPR:
/* If we already know this doesn't have a placeholder, don't
check again. */
if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
return 0;
SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
result = contains_placeholder_p (TREE_OPERAND (exp, 0));
if (result)
SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
return result;
case CALL_EXPR:
return (TREE_OPERAND (exp, 1) != 0
&& contains_placeholder_p (TREE_OPERAND (exp, 1)));
default:
break;
}
switch (TREE_CODE_LENGTH (code))
1999-08-26 09:30:50 +00:00
{
case 1:
return contains_placeholder_p (TREE_OPERAND (exp, 0));
case 2:
return (contains_placeholder_p (TREE_OPERAND (exp, 0))
|| contains_placeholder_p (TREE_OPERAND (exp, 1)));
default:
return 0;
}
default:
return 0;
}
return 0;
}
/* Return 1 if EXP contains any expressions that produce cleanups for an
outer scope to deal with. Used by fold. */
int
has_cleanups (exp)
tree exp;
{
int i, nops, cmp;
if (! TREE_SIDE_EFFECTS (exp))
return 0;
switch (TREE_CODE (exp))
{
case TARGET_EXPR:
case GOTO_SUBROUTINE_EXPR:
1999-08-26 09:30:50 +00:00
case WITH_CLEANUP_EXPR:
return 1;
case CLEANUP_POINT_EXPR:
return 0;
case CALL_EXPR:
for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
{
cmp = has_cleanups (TREE_VALUE (exp));
if (cmp)
return cmp;
}
return 0;
default:
break;
}
/* This general rule works for most tree codes. All exceptions should be
handled above. If this is a language-specific tree code, we can't
trust what might be in the operand, so say we don't know
the situation. */
if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
return -1;
nops = first_rtl_op (TREE_CODE (exp));
for (i = 0; i < nops; i++)
if (TREE_OPERAND (exp, i) != 0)
{
int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
if (type == 'e' || type == '<' || type == '1' || type == '2'
|| type == 'r' || type == 's')
{
cmp = has_cleanups (TREE_OPERAND (exp, i));
if (cmp)
return cmp;
}
}
return 0;
}
/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
return a tree with all occurrences of references to F in a
PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
contains only arithmetic expressions or a CALL_EXPR with a
PLACEHOLDER_EXPR occurring only in its arglist. */
tree
substitute_in_expr (exp, f, r)
tree exp;
tree f;
tree r;
{
enum tree_code code = TREE_CODE (exp);
tree op0, op1, op2;
tree new;
tree inner;
switch (TREE_CODE_CLASS (code))
{
case 'c':
case 'd':
return exp;
case 'x':
if (code == PLACEHOLDER_EXPR)
return exp;
1999-08-26 09:30:50 +00:00
else if (code == TREE_LIST)
{
op0 = (TREE_CHAIN (exp) == 0
? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
return exp;
return tree_cons (TREE_PURPOSE (exp), op1, op0);
}
abort ();
case '1':
case '2':
case '<':
case 'e':
switch (TREE_CODE_LENGTH (code))
{
case 1:
1999-08-26 09:30:50 +00:00
op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
if (op0 == TREE_OPERAND (exp, 0))
return exp;
if (code == NON_LVALUE_EXPR)
return op0;
1999-08-26 09:30:50 +00:00
new = fold (build1 (code, TREE_TYPE (exp), op0));
break;
case 2:
/* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
could, but we don't support it. */
if (code == RTL_EXPR)
return exp;
else if (code == CONSTRUCTOR)
abort ();
1999-08-26 09:30:50 +00:00
op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
return exp;
new = fold (build (code, TREE_TYPE (exp), op0, op1));
break;
case 3:
/* It cannot be that anything inside a SAVE_EXPR contains a
PLACEHOLDER_EXPR. */
if (code == SAVE_EXPR)
return exp;
1999-08-26 09:30:50 +00:00
else if (code == CALL_EXPR)
{
op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
if (op1 == TREE_OPERAND (exp, 1))
return exp;
return build (code, TREE_TYPE (exp),
TREE_OPERAND (exp, 0), op1, NULL_TREE);
}
else if (code != COND_EXPR)
abort ();
1999-08-26 09:30:50 +00:00
op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
&& op2 == TREE_OPERAND (exp, 2))
return exp;
new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
break;
default:
abort ();
}
break;
case 'r':
switch (code)
{
case COMPONENT_REF:
/* If this expression is getting a value from a PLACEHOLDER_EXPR
and it is the right field, replace it with R. */
for (inner = TREE_OPERAND (exp, 0);
TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
inner = TREE_OPERAND (inner, 0))
;
if (TREE_CODE (inner) == PLACEHOLDER_EXPR
&& TREE_OPERAND (exp, 1) == f)
return r;
/* If this expression hasn't been completed let, leave it
1999-08-26 09:30:50 +00:00
alone. */
if (TREE_CODE (inner) == PLACEHOLDER_EXPR
&& TREE_TYPE (inner) == 0)
return exp;
op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
if (op0 == TREE_OPERAND (exp, 0))
return exp;
new = fold (build (code, TREE_TYPE (exp), op0,
TREE_OPERAND (exp, 1)));
break;
case BIT_FIELD_REF:
1999-08-26 09:30:50 +00:00
op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
&& op2 == TREE_OPERAND (exp, 2))
return exp;
new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
break;
case INDIRECT_REF:
case BUFFER_REF:
1999-08-26 09:30:50 +00:00
op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
if (op0 == TREE_OPERAND (exp, 0))
return exp;
1999-08-26 09:30:50 +00:00
new = fold (build1 (code, TREE_TYPE (exp), op0));
break;
1999-08-26 09:30:50 +00:00
default:
abort ();
}
1999-08-26 09:30:50 +00:00
break;
1999-08-26 09:30:50 +00:00
default:
abort ();
}
TREE_READONLY (new) = TREE_READONLY (exp);
return new;
}
/* Stabilize a reference so that we can use it any number of times
without causing its operands to be evaluated more than once.
Returns the stabilized reference. This works by means of save_expr,
so see the caveats in the comments about save_expr.
Also allows conversion expressions whose operands are references.
Any other kind of expression is returned unchanged. */
tree
stabilize_reference (ref)
tree ref;
{
tree result;
enum tree_code code = TREE_CODE (ref);
switch (code)
{
case VAR_DECL:
case PARM_DECL:
case RESULT_DECL:
/* No action is needed in this case. */
return ref;
case NOP_EXPR:
case CONVERT_EXPR:
case FLOAT_EXPR:
case FIX_TRUNC_EXPR:
case FIX_FLOOR_EXPR:
case FIX_ROUND_EXPR:
case FIX_CEIL_EXPR:
result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
break;
case INDIRECT_REF:
result = build_nt (INDIRECT_REF,
stabilize_reference_1 (TREE_OPERAND (ref, 0)));
break;
case COMPONENT_REF:
result = build_nt (COMPONENT_REF,
stabilize_reference (TREE_OPERAND (ref, 0)),
TREE_OPERAND (ref, 1));
break;
case BIT_FIELD_REF:
result = build_nt (BIT_FIELD_REF,
stabilize_reference (TREE_OPERAND (ref, 0)),
stabilize_reference_1 (TREE_OPERAND (ref, 1)),
stabilize_reference_1 (TREE_OPERAND (ref, 2)));
break;
case ARRAY_REF:
result = build_nt (ARRAY_REF,
stabilize_reference (TREE_OPERAND (ref, 0)),
stabilize_reference_1 (TREE_OPERAND (ref, 1)));
break;
case ARRAY_RANGE_REF:
result = build_nt (ARRAY_RANGE_REF,
stabilize_reference (TREE_OPERAND (ref, 0)),
stabilize_reference_1 (TREE_OPERAND (ref, 1)));
break;
case COMPOUND_EXPR:
1999-08-26 09:30:50 +00:00
/* We cannot wrap the first expression in a SAVE_EXPR, as then
it wouldn't be ignored. This matters when dealing with
volatiles. */
return stabilize_reference_1 (ref);
case RTL_EXPR:
result = build1 (INDIRECT_REF, TREE_TYPE (ref),
save_expr (build1 (ADDR_EXPR,
build_pointer_type (TREE_TYPE (ref)),
ref)));
break;
/* If arg isn't a kind of lvalue we recognize, make no change.
Caller should recognize the error for an invalid lvalue. */
default:
return ref;
case ERROR_MARK:
return error_mark_node;
}
TREE_TYPE (result) = TREE_TYPE (ref);
TREE_READONLY (result) = TREE_READONLY (ref);
TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
return result;
}
/* Subroutine of stabilize_reference; this is called for subtrees of
references. Any expression with side-effects must be put in a SAVE_EXPR
to ensure that it is only evaluated once.
We don't put SAVE_EXPR nodes around everything, because assigning very
simple expressions to temporaries causes us to miss good opportunities
for optimizations. Among other things, the opportunity to fold in the
addition of a constant into an addressing mode often gets lost, e.g.
"y[i+1] += x;". In general, we take the approach that we should not make
an assignment unless we are forced into it - i.e., that any non-side effect
operator should be allowed, and that cse should take care of coalescing
multiple utterances of the same expression should that prove fruitful. */
tree
stabilize_reference_1 (e)
tree e;
{
tree result;
enum tree_code code = TREE_CODE (e);
/* We cannot ignore const expressions because it might be a reference
to a const array but whose index contains side-effects. But we can
ignore things that are actual constant or that already have been
handled by this function. */
if (TREE_CONSTANT (e) || code == SAVE_EXPR)
return e;
switch (TREE_CODE_CLASS (code))
{
case 'x':
case 't':
case 'd':
case 'b':
case '<':
case 's':
case 'e':
case 'r':
/* If the expression has side-effects, then encase it in a SAVE_EXPR
so that it will only be evaluated once. */
/* The reference (r) and comparison (<) classes could be handled as
below, but it is generally faster to only evaluate them once. */
if (TREE_SIDE_EFFECTS (e))
return save_expr (e);
return e;
case 'c':
/* Constants need no processing. In fact, we should never reach
here. */
return e;
case '2':
/* Division is slow and tends to be compiled with jumps,
especially the division by powers of 2 that is often
found inside of an array reference. So do it just once. */
if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
|| code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
|| code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
|| code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
return save_expr (e);
/* Recursively stabilize each operand. */
result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
stabilize_reference_1 (TREE_OPERAND (e, 1)));
break;
case '1':
/* Recursively stabilize each operand. */
result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
break;
default:
abort ();
}
TREE_TYPE (result) = TREE_TYPE (e);
TREE_READONLY (result) = TREE_READONLY (e);
TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
return result;
}
/* Low-level constructors for expressions. */
/* Build an expression of code CODE, data type TYPE,
and operands as specified by the arguments ARG1 and following arguments.
Expressions and reference nodes can be created this way.
Constants, decls, types and misc nodes cannot be. */
tree
build VPARAMS ((enum tree_code code, tree tt, ...))
{
tree t;
int length;
int i;
int fro;
int constant;
VA_OPEN (p, tt);
VA_FIXEDARG (p, enum tree_code, code);
VA_FIXEDARG (p, tree, tt);
t = make_node (code);
length = TREE_CODE_LENGTH (code);
TREE_TYPE (t) = tt;
/* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
result based on those same flags for the arguments. But if the
arguments aren't really even `tree' expressions, we shouldn't be trying
to do this. */
fro = first_rtl_op (code);
/* Expressions without side effects may be constant if their
arguments are as well. */
constant = (TREE_CODE_CLASS (code) == '<'
|| TREE_CODE_CLASS (code) == '1'
|| TREE_CODE_CLASS (code) == '2'
|| TREE_CODE_CLASS (code) == 'c');
if (length == 2)
{
/* This is equivalent to the loop below, but faster. */
tree arg0 = va_arg (p, tree);
tree arg1 = va_arg (p, tree);
TREE_OPERAND (t, 0) = arg0;
TREE_OPERAND (t, 1) = arg1;
TREE_READONLY (t) = 1;
if (arg0 && fro > 0)
{
if (TREE_SIDE_EFFECTS (arg0))
TREE_SIDE_EFFECTS (t) = 1;
if (!TREE_READONLY (arg0))
TREE_READONLY (t) = 0;
if (!TREE_CONSTANT (arg0))
constant = 0;
}
if (arg1 && fro > 1)
{
if (TREE_SIDE_EFFECTS (arg1))
TREE_SIDE_EFFECTS (t) = 1;
if (!TREE_READONLY (arg1))
TREE_READONLY (t) = 0;
if (!TREE_CONSTANT (arg1))
constant = 0;
}
}
else if (length == 1)
{
tree arg0 = va_arg (p, tree);
/* The only one-operand cases we handle here are those with side-effects.
Others are handled with build1. So don't bother checked if the
arg has side-effects since we'll already have set it.
??? This really should use build1 too. */
if (TREE_CODE_CLASS (code) != 's')
abort ();
TREE_OPERAND (t, 0) = arg0;
}
else
{
for (i = 0; i < length; i++)
{
tree operand = va_arg (p, tree);
TREE_OPERAND (t, i) = operand;
if (operand && fro > i)
{
if (TREE_SIDE_EFFECTS (operand))
TREE_SIDE_EFFECTS (t) = 1;
if (!TREE_CONSTANT (operand))
constant = 0;
}
}
}
VA_CLOSE (p);
TREE_CONSTANT (t) = constant;
return t;
}
/* Same as above, but only builds for unary operators.
Saves lions share of calls to `build'; cuts down use
of varargs, which is expensive for RISC machines. */
1999-08-26 09:30:50 +00:00
tree
build1 (code, type, node)
enum tree_code code;
tree type;
tree node;
{
int length;
1999-08-26 09:30:50 +00:00
#ifdef GATHER_STATISTICS
tree_node_kind kind;
1999-08-26 09:30:50 +00:00
#endif
tree t;
#ifdef GATHER_STATISTICS
if (TREE_CODE_CLASS (code) == 'r')
kind = r_kind;
else
kind = e_kind;
#endif
#ifdef ENABLE_CHECKING
if (TREE_CODE_CLASS (code) == '2'
|| TREE_CODE_CLASS (code) == '<'
|| TREE_CODE_LENGTH (code) != 1)
abort ();
#endif /* ENABLE_CHECKING */
length = sizeof (struct tree_exp);
t = ggc_alloc_tree (length);
memset ((PTR) t, 0, sizeof (struct tree_common));
#ifdef GATHER_STATISTICS
tree_node_counts[(int) kind]++;
tree_node_sizes[(int) kind] += length;
#endif
TREE_SET_CODE (t, code);
TREE_TYPE (t) = type;
TREE_COMPLEXITY (t) = 0;
TREE_OPERAND (t, 0) = node;
if (node && first_rtl_op (code) != 0)
{
TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
TREE_READONLY (t) = TREE_READONLY (node);
}
switch (code)
{
case INIT_EXPR:
case MODIFY_EXPR:
case VA_ARG_EXPR:
case RTL_EXPR:
case PREDECREMENT_EXPR:
case PREINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
case POSTINCREMENT_EXPR:
/* All of these have side-effects, no matter what their
operands are. */
TREE_SIDE_EFFECTS (t) = 1;
TREE_READONLY (t) = 0;
break;
case INDIRECT_REF:
/* Whether a dereference is readonly has nothing to do with whether
its operand is readonly. */
TREE_READONLY (t) = 0;
break;
default:
if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
TREE_CONSTANT (t) = 1;
break;
}
return t;
}
/* Similar except don't specify the TREE_TYPE
and leave the TREE_SIDE_EFFECTS as 0.
It is permissible for arguments to be null,
or even garbage if their values do not matter. */
tree
build_nt VPARAMS ((enum tree_code code, ...))
{
tree t;
int length;
int i;
VA_OPEN (p, code);
VA_FIXEDARG (p, enum tree_code, code);
t = make_node (code);
length = TREE_CODE_LENGTH (code);
for (i = 0; i < length; i++)
TREE_OPERAND (t, i) = va_arg (p, tree);
VA_CLOSE (p);
return t;
}
/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
We do NOT enter this node in any sort of symbol table.
layout_decl is used to set up the decl's storage layout.
Other slots are initialized to 0 or null pointers. */
tree
build_decl (code, name, type)
enum tree_code code;
tree name, type;
{
tree t;
t = make_node (code);
/* if (type == error_mark_node)
type = integer_type_node; */
/* That is not done, deliberately, so that having error_mark_node
as the type can suppress useless errors in the use of this variable. */
DECL_NAME (t) = name;
TREE_TYPE (t) = type;
if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
layout_decl (t, 0);
else if (code == FUNCTION_DECL)
DECL_MODE (t) = FUNCTION_MODE;
return t;
}
/* BLOCK nodes are used to represent the structure of binding contours
and declarations, once those contours have been exited and their contents
compiled. This information is used for outputting debugging info. */
tree
build_block (vars, tags, subblocks, supercontext, chain)
tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
{
tree block = make_node (BLOCK);
BLOCK_VARS (block) = vars;
BLOCK_SUBBLOCKS (block) = subblocks;
BLOCK_SUPERCONTEXT (block) = supercontext;
BLOCK_CHAIN (block) = chain;
return block;
}
1999-08-26 09:30:50 +00:00
/* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
location where an expression or an identifier were encountered. It
is necessary for languages where the frontend parser will handle
recursively more than one file (Java is one of them). */
tree
build_expr_wfl (node, file, line, col)
tree node;
const char *file;
1999-08-26 09:30:50 +00:00
int line, col;
{
static const char *last_file = 0;
static tree last_filenode = NULL_TREE;
tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
1999-08-26 09:30:50 +00:00
EXPR_WFL_NODE (wfl) = node;
EXPR_WFL_SET_LINECOL (wfl, line, col);
if (file != last_file)
{
last_file = file;
last_filenode = file ? get_identifier (file) : NULL_TREE;
}
1999-08-26 09:30:50 +00:00
EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
if (node)
{
TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
TREE_TYPE (wfl) = TREE_TYPE (node);
}
1999-08-26 09:30:50 +00:00
return wfl;
}
/* Return a declaration like DDECL except that its DECL_ATTRIBUTES
1999-08-26 09:30:50 +00:00
is ATTRIBUTE. */
tree
build_decl_attribute_variant (ddecl, attribute)
tree ddecl, attribute;
{
DECL_ATTRIBUTES (ddecl) = attribute;
return ddecl;
}
/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
is ATTRIBUTE.
Record such modified types already made so we don't make duplicates. */
tree
build_type_attribute_variant (ttype, attribute)
tree ttype, attribute;
{
if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
{
unsigned int hashcode;
tree ntype;
ntype = copy_node (ttype);
TYPE_POINTER_TO (ntype) = 0;
TYPE_REFERENCE_TO (ntype) = 0;
TYPE_ATTRIBUTES (ntype) = attribute;
/* Create a new main variant of TYPE. */
TYPE_MAIN_VARIANT (ntype) = ntype;
TYPE_NEXT_VARIANT (ntype) = 0;
set_type_quals (ntype, TYPE_UNQUALIFIED);
hashcode = (TYPE_HASH (TREE_CODE (ntype))
+ TYPE_HASH (TREE_TYPE (ntype))
+ attribute_hash_list (attribute));
switch (TREE_CODE (ntype))
{
1999-08-26 09:30:50 +00:00
case FUNCTION_TYPE:
hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
break;
case ARRAY_TYPE:
hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
break;
case INTEGER_TYPE:
hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
break;
case REAL_TYPE:
hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
break;
default:
break;
}
ntype = type_hash_canon (hashcode, ntype);
ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
}
return ttype;
}
/* Default value of targetm.comp_type_attributes that always returns 1. */
int
default_comp_type_attributes (type1, type2)
tree type1 ATTRIBUTE_UNUSED;
tree type2 ATTRIBUTE_UNUSED;
{
return 1;
}
/* Default version of targetm.set_default_type_attributes that always does
nothing. */
void
default_set_default_type_attributes (type)
tree type ATTRIBUTE_UNUSED;
{
}
/* Default version of targetm.insert_attributes that always does nothing. */
void
default_insert_attributes (decl, attr_ptr)
tree decl ATTRIBUTE_UNUSED;
tree *attr_ptr ATTRIBUTE_UNUSED;
{
}
/* Default value of targetm.attribute_table that is empty. */
const struct attribute_spec default_target_attribute_table[] =
{
{ NULL, 0, 0, false, false, false, NULL }
};
/* Default value of targetm.function_attribute_inlinable_p that always
returns false. */
bool
default_function_attribute_inlinable_p (fndecl)
tree fndecl ATTRIBUTE_UNUSED;
{
/* By default, functions with machine attributes cannot be inlined. */
return false;
}
/* Default value of targetm.ms_bitfield_layout_p that always returns
false. */
bool
default_ms_bitfield_layout_p (record)
tree record ATTRIBUTE_UNUSED;
{
/* By default, GCC does not use the MS VC++ bitfield layout rules. */
return false;
}
/* Return non-zero if IDENT is a valid name for attribute ATTR,
or zero if not.
We try both `text' and `__text__', ATTR may be either one. */
/* ??? It might be a reasonable simplification to require ATTR to be only
`text'. One might then also require attribute lists to be stored in
their canonicalized form. */
int
is_attribute_p (attr, ident)
const char *attr;
tree ident;
{
int ident_len, attr_len;
const char *p;
if (TREE_CODE (ident) != IDENTIFIER_NODE)
return 0;
if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
return 1;
p = IDENTIFIER_POINTER (ident);
ident_len = strlen (p);
attr_len = strlen (attr);
/* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
if (attr[0] == '_')
{
if (attr[1] != '_'
|| attr[attr_len - 2] != '_'
|| attr[attr_len - 1] != '_')
abort ();
if (ident_len == attr_len - 4
&& strncmp (attr + 2, p, attr_len - 4) == 0)
return 1;
}
else
{
if (ident_len == attr_len + 4
&& p[0] == '_' && p[1] == '_'
&& p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
&& strncmp (attr, p + 2, attr_len) == 0)
return 1;
}
return 0;
}
/* Given an attribute name and a list of attributes, return a pointer to the
attribute's list element if the attribute is part of the list, or NULL_TREE
if not found. If the attribute appears more than once, this only
returns the first occurrence; the TREE_CHAIN of the return value should
be passed back in if further occurrences are wanted. */
tree
lookup_attribute (attr_name, list)
const char *attr_name;
tree list;
{
tree l;
for (l = list; l; l = TREE_CHAIN (l))
{
if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
abort ();
if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
return l;
}
return NULL_TREE;
}
1999-08-26 09:30:50 +00:00
/* Return an attribute list that is the union of a1 and a2. */
tree
merge_attributes (a1, a2)
tree a1, a2;
1999-08-26 09:30:50 +00:00
{
tree attributes;
/* Either one unset? Take the set one. */
if ((attributes = a1) == 0)
1999-08-26 09:30:50 +00:00
attributes = a2;
/* One that completely contains the other? Take it. */
else if (a2 != 0 && ! attribute_list_contained (a1, a2))
{
if (attribute_list_contained (a2, a1))
attributes = a2;
else
{
/* Pick the longest list, and hang on the other list. */
1999-08-26 09:30:50 +00:00
if (list_length (a1) < list_length (a2))
attributes = a2, a2 = a1;
1999-08-26 09:30:50 +00:00
for (; a2 != 0; a2 = TREE_CHAIN (a2))
1999-08-26 09:30:50 +00:00
{
tree a;
for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
attributes);
a != NULL_TREE;
a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
TREE_CHAIN (a)))
{
if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
break;
}
if (a == NULL_TREE)
{
a1 = copy_node (a2);
TREE_CHAIN (a1) = attributes;
attributes = a1;
}
1999-08-26 09:30:50 +00:00
}
}
}
1999-08-26 09:30:50 +00:00
return attributes;
}
/* Given types T1 and T2, merge their attributes and return
the result. */
1999-08-26 09:30:50 +00:00
tree
merge_type_attributes (t1, t2)
1999-08-26 09:30:50 +00:00
tree t1, t2;
{
return merge_attributes (TYPE_ATTRIBUTES (t1),
TYPE_ATTRIBUTES (t2));
}
/* Given decls OLDDECL and NEWDECL, merge their attributes and return
the result. */
tree
merge_decl_attributes (olddecl, newdecl)
1999-08-26 09:30:50 +00:00
tree olddecl, newdecl;
{
return merge_attributes (DECL_ATTRIBUTES (olddecl),
DECL_ATTRIBUTES (newdecl));
}
#ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
/* Specialization of merge_decl_attributes for various Windows targets.
This handles the following situation:
__declspec (dllimport) int foo;
int foo;
The second instance of `foo' nullifies the dllimport. */
tree
merge_dllimport_decl_attributes (old, new)
tree old;
tree new;
{
tree a;
int delete_dllimport_p;
old = DECL_ATTRIBUTES (old);
new = DECL_ATTRIBUTES (new);
/* What we need to do here is remove from `old' dllimport if it doesn't
appear in `new'. dllimport behaves like extern: if a declaration is
marked dllimport and a definition appears later, then the object
is not dllimport'd. */
if (lookup_attribute ("dllimport", old) != NULL_TREE
&& lookup_attribute ("dllimport", new) == NULL_TREE)
delete_dllimport_p = 1;
else
delete_dllimport_p = 0;
a = merge_attributes (old, new);
if (delete_dllimport_p)
{
tree prev, t;
/* Scan the list for dllimport and delete it. */
for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
{
if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
{
if (prev == NULL_TREE)
a = TREE_CHAIN (a);
else
TREE_CHAIN (prev) = TREE_CHAIN (t);
break;
}
}
}
return a;
1999-08-26 09:30:50 +00:00
}
#endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
/* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
of the various TYPE_QUAL values. */
static void
set_type_quals (type, type_quals)
tree type;
int type_quals;
{
TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
}
/* Return a version of the TYPE, qualified as indicated by the
TYPE_QUALS, if one exists. If no qualified version exists yet,
return NULL_TREE. */
tree
get_qualified_type (type, type_quals)
tree type;
int type_quals;
{
tree t;
/* Search the chain of variants to see if there is already one there just
like the one we need to have. If so, use that existing one. We must
preserve the TYPE_NAME, since there is code that depends on this. */
1999-08-26 09:30:50 +00:00
for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
return t;
return NULL_TREE;
}
/* Like get_qualified_type, but creates the type if it does not
exist. This function never returns NULL_TREE. */
tree
build_qualified_type (type, type_quals)
tree type;
int type_quals;
{
tree t;
/* See if we already have the appropriate qualified variant. */
t = get_qualified_type (type, type_quals);
/* If not, build it. */
if (!t)
{
t = build_type_copy (type);
set_type_quals (t, type_quals);
}
return t;
}
/* Create a new variant of TYPE, equivalent but distinct.
This is so the caller can modify it. */
tree
build_type_copy (type)
tree type;
{
tree t, m = TYPE_MAIN_VARIANT (type);
t = copy_node (type);
TYPE_POINTER_TO (t) = 0;
TYPE_REFERENCE_TO (t) = 0;
/* Add this type to the chain of variants of TYPE. */
TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
TYPE_NEXT_VARIANT (m) = t;
return t;
}
/* Hashing of types so that we don't make duplicates.
The entry point is `type_hash_canon'. */
/* Compute a hash code for a list of types (chain of TREE_LIST nodes
with types in the TREE_VALUE slots), by adding the hash codes
of the individual types. */
unsigned int
type_hash_list (list)
tree list;
{
unsigned int hashcode;
tree tail;
for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
hashcode += TYPE_HASH (TREE_VALUE (tail));
return hashcode;
}
/* These are the Hashtable callback functions. */
/* Returns true if the types are equal. */
static int
type_hash_eq (va, vb)
const void *va;
const void *vb;
{
const struct type_hash *a = va, *b = vb;
if (a->hash == b->hash
&& TREE_CODE (a->type) == TREE_CODE (b->type)
&& TREE_TYPE (a->type) == TREE_TYPE (b->type)
&& attribute_list_equal (TYPE_ATTRIBUTES (a->type),
TYPE_ATTRIBUTES (b->type))
&& TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
&& (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
|| tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
TYPE_MAX_VALUE (b->type)))
&& (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
|| tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
TYPE_MIN_VALUE (b->type)))
/* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
&& (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
|| (TYPE_DOMAIN (a->type)
&& TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
&& TYPE_DOMAIN (b->type)
&& TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
&& type_list_equal (TYPE_DOMAIN (a->type),
TYPE_DOMAIN (b->type)))))
return 1;
return 0;
}
/* Return the cached hash value. */
static unsigned int
type_hash_hash (item)
const void *item;
{
return ((const struct type_hash *) item)->hash;
}
/* Look in the type hash table for a type isomorphic to TYPE.
If one is found, return it. Otherwise return 0. */
tree
type_hash_lookup (hashcode, type)
unsigned int hashcode;
tree type;
{
struct type_hash *h, in;
/* The TYPE_ALIGN field of a type is set by layout_type(), so we
must call that routine before comparing TYPE_ALIGNs. */
layout_type (type);
in.hash = hashcode;
in.type = type;
h = htab_find_with_hash (type_hash_table, &in, hashcode);
if (h)
return h->type;
return NULL_TREE;
}
/* Add an entry to the type-hash-table
for a type TYPE whose hash code is HASHCODE. */
void
type_hash_add (hashcode, type)
unsigned int hashcode;
tree type;
{
struct type_hash *h;
void **loc;
h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
h->hash = hashcode;
h->type = type;
loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
*(struct type_hash **) loc = h;
}
/* Given TYPE, and HASHCODE its hash code, return the canonical
object for an identical type if one already exists.
Otherwise, return TYPE, and record it as the canonical object
if it is a permanent object.
To use this function, first create a type of the sort you want.
Then compute its hash code from the fields of the type that
make it different from other similar types.
Then call this function and use the value.
This function frees the type you pass in if it is a duplicate. */
/* Set to 1 to debug without canonicalization. Never set by program. */
int debug_no_type_hash = 0;
tree
type_hash_canon (hashcode, type)
unsigned int hashcode;
tree type;
{
tree t1;
if (debug_no_type_hash)
return type;
/* See if the type is in the hash table already. If so, return it.
Otherwise, add the type. */
t1 = type_hash_lookup (hashcode, type);
if (t1 != 0)
{
#ifdef GATHER_STATISTICS
tree_node_counts[(int) t_kind]--;
tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
#endif
return t1;
}
else
{
type_hash_add (hashcode, type);
return type;
}
}
/* See if the data pointed to by the type hash table is marked. We consider
it marked if the type is marked or if a debug type number or symbol
table entry has been made for the type. This reduces the amount of
debugging output and eliminates that dependency of the debug output on
the number of garbage collections. */
static int
type_hash_marked_p (p)
const void *p;
{
tree type = ((struct type_hash *) p)->type;
return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
}
/* Mark the entry in the type hash table the type it points to is marked.
Also mark the type in case we are considering this entry "marked" by
virtue of TYPE_SYMTAB_POINTER being set. */
static void
type_hash_mark (p)
const void *p;
{
ggc_mark (p);
ggc_mark_tree (((struct type_hash *) p)->type);
}
/* Mark the hashtable slot pointed to by ENTRY (which is really a
`tree**') for GC. */
static int
mark_tree_hashtable_entry (entry, data)
void **entry;
void *data ATTRIBUTE_UNUSED;
{
ggc_mark_tree ((tree) *entry);
return 1;
}
/* Mark ARG (which is really a htab_t whose slots are trees) for
GC. */
void
mark_tree_hashtable (arg)
void *arg;
{
htab_t t = *(htab_t *) arg;
htab_traverse (t, mark_tree_hashtable_entry, 0);
}
static void
print_type_hash_statistics ()
{
fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
(long) htab_size (type_hash_table),
(long) htab_elements (type_hash_table),
htab_collisions (type_hash_table));
}
/* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
by adding the hash codes of the individual attributes. */
unsigned int
attribute_hash_list (list)
tree list;
{
unsigned int hashcode;
tree tail;
for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
/* ??? Do we want to add in TREE_VALUE too? */
hashcode += TYPE_HASH (TREE_PURPOSE (tail));
return hashcode;
}
/* Given two lists of attributes, return true if list l2 is
equivalent to l1. */
int
attribute_list_equal (l1, l2)
tree l1, l2;
{
return attribute_list_contained (l1, l2)
&& attribute_list_contained (l2, l1);
}
/* Given two lists of attributes, return true if list L2 is
completely contained within L1. */
/* ??? This would be faster if attribute names were stored in a canonicalized
form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
must be used to show these elements are equivalent (which they are). */
/* ??? It's not clear that attributes with arguments will always be handled
correctly. */
int
attribute_list_contained (l1, l2)
tree l1, l2;
{
tree t1, t2;
/* First check the obvious, maybe the lists are identical. */
if (l1 == l2)
return 1;
/* Maybe the lists are similar. */
for (t1 = l1, t2 = l2;
t1 != 0 && t2 != 0
&& TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
&& TREE_VALUE (t1) == TREE_VALUE (t2);
t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
/* Maybe the lists are equal. */
if (t1 == 0 && t2 == 0)
return 1;
for (; t2 != 0; t2 = TREE_CHAIN (t2))
{
tree attr;
for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
attr != NULL_TREE;
attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
TREE_CHAIN (attr)))
{
if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
break;
}
if (attr == 0)
return 0;
if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
return 0;
}
return 1;
}
/* Given two lists of types
(chains of TREE_LIST nodes with types in the TREE_VALUE slots)
return 1 if the lists contain the same types in the same order.
Also, the TREE_PURPOSEs must match. */
int
type_list_equal (l1, l2)
tree l1, l2;
{
tree t1, t2;
for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
if (TREE_VALUE (t1) != TREE_VALUE (t2)
|| (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
&& ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
&& (TREE_TYPE (TREE_PURPOSE (t1))
== TREE_TYPE (TREE_PURPOSE (t2))))))
return 0;
return t1 == t2;
}
/* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
given by TYPE. If the argument list accepts variable arguments,
then this function counts only the ordinary arguments. */
int
type_num_arguments (type)
tree type;
{
int i = 0;
tree t;
for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
/* If the function does not take a variable number of arguments,
the last element in the list will have type `void'. */
if (VOID_TYPE_P (TREE_VALUE (t)))
break;
else
++i;
return i;
}
/* Nonzero if integer constants T1 and T2
represent the same constant value. */
int
tree_int_cst_equal (t1, t2)
tree t1, t2;
{
if (t1 == t2)
return 1;
if (t1 == 0 || t2 == 0)
return 0;
if (TREE_CODE (t1) == INTEGER_CST
&& TREE_CODE (t2) == INTEGER_CST
&& TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
&& TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
return 1;
return 0;
}
/* Nonzero if integer constants T1 and T2 represent values that satisfy <.
The precise way of comparison depends on their data type. */
int
tree_int_cst_lt (t1, t2)
tree t1, t2;
{
if (t1 == t2)
return 0;
if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
{
int t1_sgn = tree_int_cst_sgn (t1);
int t2_sgn = tree_int_cst_sgn (t2);
if (t1_sgn < t2_sgn)
return 1;
else if (t1_sgn > t2_sgn)
return 0;
/* Otherwise, both are non-negative, so we compare them as
unsigned just in case one of them would overflow a signed
type. */
}
else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
return INT_CST_LT (t1, t2);
return INT_CST_LT_UNSIGNED (t1, t2);
}
/* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
int
tree_int_cst_compare (t1, t2)
tree t1;
tree t2;
{
if (tree_int_cst_lt (t1, t2))
return -1;
else if (tree_int_cst_lt (t2, t1))
return 1;
else
return 0;
}
/* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
the host. If POS is zero, the value can be represented in a single
HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
be represented in a single unsigned HOST_WIDE_INT. */
int
host_integerp (t, pos)
tree t;
int pos;
{
return (TREE_CODE (t) == INTEGER_CST
&& ! TREE_OVERFLOW (t)
&& ((TREE_INT_CST_HIGH (t) == 0
&& (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
|| (! pos && TREE_INT_CST_HIGH (t) == -1
&& (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
&& ! TREE_UNSIGNED (TREE_TYPE (t)))
|| (pos && TREE_INT_CST_HIGH (t) == 0)));
}
/* Return the HOST_WIDE_INT least significant bits of T if it is an
INTEGER_CST and there is no overflow. POS is nonzero if the result must
be positive. Abort if we cannot satisfy the above conditions. */
HOST_WIDE_INT
tree_low_cst (t, pos)
tree t;
int pos;
{
if (host_integerp (t, pos))
return TREE_INT_CST_LOW (t);
else
abort ();
}
/* Return the most significant bit of the integer constant T. */
int
tree_int_cst_msb (t)
tree t;
{
int prec;
HOST_WIDE_INT h;
unsigned HOST_WIDE_INT l;
/* Note that using TYPE_PRECISION here is wrong. We care about the
actual bits, not the (arbitrary) range of the type. */
prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
return (l & 1) == 1;
}
/* Return an indication of the sign of the integer constant T.
The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
Note that -1 will never be returned it T's type is unsigned. */
int
tree_int_cst_sgn (t)
tree t;
{
if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
return 0;
else if (TREE_UNSIGNED (TREE_TYPE (t)))
return 1;
else if (TREE_INT_CST_HIGH (t) < 0)
return -1;
else
return 1;
}
/* Compare two constructor-element-type constants. Return 1 if the lists
are known to be equal; otherwise return 0. */
int
simple_cst_list_equal (l1, l2)
tree l1, l2;
{
while (l1 != NULL_TREE && l2 != NULL_TREE)
{
if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
return 0;
l1 = TREE_CHAIN (l1);
l2 = TREE_CHAIN (l2);
}
return l1 == l2;
}
/* Return truthvalue of whether T1 is the same tree structure as T2.
Return 1 if they are the same.
Return 0 if they are understandably different.
Return -1 if either contains tree structure not understood by
this function. */
int
simple_cst_equal (t1, t2)
tree t1, t2;
{
enum tree_code code1, code2;
int cmp;
int i;
if (t1 == t2)
return 1;
if (t1 == 0 || t2 == 0)
return 0;
code1 = TREE_CODE (t1);
code2 = TREE_CODE (t2);
if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
{
if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
|| code2 == NON_LVALUE_EXPR)
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
else
return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
}
else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
|| code2 == NON_LVALUE_EXPR)
return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
if (code1 != code2)
return 0;
switch (code1)
{
case INTEGER_CST:
return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
&& TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
case REAL_CST:
1999-08-26 09:30:50 +00:00
return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
case STRING_CST:
return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
&& ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
TREE_STRING_LENGTH (t1)));
case CONSTRUCTOR:
1999-08-26 09:30:50 +00:00
if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
return 1;
else
abort ();
case SAVE_EXPR:
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
case CALL_EXPR:
cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
if (cmp <= 0)
return cmp;
return
simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
case TARGET_EXPR:
/* Special case: if either target is an unallocated VAR_DECL,
it means that it's going to be unified with whatever the
TARGET_EXPR is really supposed to initialize, so treat it
as being equivalent to anything. */
if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
&& DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
&& !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
|| (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
&& DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
&& !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
cmp = 1;
else
cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
if (cmp <= 0)
return cmp;
return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
case WITH_CLEANUP_EXPR:
cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
if (cmp <= 0)
return cmp;
return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
case COMPONENT_REF:
if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
return 0;
case VAR_DECL:
case PARM_DECL:
case CONST_DECL:
case FUNCTION_DECL:
return 0;
1999-08-26 09:30:50 +00:00
default:
break;
}
/* This general rule works for most tree codes. All exceptions should be
handled above. If this is a language-specific tree code, we can't
trust what might be in the operand, so say we don't know
the situation. */
1999-08-26 09:30:50 +00:00
if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
return -1;
switch (TREE_CODE_CLASS (code1))
{
case '1':
case '2':
case '<':
case 'e':
case 'r':
case 's':
cmp = 1;
for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
{
cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
if (cmp <= 0)
return cmp;
}
return cmp;
1999-08-26 09:30:50 +00:00
default:
return -1;
}
}
/* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
Return -1, 0, or 1 if the value of T is less than, equal to, or greater
than U, respectively. */
int
compare_tree_int (t, u)
tree t;
unsigned HOST_WIDE_INT u;
{
if (tree_int_cst_sgn (t) < 0)
return -1;
else if (TREE_INT_CST_HIGH (t) != 0)
return 1;
else if (TREE_INT_CST_LOW (t) == u)
return 0;
else if (TREE_INT_CST_LOW (t) < u)
return -1;
else
return 1;
}
/* Constructors for pointer, array and function types.
(RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
constructed by language-dependent code, not here.) */
/* Construct, lay out and return the type of pointers to TO_TYPE.
If such a type has already been constructed, reuse it. */
tree
build_pointer_type (to_type)
tree to_type;
{
tree t = TYPE_POINTER_TO (to_type);
/* First, if we already have a type for pointers to TO_TYPE, use it. */
if (t != 0)
return t;
/* We need a new one. */
t = make_node (POINTER_TYPE);
TREE_TYPE (t) = to_type;
/* Record this type as the pointer to TO_TYPE. */
TYPE_POINTER_TO (to_type) = t;
/* Lay out the type. This function has many callers that are concerned
with expression-construction, and this simplifies them all.
Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
layout_type (t);
return t;
}
/* Build the node for the type of references-to-TO_TYPE. */
tree
build_reference_type (to_type)
tree to_type;
{
tree t = TYPE_REFERENCE_TO (to_type);
/* First, if we already have a type for pointers to TO_TYPE, use it. */
if (t)
return t;
/* We need a new one. */
t = make_node (REFERENCE_TYPE);
TREE_TYPE (t) = to_type;
/* Record this type as the pointer to TO_TYPE. */
TYPE_REFERENCE_TO (to_type) = t;
layout_type (t);
return t;
}
/* Build a type that is compatible with t but has no cv quals anywhere
in its type, thus
const char *const *const * -> char ***. */
tree
build_type_no_quals (t)
tree t;
{
switch (TREE_CODE (t))
{
case POINTER_TYPE:
return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
case REFERENCE_TYPE:
return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
default:
return TYPE_MAIN_VARIANT (t);
}
}
/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
MAXVAL should be the maximum value in the domain
1999-08-26 09:30:50 +00:00
(one less than the length of the array).
The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
We don't enforce this limit, that is up to caller (e.g. language front end).
The limit exists because the result is a signed type and we don't handle
sizes that use more than one HOST_WIDE_INT. */
tree
build_index_type (maxval)
tree maxval;
{
tree itype = make_node (INTEGER_TYPE);
1999-08-26 09:30:50 +00:00
TREE_TYPE (itype) = sizetype;
TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
1999-08-26 09:30:50 +00:00
TYPE_MIN_VALUE (itype) = size_zero_node;
TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
TYPE_MODE (itype) = TYPE_MODE (sizetype);
TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
1999-08-26 09:30:50 +00:00
TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
if (host_integerp (maxval, 1))
return type_hash_canon (tree_low_cst (maxval, 1), itype);
else
return itype;
}
/* Create a range of some discrete type TYPE (an INTEGER_TYPE,
ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
low bound LOWVAL and high bound HIGHVAL.
1999-08-26 09:30:50 +00:00
if TYPE==NULL_TREE, sizetype is used. */
tree
build_range_type (type, lowval, highval)
tree type, lowval, highval;
{
tree itype = make_node (INTEGER_TYPE);
1999-08-26 09:30:50 +00:00
TREE_TYPE (itype) = type;
if (type == NULL_TREE)
type = sizetype;
1999-08-26 09:30:50 +00:00
TYPE_MIN_VALUE (itype) = convert (type, lowval);
1999-08-26 09:30:50 +00:00
TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
TYPE_PRECISION (itype) = TYPE_PRECISION (type);
TYPE_MODE (itype) = TYPE_MODE (type);
TYPE_SIZE (itype) = TYPE_SIZE (type);
1999-08-26 09:30:50 +00:00
TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
TYPE_ALIGN (itype) = TYPE_ALIGN (type);
TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
1999-08-26 09:30:50 +00:00
if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
return type_hash_canon (tree_low_cst (highval, 0)
- tree_low_cst (lowval, 0),
itype);
else
return itype;
}
/* Just like build_index_type, but takes lowval and highval instead
1999-08-26 09:30:50 +00:00
of just highval (maxval). */
tree
build_index_2_type (lowval, highval)
tree lowval, highval;
{
return build_range_type (sizetype, lowval, highval);
}
/* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
Needed because when index types are not hashed, equal index types
built at different times appear distinct, even though structurally,
they are not. */
int
index_type_equal (itype1, itype2)
tree itype1, itype2;
{
if (TREE_CODE (itype1) != TREE_CODE (itype2))
return 0;
if (TREE_CODE (itype1) == INTEGER_TYPE)
{
if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
|| TYPE_MODE (itype1) != TYPE_MODE (itype2)
|| simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
|| TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
return 0;
if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
TYPE_MIN_VALUE (itype2))
&& 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
TYPE_MAX_VALUE (itype2)))
return 1;
}
return 0;
}
/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
and number of elements specified by the range of values of INDEX_TYPE.
If such a type has already been constructed, reuse it. */
tree
build_array_type (elt_type, index_type)
tree elt_type, index_type;
{
tree t;
unsigned int hashcode;
if (TREE_CODE (elt_type) == FUNCTION_TYPE)
{
error ("arrays of functions are not meaningful");
elt_type = integer_type_node;
}
/* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
build_pointer_type (elt_type);
/* Allocate the array after the pointer type,
in case we free it in type_hash_canon. */
t = make_node (ARRAY_TYPE);
TREE_TYPE (t) = elt_type;
TYPE_DOMAIN (t) = index_type;
if (index_type == 0)
{
return t;
}
hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
t = type_hash_canon (hashcode, t);
if (!COMPLETE_TYPE_P (t))
layout_type (t);
return t;
}
1999-08-26 09:30:50 +00:00
/* Return the TYPE of the elements comprising
the innermost dimension of ARRAY. */
tree
get_inner_array_type (array)
tree array;
1999-08-26 09:30:50 +00:00
{
tree type = TREE_TYPE (array);
while (TREE_CODE (type) == ARRAY_TYPE)
type = TREE_TYPE (type);
return type;
}
/* Construct, lay out and return
the type of functions returning type VALUE_TYPE
given arguments of types ARG_TYPES.
ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
are data type nodes for the arguments of the function.
If such a type has already been constructed, reuse it. */
tree
build_function_type (value_type, arg_types)
tree value_type, arg_types;
{
tree t;
unsigned int hashcode;
if (TREE_CODE (value_type) == FUNCTION_TYPE)
{
error ("function return type cannot be function");
value_type = integer_type_node;
}
/* Make a node of the sort we want. */
t = make_node (FUNCTION_TYPE);
TREE_TYPE (t) = value_type;
TYPE_ARG_TYPES (t) = arg_types;
/* If we already have such a type, use the old one and free this one. */
hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
t = type_hash_canon (hashcode, t);
if (!COMPLETE_TYPE_P (t))
layout_type (t);
return t;
}
/* Construct, lay out and return the type of methods belonging to class
BASETYPE and whose arguments and values are described by TYPE.
If that type exists already, reuse it.
TYPE must be a FUNCTION_TYPE node. */
tree
build_method_type (basetype, type)
tree basetype, type;
{
tree t;
unsigned int hashcode;
/* Make a node of the sort we want. */
t = make_node (METHOD_TYPE);
if (TREE_CODE (type) != FUNCTION_TYPE)
abort ();
TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
TREE_TYPE (t) = TREE_TYPE (type);
/* The actual arglist for this function includes a "hidden" argument
which is "this". Put it into the list of argument types. */
TYPE_ARG_TYPES (t)
= tree_cons (NULL_TREE,
build_pointer_type (basetype), TYPE_ARG_TYPES (type));
/* If we already have such a type, use the old one and free this one. */
hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
t = type_hash_canon (hashcode, t);
if (!COMPLETE_TYPE_P (t))
layout_type (t);
return t;
}
/* Construct, lay out and return the type of offsets to a value
of type TYPE, within an object of type BASETYPE.
If a suitable offset type exists already, reuse it. */
tree
build_offset_type (basetype, type)
tree basetype, type;
{
tree t;
unsigned int hashcode;
/* Make a node of the sort we want. */
t = make_node (OFFSET_TYPE);
TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
TREE_TYPE (t) = type;
/* If we already have such a type, use the old one and free this one. */
hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
t = type_hash_canon (hashcode, t);
if (!COMPLETE_TYPE_P (t))
layout_type (t);
return t;
}
/* Create a complex type whose components are COMPONENT_TYPE. */
tree
build_complex_type (component_type)
tree component_type;
{
tree t;
unsigned int hashcode;
/* Make a node of the sort we want. */
t = make_node (COMPLEX_TYPE);
TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
set_type_quals (t, TYPE_QUALS (component_type));
/* If we already have such a type, use the old one and free this one. */
hashcode = TYPE_HASH (component_type);
t = type_hash_canon (hashcode, t);
if (!COMPLETE_TYPE_P (t))
layout_type (t);
/* If we are writing Dwarf2 output we need to create a name,
since complex is a fundamental type. */
if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
&& ! TYPE_NAME (t))
{
const char *name;
if (component_type == char_type_node)
name = "complex char";
else if (component_type == signed_char_type_node)
name = "complex signed char";
else if (component_type == unsigned_char_type_node)
name = "complex unsigned char";
else if (component_type == short_integer_type_node)
name = "complex short int";
else if (component_type == short_unsigned_type_node)
name = "complex short unsigned int";
else if (component_type == integer_type_node)
name = "complex int";
else if (component_type == unsigned_type_node)
name = "complex unsigned int";
else if (component_type == long_integer_type_node)
name = "complex long int";
else if (component_type == long_unsigned_type_node)
name = "complex long unsigned int";
else if (component_type == long_long_integer_type_node)
name = "complex long long int";
else if (component_type == long_long_unsigned_type_node)
name = "complex long long unsigned int";
else
name = 0;
if (name != 0)
TYPE_NAME (t) = get_identifier (name);
}
return t;
}
/* Return OP, stripped of any conversions to wider types as much as is safe.
Converting the value back to OP's type makes a value equivalent to OP.
If FOR_TYPE is nonzero, we return a value which, if converted to
type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
narrowest type that can hold the value, even if they don't exactly fit.
Otherwise, bit-field references are changed to a narrower type
only if they can be fetched directly from memory in that type.
OP must have integer, real or enumeral type. Pointers are not allowed!
There are some cases where the obvious value we could return
would regenerate to OP if converted to OP's type,
but would not extend like OP to wider types.
If FOR_TYPE indicates such extension is contemplated, we eschew such values.
For example, if OP is (unsigned short)(signed char)-1,
we avoid returning (signed char)-1 if FOR_TYPE is int,
even though extending that to an unsigned short would regenerate OP,
since the result of extending (signed char)-1 to (int)
is different from (int) OP. */
tree
get_unwidened (op, for_type)
tree op;
tree for_type;
{
/* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
tree type = TREE_TYPE (op);
unsigned final_prec
= TYPE_PRECISION (for_type != 0 ? for_type : type);
int uns
= (for_type != 0 && for_type != type
&& final_prec > TYPE_PRECISION (type)
&& TREE_UNSIGNED (type));
tree win = op;
while (TREE_CODE (op) == NOP_EXPR)
{
int bitschange
= TYPE_PRECISION (TREE_TYPE (op))
- TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
/* Truncations are many-one so cannot be removed.
Unless we are later going to truncate down even farther. */
if (bitschange < 0
&& final_prec > TYPE_PRECISION (TREE_TYPE (op)))
break;
/* See what's inside this conversion. If we decide to strip it,
we will set WIN. */
op = TREE_OPERAND (op, 0);
/* If we have not stripped any zero-extensions (uns is 0),
we can strip any kind of extension.
If we have previously stripped a zero-extension,
only zero-extensions can safely be stripped.
Any extension can be stripped if the bits it would produce
are all going to be discarded later by truncating to FOR_TYPE. */
if (bitschange > 0)
{
if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
win = op;
/* TREE_UNSIGNED says whether this is a zero-extension.
Let's avoid computing it if it does not affect WIN
and if UNS will not be needed again. */
if ((uns || TREE_CODE (op) == NOP_EXPR)
&& TREE_UNSIGNED (TREE_TYPE (op)))
{
uns = 1;
win = op;
}
}
}
if (TREE_CODE (op) == COMPONENT_REF
/* Since type_for_size always gives an integer type. */
1999-08-26 09:30:50 +00:00
&& TREE_CODE (type) != REAL_TYPE
/* Don't crash if field not laid out yet. */
&& DECL_SIZE (TREE_OPERAND (op, 1)) != 0
&& host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
{
unsigned int innerprec
= tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
/* We can get this structure field in the narrowest type it fits in.
If FOR_TYPE is 0, do this only for a field that matches the
narrower type exactly and is aligned for it
The resulting extension to its nominal type (a fullword type)
must fit the same conditions as for other extensions. */
if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
&& (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
&& (! uns || final_prec <= innerprec
|| TREE_UNSIGNED (TREE_OPERAND (op, 1)))
&& type != 0)
{
win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
TREE_OPERAND (op, 1));
TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
}
}
return win;
}
/* Return OP or a simpler expression for a narrower value
which can be sign-extended or zero-extended to give back OP.
Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
or 0 if the value should be sign-extended. */
tree
get_narrower (op, unsignedp_ptr)
tree op;
int *unsignedp_ptr;
{
int uns = 0;
int first = 1;
tree win = op;
while (TREE_CODE (op) == NOP_EXPR)
{
int bitschange
= (TYPE_PRECISION (TREE_TYPE (op))
- TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
/* Truncations are many-one so cannot be removed. */
if (bitschange < 0)
break;
/* See what's inside this conversion. If we decide to strip it,
we will set WIN. */
op = TREE_OPERAND (op, 0);
if (bitschange > 0)
{
/* An extension: the outermost one can be stripped,
but remember whether it is zero or sign extension. */
if (first)
uns = TREE_UNSIGNED (TREE_TYPE (op));
/* Otherwise, if a sign extension has been stripped,
only sign extensions can now be stripped;
if a zero extension has been stripped, only zero-extensions. */
else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
break;
first = 0;
}
else /* bitschange == 0 */
{
/* A change in nominal type can always be stripped, but we must
preserve the unsignedness. */
if (first)
uns = TREE_UNSIGNED (TREE_TYPE (op));
first = 0;
}
win = op;
}
if (TREE_CODE (op) == COMPONENT_REF
/* Since type_for_size always gives an integer type. */
&& TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
/* Ensure field is laid out already. */
&& DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
{
unsigned HOST_WIDE_INT innerprec
= tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
/* We can get this structure field in a narrower type that fits it,
but the resulting extension to its nominal type (a fullword type)
must satisfy the same conditions as for other extensions.
Do this only for fields that are aligned (not bit-fields),
because when bit-field insns will be used there is no
advantage in doing this. */
if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
&& ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
&& (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
&& type != 0)
{
if (first)
uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
TREE_OPERAND (op, 1));
TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
}
}
*unsignedp_ptr = uns;
return win;
}
/* Nonzero if integer constant C has a value that is permissible
for type TYPE (an INTEGER_TYPE). */
int
int_fits_type_p (c, type)
tree c, type;
{
/* If the bounds of the type are integers, we can check ourselves.
If not, but this type is a subtype, try checking against that.
Otherwise, use force_fit_type, which checks against the precision. */
if (TYPE_MAX_VALUE (type) != NULL_TREE
&& TYPE_MIN_VALUE (type) != NULL_TREE
&& TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
&& TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
{
if (TREE_UNSIGNED (type))
return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
&& ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
/* Negative ints never fit unsigned types. */
&& ! (TREE_INT_CST_HIGH (c) < 0
&& ! TREE_UNSIGNED (TREE_TYPE (c))));
else
return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
&& ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
/* Unsigned ints with top bit set never fit signed types. */
&& ! (TREE_INT_CST_HIGH (c) < 0
&& TREE_UNSIGNED (TREE_TYPE (c))));
}
else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
return int_fits_type_p (c, TREE_TYPE (type));
else
{
c = copy_node (c);
TREE_TYPE (c) = type;
return !force_fit_type (c, 0);
}
}
/* Given a DECL or TYPE, return the scope in which it was declared, or
NULL_TREE if there is no containing scope. */
tree
get_containing_scope (t)
tree t;
{
return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
}
/* Return the innermost context enclosing DECL that is
a FUNCTION_DECL, or zero if none. */
tree
decl_function_context (decl)
tree decl;
{
tree context;
if (TREE_CODE (decl) == ERROR_MARK)
return 0;
if (TREE_CODE (decl) == SAVE_EXPR)
context = SAVE_EXPR_CONTEXT (decl);
/* C++ virtual functions use DECL_CONTEXT for the class of the vtable
where we look up the function at runtime. Such functions always take
a first argument of type 'pointer to real context'.
C++ should really be fixed to use DECL_CONTEXT for the real context,
and use something else for the "virtual context". */
else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
context
= TYPE_MAIN_VARIANT
(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
else
context = DECL_CONTEXT (decl);
while (context && TREE_CODE (context) != FUNCTION_DECL)
{
if (TREE_CODE (context) == BLOCK)
context = BLOCK_SUPERCONTEXT (context);
else
context = get_containing_scope (context);
}
return context;
}
/* Return the innermost context enclosing DECL that is
a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
tree
decl_type_context (decl)
tree decl;
{
tree context = DECL_CONTEXT (decl);
while (context)
{
if (TREE_CODE (context) == RECORD_TYPE
|| TREE_CODE (context) == UNION_TYPE
|| TREE_CODE (context) == QUAL_UNION_TYPE)
return context;
if (TREE_CODE (context) == TYPE_DECL
|| TREE_CODE (context) == FUNCTION_DECL)
context = DECL_CONTEXT (context);
else if (TREE_CODE (context) == BLOCK)
context = BLOCK_SUPERCONTEXT (context);
else
/* Unhandled CONTEXT!? */
abort ();
}
return NULL_TREE;
}
/* CALL is a CALL_EXPR. Return the declaration for the function
called, or NULL_TREE if the called function cannot be
determined. */
1999-08-26 09:30:50 +00:00
tree
get_callee_fndecl (call)
tree call;
1999-08-26 09:30:50 +00:00
{
tree addr;
1999-08-26 09:30:50 +00:00
/* It's invalid to call this function with anything but a
CALL_EXPR. */
if (TREE_CODE (call) != CALL_EXPR)
abort ();
1999-08-26 09:30:50 +00:00
/* The first operand to the CALL is the address of the function
called. */
addr = TREE_OPERAND (call, 0);
STRIP_NOPS (addr);
/* If this is a readonly function pointer, extract its initial value. */
if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
&& TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
&& DECL_INITIAL (addr))
addr = DECL_INITIAL (addr);
/* If the address is just `&f' for some function `f', then we know
that `f' is being called. */
if (TREE_CODE (addr) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
return TREE_OPERAND (addr, 0);
/* We couldn't figure out what was being called. */
return NULL_TREE;
1999-08-26 09:30:50 +00:00
}
/* Print debugging information about the obstack O, named STR. */
void
print_obstack_statistics (str, o)
const char *str;
struct obstack *o;
{
struct _obstack_chunk *chunk = o->chunk;
1999-08-26 09:30:50 +00:00
int n_chunks = 1;
int n_alloc = 0;
1999-08-26 09:30:50 +00:00
n_alloc += o->next_free - chunk->contents;
chunk = chunk->prev;
while (chunk)
{
n_chunks += 1;
n_alloc += chunk->limit - &chunk->contents[0];
chunk = chunk->prev;
}
1999-08-26 09:30:50 +00:00
fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
str, n_alloc, n_chunks);
}
1999-08-26 09:30:50 +00:00
/* Print debugging information about tree nodes generated during the compile,
and any language-specific information. */
void
dump_tree_statistics ()
{
1999-08-26 09:30:50 +00:00
#ifdef GATHER_STATISTICS
int i;
int total_nodes, total_bytes;
1999-08-26 09:30:50 +00:00
#endif
fprintf (stderr, "\n??? tree nodes created\n\n");
#ifdef GATHER_STATISTICS
fprintf (stderr, "Kind Nodes Bytes\n");
fprintf (stderr, "-------------------------------------\n");
total_nodes = total_bytes = 0;
for (i = 0; i < (int) all_kinds; i++)
{
fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
tree_node_counts[i], tree_node_sizes[i]);
total_nodes += tree_node_counts[i];
total_bytes += tree_node_sizes[i];
}
fprintf (stderr, "-------------------------------------\n");
fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
fprintf (stderr, "-------------------------------------\n");
#else
fprintf (stderr, "(No per-node statistics)\n");
#endif
1999-08-26 09:30:50 +00:00
print_obstack_statistics ("permanent_obstack", &permanent_obstack);
print_type_hash_statistics ();
(*lang_hooks.print_statistics) ();
}
#define FILE_FUNCTION_PREFIX_LEN 9
1999-08-26 09:30:50 +00:00
#define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
1999-08-26 09:30:50 +00:00
/* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
clashes in cases where we can't reliably choose a unique name.
Derived from mkstemp.c in libiberty. */
static void
append_random_chars (template)
char *template;
{
static const char letters[]
= "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
static unsigned HOST_WIDE_INT value;
unsigned HOST_WIDE_INT v;
if (! value)
{
struct stat st;
1999-08-26 09:30:50 +00:00
/* VALUE should be unique for each file and must not change between
compiles since this can cause bootstrap comparison errors. */
if (stat (main_input_filename, &st) < 0)
{
/* This can happen when preprocessed text is shipped between
machines, e.g. with bug reports. Assume that uniqueness
isn't actually an issue. */
value = 1;
}
else
{
/* In VMS, ino is an array, so we have to use both values. We
conditionalize that. */
#ifdef VMS
#define INO_TO_INT(INO) ((int) (INO)[1] << 16 ^ (int) (INO)[2])
1999-08-26 09:30:50 +00:00
#else
#define INO_TO_INT(INO) INO
1999-08-26 09:30:50 +00:00
#endif
value = st.st_dev ^ INO_TO_INT (st.st_ino) ^ st.st_mtime;
}
}
template += strlen (template);
1999-08-26 09:30:50 +00:00
v = value;
/* Fill in the random bits. */
template[0] = letters[v % 62];
v /= 62;
template[1] = letters[v % 62];
v /= 62;
template[2] = letters[v % 62];
v /= 62;
template[3] = letters[v % 62];
v /= 62;
template[4] = letters[v % 62];
v /= 62;
template[5] = letters[v % 62];
template[6] = '\0';
}
/* P is a string that will be used in a symbol. Mask out any characters
that are not valid in that context. */
void
clean_symbol_name (p)
char *p;
{
for (; *p; p++)
if (! (ISALNUM (*p)
#ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
|| *p == '$'
#endif
#ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
|| *p == '.'
#endif
))
*p = '_';
}
1999-08-26 09:30:50 +00:00
/* Generate a name for a function unique to this translation unit.
TYPE is some string to identify the purpose of this function to the
linker or collect2. */
tree
1999-08-26 09:30:50 +00:00
get_file_function_name_long (type)
const char *type;
{
char *buf;
const char *p;
char *q;
if (first_global_object_name)
p = first_global_object_name;
else
1999-08-26 09:30:50 +00:00
{
/* We don't have anything that we know to be unique to this translation
unit, so use what we do have and throw in some randomness. */
const char *name = weak_global_object_name;
const char *file = main_input_filename;
1999-08-26 09:30:50 +00:00
if (! name)
name = "";
if (! file)
file = input_filename;
q = (char *) alloca (7 + strlen (name) + strlen (file));
1999-08-26 09:30:50 +00:00
sprintf (q, "%s%s", name, file);
append_random_chars (q);
p = q;
1999-08-26 09:30:50 +00:00
}
buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
+ strlen (type));
/* Set up the name of the file-level functions we may need.
Use a global object (which is already required to be unique over
the program) rather than the file name (which imposes extra
constraints). */
1999-08-26 09:30:50 +00:00
sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
/* Don't need to pull weird characters out of global names. */
if (p != first_global_object_name)
clean_symbol_name (buf + 11);
return get_identifier (buf);
}
1999-08-26 09:30:50 +00:00
/* If KIND=='I', return a suitable global initializer (constructor) name.
If KIND=='D', return a suitable global clean-up (destructor) name. */
tree
get_file_function_name (kind)
int kind;
{
char p[2];
1999-08-26 09:30:50 +00:00
p[0] = kind;
p[1] = 0;
return get_file_function_name_long (p);
}
/* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
The result is placed in BUFFER (which has length BIT_SIZE),
with one bit in each char ('\000' or '\001').
If the constructor is constant, NULL_TREE is returned.
1999-08-26 09:30:50 +00:00
Otherwise, a TREE_LIST of the non-constant elements is emitted. */
tree
get_set_constructor_bits (init, buffer, bit_size)
tree init;
char *buffer;
int bit_size;
{
int i;
tree vals;
HOST_WIDE_INT domain_min
= tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
tree non_const_bits = NULL_TREE;
for (i = 0; i < bit_size; i++)
buffer[i] = 0;
for (vals = TREE_OPERAND (init, 1);
vals != NULL_TREE; vals = TREE_CHAIN (vals))
{
if (!host_integerp (TREE_VALUE (vals), 0)
|| (TREE_PURPOSE (vals) != NULL_TREE
&& !host_integerp (TREE_PURPOSE (vals), 0)))
1999-08-26 09:30:50 +00:00
non_const_bits
= tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
else if (TREE_PURPOSE (vals) != NULL_TREE)
{
1999-08-26 09:30:50 +00:00
/* Set a range of bits to ones. */
HOST_WIDE_INT lo_index
= tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
HOST_WIDE_INT hi_index
= tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
if (lo_index < 0 || lo_index >= bit_size
|| hi_index < 0 || hi_index >= bit_size)
abort ();
for (; lo_index <= hi_index; lo_index++)
buffer[lo_index] = 1;
}
else
{
1999-08-26 09:30:50 +00:00
/* Set a single bit to one. */
HOST_WIDE_INT index
= tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
if (index < 0 || index >= bit_size)
{
error ("invalid initializer for bit string");
return NULL_TREE;
}
buffer[index] = 1;
}
}
return non_const_bits;
}
/* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
The result is placed in BUFFER (which is an array of bytes).
If the constructor is constant, NULL_TREE is returned.
1999-08-26 09:30:50 +00:00
Otherwise, a TREE_LIST of the non-constant elements is emitted. */
tree
get_set_constructor_bytes (init, buffer, wd_size)
tree init;
unsigned char *buffer;
int wd_size;
{
int i;
int set_word_size = BITS_PER_UNIT;
int bit_size = wd_size * set_word_size;
int bit_pos = 0;
unsigned char *bytep = buffer;
char *bit_buffer = (char *) alloca (bit_size);
tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
for (i = 0; i < wd_size; i++)
buffer[i] = 0;
for (i = 0; i < bit_size; i++)
{
if (bit_buffer[i])
{
if (BYTES_BIG_ENDIAN)
*bytep |= (1 << (set_word_size - 1 - bit_pos));
else
*bytep |= 1 << bit_pos;
}
bit_pos++;
if (bit_pos >= set_word_size)
bit_pos = 0, bytep++;
}
return non_const_bits;
}
1999-08-26 09:30:50 +00:00
#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
/* Complain that the tree code of NODE does not match the expected CODE.
FILE, LINE, and FUNCTION are of the caller. */
1999-08-26 09:30:50 +00:00
void
tree_check_failed (node, code, file, line, function)
const tree node;
1999-08-26 09:30:50 +00:00
enum tree_code code;
const char *file;
1999-08-26 09:30:50 +00:00
int line;
const char *function;
1999-08-26 09:30:50 +00:00
{
internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
tree_code_name[code], tree_code_name[TREE_CODE (node)],
function, trim_filename (file), line);
1999-08-26 09:30:50 +00:00
}
/* Similar to above, except that we check for a class of tree
code, given in CL. */
void
tree_class_check_failed (node, cl, file, line, function)
const tree node;
int cl;
const char *file;
1999-08-26 09:30:50 +00:00
int line;
const char *function;
1999-08-26 09:30:50 +00:00
{
internal_error
("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
cl, TREE_CODE_CLASS (TREE_CODE (node)),
tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
1999-08-26 09:30:50 +00:00
}
#endif /* ENABLE_TREE_CHECKING */
/* For a new vector type node T, build the information necessary for
debuggint output. */
1999-08-26 09:30:50 +00:00
static void
finish_vector_type (t)
tree t;
1999-08-26 09:30:50 +00:00
{
layout_type (t);
1999-08-26 09:30:50 +00:00
{
tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
tree array = build_array_type (TREE_TYPE (t),
build_index_type (index));
tree rt = make_node (RECORD_TYPE);
TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
layout_type (rt);
TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
/* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
the representation type, and we want to find that die when looking up
the vector type. This is most easily achieved by making the TYPE_UID
numbers equal. */
TYPE_UID (rt) = TYPE_UID (t);
}
1999-08-26 09:30:50 +00:00
}
/* Create nodes for all integer types (and error_mark_node) using the sizes
of C datatypes. The caller should call set_sizetype soon after calling
this function to select one of the types as sizetype. */
1999-08-26 09:30:50 +00:00
void
build_common_tree_nodes (signed_char)
int signed_char;
{
error_mark_node = make_node (ERROR_MARK);
TREE_TYPE (error_mark_node) = error_mark_node;
initialize_sizetypes ();
/* Define both `signed char' and `unsigned char'. */
signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
/* Define `char', which is like either `signed char' or `unsigned char'
but not the same as either. */
char_type_node
= (signed_char
? make_signed_type (CHAR_TYPE_SIZE)
: make_unsigned_type (CHAR_TYPE_SIZE));
short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
integer_type_node = make_signed_type (INT_TYPE_SIZE);
unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
}
/* Call this function after calling build_common_tree_nodes and set_sizetype.
It will create several other common tree nodes. */
void
build_common_tree_nodes_2 (short_double)
int short_double;
{
/* Define these next since types below may used them. */
integer_zero_node = build_int_2 (0, 0);
integer_one_node = build_int_2 (1, 0);
integer_minus_one_node = build_int_2 (-1, -1);
size_zero_node = size_int (0);
size_one_node = size_int (1);
bitsize_zero_node = bitsize_int (0);
bitsize_one_node = bitsize_int (1);
bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
void_type_node = make_node (VOID_TYPE);
layout_type (void_type_node);
/* We are not going to have real types in C with less than byte alignment,
so we might as well not have any types that claim to have it. */
TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
TYPE_USER_ALIGN (void_type_node) = 0;
null_pointer_node = build_int_2 (0, 0);
TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
layout_type (TREE_TYPE (null_pointer_node));
ptr_type_node = build_pointer_type (void_type_node);
const_ptr_type_node
= build_pointer_type (build_type_variant (void_type_node, 1, 0));
float_type_node = make_node (REAL_TYPE);
TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
layout_type (float_type_node);
double_type_node = make_node (REAL_TYPE);
if (short_double)
TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
1999-08-26 09:30:50 +00:00
else
TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
layout_type (double_type_node);
long_double_type_node = make_node (REAL_TYPE);
TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
layout_type (long_double_type_node);
complex_integer_type_node = make_node (COMPLEX_TYPE);
TREE_TYPE (complex_integer_type_node) = integer_type_node;
layout_type (complex_integer_type_node);
complex_float_type_node = make_node (COMPLEX_TYPE);
TREE_TYPE (complex_float_type_node) = float_type_node;
layout_type (complex_float_type_node);
complex_double_type_node = make_node (COMPLEX_TYPE);
TREE_TYPE (complex_double_type_node) = double_type_node;
layout_type (complex_double_type_node);
complex_long_double_type_node = make_node (COMPLEX_TYPE);
TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
layout_type (complex_long_double_type_node);
{
tree t;
BUILD_VA_LIST_TYPE (t);
/* Many back-ends define record types without seting TYPE_NAME.
If we copied the record type here, we'd keep the original
record type without a name. This breaks name mangling. So,
don't copy record types and let c_common_nodes_and_builtins()
declare the type to be __builtin_va_list. */
if (TREE_CODE (t) != RECORD_TYPE)
t = build_type_copy (t);
va_list_type_node = t;
}
unsigned_V4SI_type_node
= make_vector (V4SImode, unsigned_intSI_type_node, 1);
unsigned_V2SI_type_node
= make_vector (V2SImode, unsigned_intSI_type_node, 1);
unsigned_V4HI_type_node
= make_vector (V4HImode, unsigned_intHI_type_node, 1);
unsigned_V8QI_type_node
= make_vector (V8QImode, unsigned_intQI_type_node, 1);
unsigned_V8HI_type_node
= make_vector (V8HImode, unsigned_intHI_type_node, 1);
unsigned_V16QI_type_node
= make_vector (V16QImode, unsigned_intQI_type_node, 1);
V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
}
/* Returns a vector tree node given a vector mode, the inner type, and
the signness. */
static tree
make_vector (mode, innertype, unsignedp)
enum machine_mode mode;
tree innertype;
int unsignedp;
{
tree t;
t = make_node (VECTOR_TYPE);
TREE_TYPE (t) = innertype;
TYPE_MODE (t) = mode;
TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
finish_vector_type (t);
return t;
}