208 lines
5.7 KiB
C
Raw Normal View History

/* $NetBSD: obio.c,v 1.11 2003/07/15 00:25:05 lukem Exp $ */
/*-
* Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* On-board device autoconfiguration support for Cavium OCTEON 1 family of
* SoC devices.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/malloc.h>
#include <machine/bus.h>
#include <mips/cavium/octeon_pcmap_regs.h>
#include <mips/cavium/obiovar.h>
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
#include <contrib/octeon-sdk/cvmx.h>
#include <contrib/octeon-sdk/cvmx-interrupt.h>
extern struct bus_space octeon_uart_tag;
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
static void obio_identify(driver_t *, device_t);
static int obio_probe(device_t);
static int obio_attach(device_t);
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
static void
obio_identify(driver_t *drv, device_t parent)
{
BUS_ADD_CHILD(parent, 0, "obio", 0);
}
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
static int
obio_probe(device_t dev)
{
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
if (device_get_unit(dev) != 0)
return (ENXIO);
return (0);
}
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
static int
obio_attach(device_t dev)
{
struct obio_softc *sc = device_get_softc(dev);
sc->oba_st = mips_bus_space_generic;
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
/*
* XXX
* Here and elsewhere using RBR as a base address because it kind of
* is, but that feels pretty sloppy. Should consider adding a define
* that's more semantic, at least.
*/
sc->oba_addr = CVMX_MIO_UARTX_RBR(0);
sc->oba_size = 0x10000;
sc->oba_rman.rm_type = RMAN_ARRAY;
sc->oba_rman.rm_descr = "OBIO I/O";
if (rman_init(&sc->oba_rman) != 0 ||
rman_manage_region(&sc->oba_rman,
sc->oba_addr, sc->oba_addr + sc->oba_size) != 0)
panic("obio_attach: failed to set up I/O rman");
sc->oba_irq_rman.rm_type = RMAN_ARRAY;
sc->oba_irq_rman.rm_descr = "OBIO IRQ";
/*
* This module is intended for UART purposes only and
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
* manages IRQs for UART0 and UART1.
*/
if (rman_init(&sc->oba_irq_rman) != 0 ||
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
rman_manage_region(&sc->oba_irq_rman, CVMX_IRQ_UART0, CVMX_IRQ_UART1) != 0)
panic("obio_attach: failed to set up IRQ rman");
device_add_child(dev, "uart", 1); /* Setup Uart-1 first. */
device_add_child(dev, "uart", 0); /* Uart-0 next. So it is first in console list */
bus_generic_probe(dev);
bus_generic_attach(dev);
return (0);
}
static struct resource *
obio_alloc_resource(device_t bus, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
struct resource *rv;
struct rman *rm;
bus_space_tag_t bt = 0;
bus_space_handle_t bh = 0;
struct obio_softc *sc = device_get_softc(bus);
switch (type) {
case SYS_RES_IRQ:
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
switch (device_get_unit(child)) {
case 0:
start = end = CVMX_IRQ_UART0;
break;
case 1:
start = end = CVMX_IRQ_UART1;
break;
default:
return (NULL);
}
rm = &sc->oba_irq_rman;
break;
case SYS_RES_MEMORY:
return (NULL);
case SYS_RES_IOPORT:
rm = &sc->oba_rman;
bt = &octeon_uart_tag;
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
bh = CVMX_MIO_UARTX_RBR(device_get_unit(child));
start = bh;
break;
default:
return (NULL);
}
rv = rman_reserve_resource(rm, start, end, count, flags, child);
if (rv == NULL) {
return (NULL);
}
if (type == SYS_RES_IRQ) {
return (rv);
}
rman_set_rid(rv, *rid);
rman_set_bustag(rv, bt);
rman_set_bushandle(rv, bh);
if (0) {
if (bus_activate_resource(child, type, *rid, rv)) {
rman_release_resource(rv);
return (NULL);
}
}
return (rv);
}
static int
obio_activate_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
return (0);
}
static device_method_t obio_methods[] = {
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
/* Device methods */
DEVMETHOD(device_identify, obio_identify),
DEVMETHOD(device_probe, obio_probe),
DEVMETHOD(device_attach, obio_attach),
/* Bus methods */
DEVMETHOD(bus_alloc_resource, obio_alloc_resource),
DEVMETHOD(bus_activate_resource,obio_activate_resource),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
2010-09-19 09:18:27 +00:00
DEVMETHOD(bus_add_child, bus_generic_add_child),
{0, 0},
};
static driver_t obio_driver = {
"obio",
obio_methods,
sizeof(struct obio_softc),
};
static devclass_t obio_devclass;
Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive library: o) Increase inline unit / large function growth limits for MIPS to accommodate the needs of the Simple Executive, which uses a shocking amount of inlining. o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and the Octeon SoC. o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific board numbers, specifically to support the MR320. o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd, which improperly uses an evaluation board's board number and breaks board detection at runtime. This board is sold by Portwell as the CAM-0100. o) Add support for the RTC available on some Octeon boards. o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO ports can not work unless building for n64. o) Clean up the CompactFlash driver to use Simple Executive macros and structures where possible (it would be advisable to use the Simple Executive API to set the PIO mode, too, but that is not done presently.) Also use structures from FreeBSD's ATA layer rather than structures copied from Linux. o) Print available Octeon SoC features on boot. o) Add support for the Octeon timecounter. o) Use the Simple Executive's routines rather than local copies for doing reads and writes to 64-bit addresses and use its macros for various device addresses rather than using local copies. o) Rename octeon_board_real to octeon_is_simulation to reduce differences with Cavium-provided code originally written for Linux. Also make it use the same simplified test that the Simple Executive and Linux both use rather than our complex one. o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus to use normal interrupt allocation and setup routines. o) Use the Simple Executive's bootmem facility to allocate physical memory for the kernel, rather than assuming we know which addresses we can steal. NB: This may reduce the amount of RAM the kernel reports you as having if you are leaving large temporary allocations made by U-Boot allocated when starting FreeBSD. o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes Ethernet interface naming from rgmxN to octeN. The new driver has vast improvements over the old one, both in performance and functionality, but does still have some features which have not been ported entirely and there may be unimplemented code that can be hit in everyday use. I will make every effort to correct those as they are reported. o) Support loading the kernel on non-contiguous cores. o) Add very conservative support for harvesting randomness from the Octeon random number device. o) Turn SMP on by default. o) Clean up the style of the Octeon kernel configurations a little and make them compile with -march=octeon. o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple Executive. o) Modify the Simple Executive to build on FreeBSD and to build without executive-config.h or cvmx-config.h. In the future we may want to revert part of these changes and supply executive-config.h and cvmx-config.h and access to the options contained in those files via kernel configuration files. o) Modify the Simple Executive USB routines to support getting and setting of the USB PID.
2010-07-20 19:25:11 +00:00
DRIVER_MODULE(obio, ciu, obio_driver, obio_devclass, 0, 0);