549 lines
14 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2000 Mark R V Murray
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/* NOTE NOTE NOTE - This is not finished! It will supply numbers, but
* it is not yet cryptographically secure!!
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/libkern.h>
#include <sys/mutex.h>
#include <sys/selinfo.h>
#include <sys/random.h>
#include <sys/types.h>
#include <sys/unistd.h>
#include <machine/atomic.h>
#include <machine/cpu.h>
#include <crypto/blowfish/blowfish.h>
#include <dev/random/hash.h>
#include <dev/random/yarrow.h>
/* #define DEBUG */
/* #define DEBUG1 */ /* Very noisy - prints plenty harvesting stats */
static void generator_gate(void);
static void reseed(int);
static void random_harvest_internal(u_int64_t, void *, u_int, u_int, u_int, enum esource);
static void random_kthread(void *);
/* Structure holding the entropy state */
struct random_state random_state;
/* These are used to queue harvested packets of entropy. The entropy
* buffer size is pretty arbitrary.
*/
struct harvest {
u_int64_t somecounter; /* fast counter for clock jitter */
u_char entropy[HARVESTSIZE]; /* the harvested entropy */
u_int size, bits, frac; /* stats about the entropy */
enum esource source; /* stats about the entropy */
u_int pool; /* which pool this goes into */
};
/* Ring buffer holding harvested entropy */
static struct harvestring {
struct mtx lockout_mtx;
int head;
int tail;
struct harvest data[HARVEST_RING_SIZE];
} harvestring;
/* The reseed thread mutex */
static struct mtx random_reseed_mtx;
/* <0 to end the kthread, 0 to let it run */
static int random_kthread_control = 0;
static struct proc *random_kthread_proc;
static void
random_kthread(void *arg /* NOTUSED */)
{
int pl, src, overthreshhold[2], head, newtail;
struct harvest *event;
struct source *source;
#ifdef DEBUG
mtx_enter(&Giant, MTX_DEF);
printf("OWNERSHIP Giant == %d sched_lock == %d\n",
mtx_owned(&Giant), mtx_owned(&sched_lock));
mtx_exit(&Giant, MTX_DEF);
#endif
for (pl = 0; pl < 2; pl++)
yarrow_hash_init(&random_state.pool[pl].hash, NULL, 0);
for (;;) {
head = atomic_load_acq_int(&harvestring.head);
newtail = (harvestring.tail + 1) % HARVEST_RING_SIZE;
if (harvestring.tail == head)
tsleep(&harvestring.head, PUSER, "rndslp", hz/10);
else {
#ifdef DEBUG1
mtx_enter(&Giant, MTX_DEF);
printf("HARVEST src=%d bits=%d/%d pool=%d count=%lld\n",
event->source, event->bits, event->frac,
event->pool, event->somecounter);
mtx_exit(&Giant, MTX_DEF);
#endif
/* Suck the harvested entropy out of the queue and hash
* it into the appropriate pool.
*/
event = &harvestring.data[harvestring.tail];
harvestring.tail = newtail;
source = &random_state.pool[event->pool].source[event->source];
yarrow_hash_iterate(&random_state.pool[event->pool].hash,
event->entropy, sizeof(event->entropy));
yarrow_hash_iterate(&random_state.pool[event->pool].hash,
&event->somecounter, sizeof(event->somecounter));
source->frac += event->frac;
source->bits += event->bits + source->frac/1024;
source->frac %= 1024;
/* Count the over-threshold sources in each pool */
for (pl = 0; pl < 2; pl++) {
overthreshhold[pl] = 0;
for (src = 0; src < ENTROPYSOURCE; src++) {
if (random_state.pool[pl].source[src].bits
> random_state.pool[pl].thresh)
overthreshhold[pl]++;
}
}
/* if any fast source over threshhold, reseed */
if (overthreshhold[FAST])
reseed(FAST);
/* if enough slow sources are over threshhold, reseed */
if (overthreshhold[SLOW] >= random_state.slowoverthresh)
reseed(SLOW);
}
/* Is the thread scheduled for a shutdown? */
if (random_kthread_control != 0) {
#ifdef DEBUG
mtx_enter(&Giant, MTX_DEF);
printf("Random kthread setting terminate\n");
mtx_exit(&Giant, MTX_DEF);
#endif
random_set_wakeup_exit(&random_kthread_control);
/* NOTREACHED */
break;
}
}
}
int
random_init(void)
{
int error;
#ifdef DEBUG
mtx_enter(&Giant, MTX_DEF);
printf("Random initialise\n");
mtx_exit(&Giant, MTX_DEF);
#endif
/* This can be turned off by the very paranoid
* a reseed will turn it back on.
*/
random_state.seeded = 1;
random_state.gengateinterval = 10;
random_state.bins = 10;
random_state.pool[0].thresh = 100;
random_state.pool[1].thresh = 160;
random_state.slowoverthresh = 2;
random_state.which = FAST;
/* Initialise the mutexes */
mtx_init(&random_reseed_mtx, "random reseed", MTX_DEF);
mtx_init(&harvestring.lockout_mtx, "random harvest", MTX_DEF);
harvestring.head = 0;
harvestring.tail = 0;
/* Start the hash/reseed thread */
error = kthread_create(random_kthread, NULL,
&random_kthread_proc, RFHIGHPID, "random");
if (error != 0)
return error;
/* Register the randomness harvesting routine */
random_init_harvester(random_harvest_internal, read_random_real);
#ifdef DEBUG
mtx_enter(&Giant, MTX_DEF);
printf("Random initalise finish\n");
mtx_exit(&Giant, MTX_DEF);
#endif
return 0;
}
void
random_deinit(void)
{
#ifdef DEBUG
mtx_enter(&Giant, MTX_DEF);
printf("Random deinitalise\n");
mtx_exit(&Giant, MTX_DEF);
#endif
/* Deregister the randomness harvesting routine */
random_deinit_harvester();
#ifdef DEBUG
mtx_enter(&Giant, MTX_DEF);
printf("Random deinitalise waiting for thread to terminate\n");
mtx_exit(&Giant, MTX_DEF);
#endif
/* Command the hash/reseed thread to end and wait for it to finish */
mtx_enter(&harvestring.lockout_mtx, MTX_DEF);
random_kthread_control = -1;
msleep((void *)&random_kthread_control, &harvestring.lockout_mtx, PUSER,
"rndend", 0);
mtx_exit(&harvestring.lockout_mtx, MTX_DEF);
#ifdef DEBUG
mtx_enter(&Giant, MTX_DEF);
printf("Random deinitalise removing mutexes\n");
mtx_exit(&Giant, MTX_DEF);
#endif
/* Remove the mutexes */
mtx_destroy(&random_reseed_mtx);
mtx_destroy(&harvestring.lockout_mtx);
#ifdef DEBUG
mtx_enter(&Giant, MTX_DEF);
printf("Random deinitalise finish\n");
mtx_exit(&Giant, MTX_DEF);
#endif
}
static void
reseed(int fastslow)
{
/* Interrupt-context stack is a limited resource; make large
* structures static.
*/
static u_char v[TIMEBIN][KEYSIZE]; /* v[i] */
static struct yarrowhash context;
u_char hash[KEYSIZE]; /* h' */
u_char temp[KEYSIZE];
int i, j;
#ifdef DEBUG
mtx_enter(&Giant, MTX_DEF);
printf("Reseed type %d\n", fastslow);
mtx_exit(&Giant, MTX_DEF);
#endif
/* The reseed task must not be jumped on */
mtx_enter(&random_reseed_mtx, MTX_DEF);
/* 1. Hash the accumulated entropy into v[0] */
yarrow_hash_init(&context, NULL, 0);
/* Feed the slow pool hash in if slow */
if (fastslow == SLOW)
yarrow_hash_iterate(&context,
&random_state.pool[SLOW].hash, sizeof(struct yarrowhash));
yarrow_hash_iterate(&context,
&random_state.pool[FAST].hash, sizeof(struct yarrowhash));
/* 2. Compute hash values for all v. _Supposed_ to be computationally
* intensive.
*/
if (random_state.bins > TIMEBIN)
random_state.bins = TIMEBIN;
for (i = 1; i < random_state.bins; i++) {
yarrow_hash_init(&context, NULL, 0);
/* v[i] #= h(v[i-1]) */
yarrow_hash_iterate(&context, v[i - 1], KEYSIZE);
/* v[i] #= h(v[0]) */
yarrow_hash_iterate(&context, v[0], KEYSIZE);
/* v[i] #= h(i) */
yarrow_hash_iterate(&context, &i, sizeof(int));
/* Return the hashval */
yarrow_hash_finish(&context, v[i]);
}
/* 3. Compute a new key; h' is the identity function here;
* it is not being ignored!
*/
yarrow_hash_init(&context, NULL, 0);
yarrow_hash_iterate(&context, &random_state.key, KEYSIZE);
for (i = 1; i < random_state.bins; i++)
yarrow_hash_iterate(&context, &v[i], KEYSIZE);
yarrow_hash_finish(&context, temp);
yarrow_encrypt_init(&random_state.key, temp, KEYSIZE);
/* 4. Recompute the counter */
random_state.counter = 0;
yarrow_encrypt(&random_state.key, &random_state.counter, temp,
sizeof(random_state.counter));
memcpy(&random_state.counter, temp, random_state.counter);
/* 5. Reset entropy estimate accumulators to zero */
for (i = 0; i <= fastslow; i++) {
for (j = 0; j < ENTROPYSOURCE; j++) {
if (random_state.pool[i].source[j].bits >
random_state.pool[i].thresh) {
random_state.pool[i].source[j].bits = 0;
random_state.pool[i].source[j].frac = 0;
}
}
}
/* 6. Wipe memory of intermediate values */
memset((void *)v, 0, sizeof(v));
memset((void *)temp, 0, sizeof(temp));
memset((void *)hash, 0, sizeof(hash));
/* 7. Dump to seed file */
/* XXX Not done here yet */
/* Release the reseed mutex */
mtx_exit(&random_reseed_mtx, MTX_DEF);
#ifdef DEBUG
mtx_enter(&Giant, MTX_DEF);
printf("Reseed finish\n");
mtx_exit(&Giant, MTX_DEF);
#endif
if (!random_state.seeded) {
random_state.seeded = 1;
selwakeup(&random_state.rsel);
wakeup(&random_state);
}
}
u_int
read_random_real(void *buf, u_int count)
{
static u_int64_t genval;
static int cur = 0;
static int gate = 1;
u_int i;
u_int retval;
/* The reseed task must not be jumped on */
mtx_enter(&random_reseed_mtx, MTX_DEF);
if (gate) {
generator_gate();
random_state.outputblocks = 0;
gate = 0;
}
if (count >= sizeof(random_state.counter)) {
retval = 0;
for (i = 0; i < count; i += sizeof(random_state.counter)) {
random_state.counter++;
yarrow_encrypt(&random_state.key, &random_state.counter,
&genval, sizeof(random_state.counter));
memcpy((char *)buf + i, &genval,
sizeof(random_state.counter));
if (++random_state.outputblocks >= random_state.gengateinterval) {
generator_gate();
random_state.outputblocks = 0;
}
retval += sizeof(random_state.counter);
}
}
else {
if (!cur) {
random_state.counter++;
yarrow_encrypt(&random_state.key, &random_state.counter,
&genval, sizeof(random_state.counter));
memcpy(buf, &genval, count);
cur = sizeof(random_state.counter) - count;
if (++random_state.outputblocks >= random_state.gengateinterval) {
generator_gate();
random_state.outputblocks = 0;
}
retval = count;
}
else {
retval = cur < count ? cur : count;
memcpy(buf,
(char *)&genval +
(sizeof(random_state.counter) - cur),
retval);
cur -= retval;
}
}
mtx_exit(&random_reseed_mtx, MTX_DEF);
return retval;
}
void
write_random(void *buf, u_int count)
{
u_int i;
/* Break the input up into HARVESTSIZE chunks.
* The writer has too much control here, so "estimate" the
* the entropy as zero.
*/
for (i = 0; i < count; i += HARVESTSIZE) {
random_harvest_internal(get_cyclecount(), (char *)buf + i,
HARVESTSIZE, 0, 0, RANDOM_WRITE);
}
/* Maybe the loop iterated at least once */
if (i > count)
i -= HARVESTSIZE;
/* Get the last bytes even if the input length is not
* a multiple of HARVESTSIZE.
*/
count %= HARVESTSIZE;
if (count) {
random_harvest_internal(get_cyclecount(), (char *)buf + i,
count, 0, 0, RANDOM_WRITE);
}
}
static void
generator_gate(void)
{
int i;
u_char temp[KEYSIZE];
#ifdef DEBUG
mtx_enter(&Giant, MTX_DEF);
printf("Generator gate\n");
mtx_exit(&Giant, MTX_DEF);
#endif
for (i = 0; i < KEYSIZE; i += sizeof(random_state.counter)) {
random_state.counter++;
yarrow_encrypt(&random_state.key, &random_state.counter,
&(temp[i]), sizeof(random_state.counter));
}
yarrow_encrypt_init(&random_state.key, temp, KEYSIZE);
memset((void *)temp, 0, KEYSIZE);
#ifdef DEBUG
mtx_enter(&Giant, MTX_DEF);
printf("Generator gate finish\n");
mtx_exit(&Giant, MTX_DEF);
#endif
}
/* Entropy harvesting routine. This is supposed to be fast; do
* not do anything slow in here!
*/
static void
random_harvest_internal(u_int64_t somecounter, void *entropy, u_int count,
u_int bits, u_int frac, enum esource origin)
{
struct harvest *harvest;
int newhead, tail;
#ifdef DEBUG1
mtx_enter(&Giant, MTX_DEF);
printf("Random harvest\n");
mtx_exit(&Giant, MTX_DEF);
#endif
if (origin < ENTROPYSOURCE) {
/* Add the harvested data to the ring buffer, but
* do not block.
*/
if (mtx_try_enter(&harvestring.lockout_mtx, MTX_DEF)) {
tail = atomic_load_acq_int(&harvestring.tail);
newhead = (harvestring.head + 1) % HARVEST_RING_SIZE;
if (newhead != tail) {
harvest = &harvestring.data[harvestring.head];
/* toggle the pool for next insertion */
harvest->pool = random_state.which;
random_state.which = !random_state.which;
/* Stuff the harvested data into the ring */
harvest->somecounter = somecounter;
count = count > HARVESTSIZE ? HARVESTSIZE : count;
memcpy(harvest->entropy, entropy, count);
harvest->size = count;
harvest->bits = bits;
harvest->frac = frac;
harvest->source = origin;
/* Bump the ring counter and shake the reseed
* process
*/
harvestring.head = newhead;
wakeup(&harvestring.head);
}
mtx_exit(&harvestring.lockout_mtx, MTX_DEF);
}
}
}
/* Helper routine to perform explicit reseeds */
void
random_reseed(void)
{
reseed(FAST);
}