Add the CAM Target Layer (CTL).
CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003. It has been shipping in
Copan (now SGI) products since 2005.
It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license. The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.
Some CTL features:
- Disk and processor device emulation.
- Tagged queueing
- SCSI task attribute support (ordered, head of queue, simple tags)
- SCSI implicit command ordering support. (e.g. if a read follows a mode
select, the read will be blocked until the mode select completes.)
- Full task management support (abort, LUN reset, target reset, etc.)
- Support for multiple ports
- Support for multiple simultaneous initiators
- Support for multiple simultaneous backing stores
- Persistent reservation support
- Mode sense/select support
- Error injection support
- High Availability support (1)
- All I/O handled in-kernel, no userland context switch overhead.
(1) HA Support is just an API stub, and needs much more to be fully
functional.
ctl.c: The core of CTL. Command handlers and processing,
character driver, and HA support are here.
ctl.h: Basic function declarations and data structures.
ctl_backend.c,
ctl_backend.h: The basic CTL backend API.
ctl_backend_block.c,
ctl_backend_block.h: The block and file backend. This allows for using
a disk or a file as the backing store for a LUN.
Multiple threads are started to do I/O to the
backing device, primarily because the VFS API
requires that to get any concurrency.
ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a
small amount of memory to act as a source and sink
for reads and writes from an initiator. Therefore
it cannot be used for any real data, but it can be
used to test for throughput. It can also be used
to test initiators' support for extremely large LUNs.
ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes,
and command handler functions defined for supported
opcodes.
ctl_debug.h: Debugging support.
ctl_error.c,
ctl_error.h: CTL-specific wrappers around the CAM sense building
functions.
ctl_frontend.c,
ctl_frontend.h: These files define the basic CTL frontend port API.
ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM.
This frontend allows for using CTL without any
target-capable hardware. So any LUNs you create in
CTL are visible in CAM via this port.
ctl_frontend_internal.c,
ctl_frontend_internal.h:
This is a frontend port written for Copan to do
some system-specific tasks that required sending
commands into CTL from inside the kernel. This
isn't entirely relevant to FreeBSD in general,
but can perhaps be repurposed.
ctl_ha.h: This is a stubbed-out High Availability API. Much
more is needed for full HA support. See the
comments in the header and the description of what
is needed in the README.ctl.txt file for more
details.
ctl_io.h: This defines most of the core CTL I/O structures.
union ctl_io is conceptually very similar to CAM's
union ccb.
ctl_ioctl.h: This defines all ioctls available through the CTL
character device, and the data structures needed
for those ioctls.
ctl_mem_pool.c,
ctl_mem_pool.h: Generic memory pool implementation used by the
internal frontend.
ctl_private.h: Private data structres (e.g. CTL softc) and
function prototypes. This also includes the SCSI
vendor and product names used by CTL.
ctl_scsi_all.c,
ctl_scsi_all.h: CTL wrappers around CAM sense printing functions.
ctl_ser_table.c: Command serialization table. This defines what
happens when one type of command is followed by
another type of command.
ctl_util.c,
ctl_util.h: CTL utility functions, primarily designed to be
used from userland. See ctladm for the primary
consumer of these functions. These include CDB
building functions.
scsi_ctl.c: CAM target peripheral driver and CTL frontend port.
This is the path into CTL for commands from
target-capable hardware/SIMs.
README.ctl.txt: CTL code features, roadmap, to-do list.
usr.sbin/Makefile: Add ctladm.
ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c: ctladm(8) is the CTL management utility.
It fills a role similar to camcontrol(8).
It allow configuring LUNs, issuing commands,
injecting errors and various other control
functions.
usr.bin/Makefile: Add ctlstat.
ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8).
It reports I/O statistics for CTL.
sys/conf/files: Add CTL files.
sys/conf/NOTES: Add device ctl.
sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB
length field is now 2 bytes long.
Add several mode page definitions for CTL.
sys/cam/scsi_all.c: Handle the new 2 byte inquiry length.
sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c: Update for 2 byte inquiry length field.
scsi_da.h: Add versions of the format and rigid disk pages
that are in a more reasonable format for CTL.
amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC: Add device ctl.
i386/conf/PAE: The CTL frontend SIM at least does not compile
cleanly on PAE.
Sponsored by: Copan Systems, SGI and Spectra Logic
MFC after: 1 month
2012-01-12 00:34:33 +00:00
|
|
|
/*-
|
|
|
|
* Implementation of Utility functions for all SCSI device types.
|
|
|
|
*
|
|
|
|
* Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
|
|
|
|
* Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
|
|
* without modification, immediately at the beginning of the file.
|
|
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
|
|
* derived from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* $Id: //depot/users/kenm/FreeBSD-test2/sys/cam/ctl/ctl_scsi_all.c#2 $
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
#ifdef _KERNEL
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/libkern.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
#else
|
|
|
|
#include <errno.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <inttypes.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <cam/cam.h>
|
|
|
|
#include <cam/cam_ccb.h>
|
|
|
|
#include <cam/cam_queue.h>
|
|
|
|
#include <cam/cam_xpt.h>
|
|
|
|
#include <cam/scsi/scsi_all.h>
|
|
|
|
|
|
|
|
#include <cam/ctl/ctl_io.h>
|
|
|
|
#include <cam/ctl/ctl_scsi_all.h>
|
|
|
|
#include <sys/sbuf.h>
|
|
|
|
#ifndef _KERNEL
|
|
|
|
#include <camlib.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
const char *
|
|
|
|
ctl_scsi_status_string(struct ctl_scsiio *ctsio)
|
|
|
|
{
|
|
|
|
switch(ctsio->scsi_status) {
|
|
|
|
case SCSI_STATUS_OK:
|
|
|
|
return("OK");
|
|
|
|
case SCSI_STATUS_CHECK_COND:
|
|
|
|
return("Check Condition");
|
|
|
|
case SCSI_STATUS_BUSY:
|
|
|
|
return("Busy");
|
|
|
|
case SCSI_STATUS_INTERMED:
|
|
|
|
return("Intermediate");
|
|
|
|
case SCSI_STATUS_INTERMED_COND_MET:
|
|
|
|
return("Intermediate-Condition Met");
|
|
|
|
case SCSI_STATUS_RESERV_CONFLICT:
|
|
|
|
return("Reservation Conflict");
|
|
|
|
case SCSI_STATUS_CMD_TERMINATED:
|
|
|
|
return("Command Terminated");
|
|
|
|
case SCSI_STATUS_QUEUE_FULL:
|
|
|
|
return("Queue Full");
|
|
|
|
case SCSI_STATUS_ACA_ACTIVE:
|
|
|
|
return("ACA Active");
|
|
|
|
case SCSI_STATUS_TASK_ABORTED:
|
|
|
|
return("Task Aborted");
|
|
|
|
default: {
|
|
|
|
static char unkstr[64];
|
|
|
|
snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
|
|
|
|
ctsio->scsi_status);
|
|
|
|
return(unkstr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* scsi_command_string() returns 0 for success and -1 for failure.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
ctl_scsi_command_string(struct ctl_scsiio *ctsio,
|
|
|
|
struct scsi_inquiry_data *inq_data, struct sbuf *sb)
|
|
|
|
{
|
|
|
|
char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
|
|
|
|
|
|
|
|
sbuf_printf(sb, "%s. CDB: %s",
|
|
|
|
scsi_op_desc(ctsio->cdb[0], inq_data),
|
|
|
|
scsi_cdb_string(ctsio->cdb, cdb_str, sizeof(cdb_str)));
|
|
|
|
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
ctl_scsi_path_string(union ctl_io *io, char *path_str, int len)
|
|
|
|
{
|
2014-10-16 08:42:17 +00:00
|
|
|
|
|
|
|
snprintf(path_str, len, "(%u:%u:%u/%u): ",
|
|
|
|
io->io_hdr.nexus.initid.id, io->io_hdr.nexus.targ_port,
|
|
|
|
io->io_hdr.nexus.targ_lun, io->io_hdr.nexus.targ_mapped_lun);
|
Add the CAM Target Layer (CTL).
CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003. It has been shipping in
Copan (now SGI) products since 2005.
It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license. The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.
Some CTL features:
- Disk and processor device emulation.
- Tagged queueing
- SCSI task attribute support (ordered, head of queue, simple tags)
- SCSI implicit command ordering support. (e.g. if a read follows a mode
select, the read will be blocked until the mode select completes.)
- Full task management support (abort, LUN reset, target reset, etc.)
- Support for multiple ports
- Support for multiple simultaneous initiators
- Support for multiple simultaneous backing stores
- Persistent reservation support
- Mode sense/select support
- Error injection support
- High Availability support (1)
- All I/O handled in-kernel, no userland context switch overhead.
(1) HA Support is just an API stub, and needs much more to be fully
functional.
ctl.c: The core of CTL. Command handlers and processing,
character driver, and HA support are here.
ctl.h: Basic function declarations and data structures.
ctl_backend.c,
ctl_backend.h: The basic CTL backend API.
ctl_backend_block.c,
ctl_backend_block.h: The block and file backend. This allows for using
a disk or a file as the backing store for a LUN.
Multiple threads are started to do I/O to the
backing device, primarily because the VFS API
requires that to get any concurrency.
ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a
small amount of memory to act as a source and sink
for reads and writes from an initiator. Therefore
it cannot be used for any real data, but it can be
used to test for throughput. It can also be used
to test initiators' support for extremely large LUNs.
ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes,
and command handler functions defined for supported
opcodes.
ctl_debug.h: Debugging support.
ctl_error.c,
ctl_error.h: CTL-specific wrappers around the CAM sense building
functions.
ctl_frontend.c,
ctl_frontend.h: These files define the basic CTL frontend port API.
ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM.
This frontend allows for using CTL without any
target-capable hardware. So any LUNs you create in
CTL are visible in CAM via this port.
ctl_frontend_internal.c,
ctl_frontend_internal.h:
This is a frontend port written for Copan to do
some system-specific tasks that required sending
commands into CTL from inside the kernel. This
isn't entirely relevant to FreeBSD in general,
but can perhaps be repurposed.
ctl_ha.h: This is a stubbed-out High Availability API. Much
more is needed for full HA support. See the
comments in the header and the description of what
is needed in the README.ctl.txt file for more
details.
ctl_io.h: This defines most of the core CTL I/O structures.
union ctl_io is conceptually very similar to CAM's
union ccb.
ctl_ioctl.h: This defines all ioctls available through the CTL
character device, and the data structures needed
for those ioctls.
ctl_mem_pool.c,
ctl_mem_pool.h: Generic memory pool implementation used by the
internal frontend.
ctl_private.h: Private data structres (e.g. CTL softc) and
function prototypes. This also includes the SCSI
vendor and product names used by CTL.
ctl_scsi_all.c,
ctl_scsi_all.h: CTL wrappers around CAM sense printing functions.
ctl_ser_table.c: Command serialization table. This defines what
happens when one type of command is followed by
another type of command.
ctl_util.c,
ctl_util.h: CTL utility functions, primarily designed to be
used from userland. See ctladm for the primary
consumer of these functions. These include CDB
building functions.
scsi_ctl.c: CAM target peripheral driver and CTL frontend port.
This is the path into CTL for commands from
target-capable hardware/SIMs.
README.ctl.txt: CTL code features, roadmap, to-do list.
usr.sbin/Makefile: Add ctladm.
ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c: ctladm(8) is the CTL management utility.
It fills a role similar to camcontrol(8).
It allow configuring LUNs, issuing commands,
injecting errors and various other control
functions.
usr.bin/Makefile: Add ctlstat.
ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8).
It reports I/O statistics for CTL.
sys/conf/files: Add CTL files.
sys/conf/NOTES: Add device ctl.
sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB
length field is now 2 bytes long.
Add several mode page definitions for CTL.
sys/cam/scsi_all.c: Handle the new 2 byte inquiry length.
sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c: Update for 2 byte inquiry length field.
scsi_da.h: Add versions of the format and rigid disk pages
that are in a more reasonable format for CTL.
amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC: Add device ctl.
i386/conf/PAE: The CTL frontend SIM at least does not compile
cleanly on PAE.
Sponsored by: Copan Systems, SGI and Spectra Logic
MFC after: 1 month
2012-01-12 00:34:33 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ctl_scsi_sense_sbuf() returns 0 for success and -1 for failure.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
ctl_scsi_sense_sbuf(struct ctl_scsiio *ctsio,
|
|
|
|
struct scsi_inquiry_data *inq_data, struct sbuf *sb,
|
|
|
|
scsi_sense_string_flags flags)
|
|
|
|
{
|
|
|
|
char path_str[64];
|
|
|
|
|
|
|
|
if ((ctsio == NULL) || (sb == NULL))
|
|
|
|
return(-1);
|
|
|
|
|
|
|
|
ctl_scsi_path_string((union ctl_io *)ctsio, path_str, sizeof(path_str));
|
|
|
|
|
|
|
|
if (flags & SSS_FLAG_PRINT_COMMAND) {
|
|
|
|
|
|
|
|
sbuf_cat(sb, path_str);
|
|
|
|
|
|
|
|
ctl_scsi_command_string(ctsio, inq_data, sb);
|
|
|
|
|
|
|
|
sbuf_printf(sb, "\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
scsi_sense_only_sbuf(&ctsio->sense_data, ctsio->sense_len, sb,
|
|
|
|
path_str, inq_data, ctsio->cdb, ctsio->cdb_len);
|
|
|
|
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
char *
|
|
|
|
ctl_scsi_sense_string(struct ctl_scsiio *ctsio,
|
|
|
|
struct scsi_inquiry_data *inq_data, char *str,
|
|
|
|
int str_len)
|
|
|
|
{
|
|
|
|
struct sbuf sb;
|
|
|
|
|
|
|
|
sbuf_new(&sb, str, str_len, 0);
|
|
|
|
|
|
|
|
ctl_scsi_sense_sbuf(ctsio, inq_data, &sb, SSS_FLAG_PRINT_COMMAND);
|
|
|
|
|
|
|
|
sbuf_finish(&sb);
|
|
|
|
|
|
|
|
return(sbuf_data(&sb));
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef _KERNEL
|
|
|
|
void
|
|
|
|
ctl_scsi_sense_print(struct ctl_scsiio *ctsio,
|
|
|
|
struct scsi_inquiry_data *inq_data)
|
|
|
|
{
|
|
|
|
struct sbuf sb;
|
|
|
|
char str[512];
|
|
|
|
|
|
|
|
sbuf_new(&sb, str, sizeof(str), 0);
|
|
|
|
|
|
|
|
ctl_scsi_sense_sbuf(ctsio, inq_data, &sb, SSS_FLAG_PRINT_COMMAND);
|
|
|
|
|
|
|
|
sbuf_finish(&sb);
|
|
|
|
|
|
|
|
printf("%s", sbuf_data(&sb));
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* _KERNEL */
|
|
|
|
void
|
|
|
|
ctl_scsi_sense_print(struct ctl_scsiio *ctsio,
|
|
|
|
struct scsi_inquiry_data *inq_data, FILE *ofile)
|
|
|
|
{
|
|
|
|
struct sbuf sb;
|
|
|
|
char str[512];
|
|
|
|
|
|
|
|
if ((ctsio == NULL) || (ofile == NULL))
|
|
|
|
return;
|
|
|
|
|
|
|
|
sbuf_new(&sb, str, sizeof(str), 0);
|
|
|
|
|
|
|
|
ctl_scsi_sense_sbuf(ctsio, inq_data, &sb, SSS_FLAG_PRINT_COMMAND);
|
|
|
|
|
|
|
|
sbuf_finish(&sb);
|
|
|
|
|
|
|
|
fprintf(ofile, "%s", sbuf_data(&sb));
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* _KERNEL */
|
|
|
|
|