freebsd-skq/sys/netns/spp_usrreq.c

1806 lines
42 KiB
C
Raw Normal View History

/*
* Copyright (c) 1984, 1985, 1986, 1987, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)spp_usrreq.c 8.1 (Berkeley) 6/10/93
1999-08-28 01:08:13 +00:00
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/tcp_fsm.h>
#include <netns/ns.h>
#include <netns/ns_pcb.h>
#include <netns/idp.h>
#include <netns/idp_var.h>
#include <netns/ns_error.h>
#include <netns/sp.h>
#include <netns/spidp.h>
#include <netns/spp_timer.h>
#include <netns/spp_var.h>
#include <netns/spp_debug.h>
/*
* SP protocol implementation.
*/
spp_init()
{
spp_iss = 1; /* WRONG !! should fish it out of TODR */
}
struct spidp spp_savesi;
int traceallspps = 0;
extern int sppconsdebug;
int spp_hardnosed;
int spp_use_delack = 0;
u_short spp_newchecks[50];
/*ARGSUSED*/
spp_input(m, nsp)
register struct mbuf *m;
register struct nspcb *nsp;
{
register struct sppcb *cb;
register struct spidp *si = mtod(m, struct spidp *);
register struct socket *so;
short ostate;
int dropsocket = 0;
sppstat.spps_rcvtotal++;
if (nsp == 0) {
panic("No nspcb in spp_input");
return;
}
cb = nstosppcb(nsp);
if (cb == 0) goto bad;
if (m->m_len < sizeof(*si)) {
if ((m = m_pullup(m, sizeof(*si))) == 0) {
sppstat.spps_rcvshort++;
return;
}
si = mtod(m, struct spidp *);
}
si->si_seq = ntohs(si->si_seq);
si->si_ack = ntohs(si->si_ack);
si->si_alo = ntohs(si->si_alo);
so = nsp->nsp_socket;
if (so->so_options & SO_DEBUG || traceallspps) {
ostate = cb->s_state;
spp_savesi = *si;
}
if (so->so_options & SO_ACCEPTCONN) {
struct sppcb *ocb = cb;
so = sonewconn(so, 0);
if (so == 0) {
goto drop;
}
/*
* This is ugly, but ....
*
* Mark socket as temporary until we're
* committed to keeping it. The code at
* ``drop'' and ``dropwithreset'' check the
* flag dropsocket to see if the temporary
* socket created here should be discarded.
* We mark the socket as discardable until
* we're committed to it below in TCPS_LISTEN.
*/
dropsocket++;
nsp = (struct nspcb *)so->so_pcb;
nsp->nsp_laddr = si->si_dna;
cb = nstosppcb(nsp);
cb->s_mtu = ocb->s_mtu; /* preserve sockopts */
cb->s_flags = ocb->s_flags; /* preserve sockopts */
cb->s_flags2 = ocb->s_flags2; /* preserve sockopts */
cb->s_state = TCPS_LISTEN;
}
/*
* Packet received on connection.
* reset idle time and keep-alive timer;
*/
cb->s_idle = 0;
cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
switch (cb->s_state) {
case TCPS_LISTEN:{
struct mbuf *am;
register struct sockaddr_ns *sns;
struct ns_addr laddr;
/*
* If somebody here was carying on a conversation
* and went away, and his pen pal thinks he can
* still talk, we get the misdirected packet.
*/
if (spp_hardnosed && (si->si_did != 0 || si->si_seq != 0)) {
spp_istat.gonawy++;
goto dropwithreset;
}
am = m_get(M_DONTWAIT, MT_SONAME);
if (am == NULL)
goto drop;
am->m_len = sizeof (struct sockaddr_ns);
sns = mtod(am, struct sockaddr_ns *);
sns->sns_len = sizeof(*sns);
sns->sns_family = AF_NS;
sns->sns_addr = si->si_sna;
laddr = nsp->nsp_laddr;
if (ns_nullhost(laddr))
nsp->nsp_laddr = si->si_dna;
if (ns_pcbconnect(nsp, am)) {
nsp->nsp_laddr = laddr;
(void) m_free(am);
spp_istat.noconn++;
goto drop;
}
(void) m_free(am);
spp_template(cb);
dropsocket = 0; /* committed to socket */
cb->s_did = si->si_sid;
cb->s_rack = si->si_ack;
cb->s_ralo = si->si_alo;
#define THREEWAYSHAKE
#ifdef THREEWAYSHAKE
cb->s_state = TCPS_SYN_RECEIVED;
cb->s_force = 1 + SPPT_KEEP;
sppstat.spps_accepts++;
cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
}
break;
/*
* This state means that we have heard a response
* to our acceptance of their connection
* It is probably logically unnecessary in this
* implementation.
*/
case TCPS_SYN_RECEIVED: {
if (si->si_did!=cb->s_sid) {
spp_istat.wrncon++;
goto drop;
}
#endif
nsp->nsp_fport = si->si_sport;
cb->s_timer[SPPT_REXMT] = 0;
cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
soisconnected(so);
cb->s_state = TCPS_ESTABLISHED;
sppstat.spps_accepts++;
}
break;
/*
* This state means that we have gotten a response
* to our attempt to establish a connection.
* We fill in the data from the other side,
* telling us which port to respond to, instead of the well-
* known one we might have sent to in the first place.
* We also require that this is a response to our
* connection id.
*/
case TCPS_SYN_SENT:
if (si->si_did!=cb->s_sid) {
spp_istat.notme++;
goto drop;
}
sppstat.spps_connects++;
cb->s_did = si->si_sid;
cb->s_rack = si->si_ack;
cb->s_ralo = si->si_alo;
cb->s_dport = nsp->nsp_fport = si->si_sport;
cb->s_timer[SPPT_REXMT] = 0;
cb->s_flags |= SF_ACKNOW;
soisconnected(so);
cb->s_state = TCPS_ESTABLISHED;
/* Use roundtrip time of connection request for initial rtt */
if (cb->s_rtt) {
cb->s_srtt = cb->s_rtt << 3;
cb->s_rttvar = cb->s_rtt << 1;
SPPT_RANGESET(cb->s_rxtcur,
((cb->s_srtt >> 2) + cb->s_rttvar) >> 1,
SPPTV_MIN, SPPTV_REXMTMAX);
cb->s_rtt = 0;
}
}
if (so->so_options & SO_DEBUG || traceallspps)
spp_trace(SA_INPUT, (u_char)ostate, cb, &spp_savesi, 0);
m->m_len -= sizeof (struct idp);
m->m_pkthdr.len -= sizeof (struct idp);
m->m_data += sizeof (struct idp);
if (spp_reass(cb, si)) {
(void) m_freem(m);
}
if (cb->s_force || (cb->s_flags & (SF_ACKNOW|SF_WIN|SF_RXT)))
(void) spp_output(cb, (struct mbuf *)0);
cb->s_flags &= ~(SF_WIN|SF_RXT);
return;
dropwithreset:
if (dropsocket)
(void) soabort(so);
si->si_seq = ntohs(si->si_seq);
si->si_ack = ntohs(si->si_ack);
si->si_alo = ntohs(si->si_alo);
ns_error(dtom(si), NS_ERR_NOSOCK, 0);
if (cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || traceallspps)
spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0);
return;
drop:
bad:
if (cb == 0 || cb->s_nspcb->nsp_socket->so_options & SO_DEBUG ||
traceallspps)
spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0);
m_freem(m);
}
int spprexmtthresh = 3;
/*
* This is structurally similar to the tcp reassembly routine
* but its function is somewhat different: It merely queues
* packets up, and suppresses duplicates.
*/
spp_reass(cb, si)
register struct sppcb *cb;
register struct spidp *si;
{
register struct spidp_q *q;
register struct mbuf *m;
register struct socket *so = cb->s_nspcb->nsp_socket;
char packetp = cb->s_flags & SF_HI;
int incr;
char wakeup = 0;
if (si == SI(0))
goto present;
/*
* Update our news from them.
*/
if (si->si_cc & SP_SA)
cb->s_flags |= (spp_use_delack ? SF_DELACK : SF_ACKNOW);
if (SSEQ_GT(si->si_alo, cb->s_ralo))
cb->s_flags |= SF_WIN;
if (SSEQ_LEQ(si->si_ack, cb->s_rack)) {
if ((si->si_cc & SP_SP) && cb->s_rack != (cb->s_smax + 1)) {
sppstat.spps_rcvdupack++;
/*
* If this is a completely duplicate ack
* and other conditions hold, we assume
* a packet has been dropped and retransmit
* it exactly as in tcp_input().
*/
if (si->si_ack != cb->s_rack ||
si->si_alo != cb->s_ralo)
cb->s_dupacks = 0;
else if (++cb->s_dupacks == spprexmtthresh) {
u_short onxt = cb->s_snxt;
int cwnd = cb->s_cwnd;
cb->s_snxt = si->si_ack;
cb->s_cwnd = CUNIT;
cb->s_force = 1 + SPPT_REXMT;
(void) spp_output(cb, (struct mbuf *)0);
cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
cb->s_rtt = 0;
if (cwnd >= 4 * CUNIT)
cb->s_cwnd = cwnd / 2;
if (SSEQ_GT(onxt, cb->s_snxt))
cb->s_snxt = onxt;
return (1);
}
} else
cb->s_dupacks = 0;
goto update_window;
}
cb->s_dupacks = 0;
/*
* If our correspondent acknowledges data we haven't sent
* TCP would drop the packet after acking. We'll be a little
* more permissive
*/
if (SSEQ_GT(si->si_ack, (cb->s_smax + 1))) {
sppstat.spps_rcvacktoomuch++;
si->si_ack = cb->s_smax + 1;
}
sppstat.spps_rcvackpack++;
/*
* If transmit timer is running and timed sequence
* number was acked, update smoothed round trip time.
* See discussion of algorithm in tcp_input.c
*/
if (cb->s_rtt && SSEQ_GT(si->si_ack, cb->s_rtseq)) {
sppstat.spps_rttupdated++;
if (cb->s_srtt != 0) {
register short delta;
delta = cb->s_rtt - (cb->s_srtt >> 3);
if ((cb->s_srtt += delta) <= 0)
cb->s_srtt = 1;
if (delta < 0)
delta = -delta;
delta -= (cb->s_rttvar >> 2);
if ((cb->s_rttvar += delta) <= 0)
cb->s_rttvar = 1;
} else {
/*
* No rtt measurement yet
*/
cb->s_srtt = cb->s_rtt << 3;
cb->s_rttvar = cb->s_rtt << 1;
}
cb->s_rtt = 0;
cb->s_rxtshift = 0;
SPPT_RANGESET(cb->s_rxtcur,
((cb->s_srtt >> 2) + cb->s_rttvar) >> 1,
SPPTV_MIN, SPPTV_REXMTMAX);
}
/*
* If all outstanding data is acked, stop retransmit
* timer and remember to restart (more output or persist).
* If there is more data to be acked, restart retransmit
* timer, using current (possibly backed-off) value;
*/
if (si->si_ack == cb->s_smax + 1) {
cb->s_timer[SPPT_REXMT] = 0;
cb->s_flags |= SF_RXT;
} else if (cb->s_timer[SPPT_PERSIST] == 0)
cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
/*
* When new data is acked, open the congestion window.
* If the window gives us less than ssthresh packets
* in flight, open exponentially (maxseg at a time).
* Otherwise open linearly (maxseg^2 / cwnd at a time).
*/
incr = CUNIT;
if (cb->s_cwnd > cb->s_ssthresh)
incr = max(incr * incr / cb->s_cwnd, 1);
cb->s_cwnd = min(cb->s_cwnd + incr, cb->s_cwmx);
/*
* Trim Acked data from output queue.
*/
while ((m = so->so_snd.sb_mb) != NULL) {
if (SSEQ_LT((mtod(m, struct spidp *))->si_seq, si->si_ack))
sbdroprecord(&so->so_snd);
else
break;
}
sowwakeup(so);
cb->s_rack = si->si_ack;
update_window:
if (SSEQ_LT(cb->s_snxt, cb->s_rack))
cb->s_snxt = cb->s_rack;
if (SSEQ_LT(cb->s_swl1, si->si_seq) || cb->s_swl1 == si->si_seq &&
(SSEQ_LT(cb->s_swl2, si->si_ack) ||
cb->s_swl2 == si->si_ack && SSEQ_LT(cb->s_ralo, si->si_alo))) {
/* keep track of pure window updates */
if ((si->si_cc & SP_SP) && cb->s_swl2 == si->si_ack
&& SSEQ_LT(cb->s_ralo, si->si_alo)) {
sppstat.spps_rcvwinupd++;
sppstat.spps_rcvdupack--;
}
cb->s_ralo = si->si_alo;
cb->s_swl1 = si->si_seq;
cb->s_swl2 = si->si_ack;
cb->s_swnd = (1 + si->si_alo - si->si_ack);
if (cb->s_swnd > cb->s_smxw)
cb->s_smxw = cb->s_swnd;
cb->s_flags |= SF_WIN;
}
/*
* If this packet number is higher than that which
* we have allocated refuse it, unless urgent
*/
if (SSEQ_GT(si->si_seq, cb->s_alo)) {
if (si->si_cc & SP_SP) {
sppstat.spps_rcvwinprobe++;
return (1);
} else
sppstat.spps_rcvpackafterwin++;
if (si->si_cc & SP_OB) {
if (SSEQ_GT(si->si_seq, cb->s_alo + 60)) {
ns_error(dtom(si), NS_ERR_FULLUP, 0);
return (0);
} /* else queue this packet; */
} else {
/*register struct socket *so = cb->s_nspcb->nsp_socket;
if (so->so_state && SS_NOFDREF) {
ns_error(dtom(si), NS_ERR_NOSOCK, 0);
(void)spp_close(cb);
} else
would crash system*/
spp_istat.notyet++;
ns_error(dtom(si), NS_ERR_FULLUP, 0);
return (0);
}
}
/*
* If this is a system packet, we don't need to
* queue it up, and won't update acknowledge #
*/
if (si->si_cc & SP_SP) {
return (1);
}
/*
* We have already seen this packet, so drop.
*/
if (SSEQ_LT(si->si_seq, cb->s_ack)) {
spp_istat.bdreas++;
sppstat.spps_rcvduppack++;
if (si->si_seq == cb->s_ack - 1)
spp_istat.lstdup++;
return (1);
}
/*
* Loop through all packets queued up to insert in
* appropriate sequence.
*/
for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) {
if (si->si_seq == SI(q)->si_seq) {
sppstat.spps_rcvduppack++;
return (1);
}
if (SSEQ_LT(si->si_seq, SI(q)->si_seq)) {
sppstat.spps_rcvoopack++;
break;
}
}
insque(si, q->si_prev);
/*
* If this packet is urgent, inform process
*/
if (si->si_cc & SP_OB) {
cb->s_iobc = ((char *)si)[1 + sizeof(*si)];
sohasoutofband(so);
cb->s_oobflags |= SF_IOOB;
}
present:
#define SPINC sizeof(struct sphdr)
/*
* Loop through all packets queued up to update acknowledge
* number, and present all acknowledged data to user;
* If in packet interface mode, show packet headers.
*/
for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) {
if (SI(q)->si_seq == cb->s_ack) {
cb->s_ack++;
m = dtom(q);
if (SI(q)->si_cc & SP_OB) {
cb->s_oobflags &= ~SF_IOOB;
if (so->so_rcv.sb_cc)
so->so_oobmark = so->so_rcv.sb_cc;
else
so->so_state |= SS_RCVATMARK;
}
q = q->si_prev;
remque(q->si_next);
wakeup = 1;
sppstat.spps_rcvpack++;
#ifdef SF_NEWCALL
if (cb->s_flags2 & SF_NEWCALL) {
struct sphdr *sp = mtod(m, struct sphdr *);
u_char dt = sp->sp_dt;
spp_newchecks[4]++;
if (dt != cb->s_rhdr.sp_dt) {
struct mbuf *mm =
m_getclr(M_DONTWAIT, MT_CONTROL);
spp_newchecks[0]++;
if (mm != NULL) {
u_short *s =
mtod(mm, u_short *);
cb->s_rhdr.sp_dt = dt;
mm->m_len = 5; /*XXX*/
s[0] = 5;
s[1] = 1;
*(u_char *)(&s[2]) = dt;
sbappend(&so->so_rcv, mm);
}
}
if (sp->sp_cc & SP_OB) {
MCHTYPE(m, MT_OOBDATA);
spp_newchecks[1]++;
so->so_oobmark = 0;
so->so_state &= ~SS_RCVATMARK;
}
if (packetp == 0) {
m->m_data += SPINC;
m->m_len -= SPINC;
m->m_pkthdr.len -= SPINC;
}
if ((sp->sp_cc & SP_EM) || packetp) {
sbappendrecord(&so->so_rcv, m);
spp_newchecks[9]++;
} else
sbappend(&so->so_rcv, m);
} else
#endif
if (packetp) {
sbappendrecord(&so->so_rcv, m);
} else {
cb->s_rhdr = *mtod(m, struct sphdr *);
m->m_data += SPINC;
m->m_len -= SPINC;
m->m_pkthdr.len -= SPINC;
sbappend(&so->so_rcv, m);
}
} else
break;
}
if (wakeup) sorwakeup(so);
return (0);
}
spp_ctlinput(cmd, arg)
int cmd;
caddr_t arg;
{
struct ns_addr *na;
extern u_char nsctlerrmap[];
extern spp_abort(), spp_quench();
extern struct nspcb *idp_drop();
struct ns_errp *errp;
struct nspcb *nsp;
struct sockaddr_ns *sns;
int type;
if (cmd < 0 || cmd > PRC_NCMDS)
return;
type = NS_ERR_UNREACH_HOST;
switch (cmd) {
case PRC_ROUTEDEAD:
return;
case PRC_IFDOWN:
case PRC_HOSTDEAD:
case PRC_HOSTUNREACH:
sns = (struct sockaddr_ns *)arg;
if (sns->sns_family != AF_NS)
return;
na = &sns->sns_addr;
break;
default:
errp = (struct ns_errp *)arg;
na = &errp->ns_err_idp.idp_dna;
type = errp->ns_err_num;
type = ntohs((u_short)type);
}
switch (type) {
case NS_ERR_UNREACH_HOST:
ns_pcbnotify(na, (int)nsctlerrmap[cmd], spp_abort, (long) 0);
break;
case NS_ERR_TOO_BIG:
case NS_ERR_NOSOCK:
nsp = ns_pcblookup(na, errp->ns_err_idp.idp_sna.x_port,
NS_WILDCARD);
if (nsp) {
if(nsp->nsp_pcb)
(void) spp_drop((struct sppcb *)nsp->nsp_pcb,
(int)nsctlerrmap[cmd]);
else
(void) idp_drop(nsp, (int)nsctlerrmap[cmd]);
}
break;
case NS_ERR_FULLUP:
ns_pcbnotify(na, 0, spp_quench, (long) 0);
}
}
/*
* When a source quench is received, close congestion window
* to one packet. We will gradually open it again as we proceed.
*/
spp_quench(nsp)
struct nspcb *nsp;
{
struct sppcb *cb = nstosppcb(nsp);
if (cb)
cb->s_cwnd = CUNIT;
}
#ifdef notdef
int
spp_fixmtu(nsp)
register struct nspcb *nsp;
{
register struct sppcb *cb = (struct sppcb *)(nsp->nsp_pcb);
register struct mbuf *m;
register struct spidp *si;
struct ns_errp *ep;
struct sockbuf *sb;
int badseq, len;
struct mbuf *firstbad, *m0;
if (cb) {
/*
* The notification that we have sent
* too much is bad news -- we will
* have to go through queued up so far
* splitting ones which are too big and
* reassigning sequence numbers and checksums.
* we should then retransmit all packets from
* one above the offending packet to the last one
* we had sent (or our allocation)
* then the offending one so that the any queued
* data at our destination will be discarded.
*/
ep = (struct ns_errp *)nsp->nsp_notify_param;
sb = &nsp->nsp_socket->so_snd;
cb->s_mtu = ep->ns_err_param;
badseq = SI(&ep->ns_err_idp)->si_seq;
for (m = sb->sb_mb; m; m = m->m_act) {
si = mtod(m, struct spidp *);
if (si->si_seq == badseq)
break;
}
if (m == 0) return;
firstbad = m;
/*for (;;) {*/
/* calculate length */
for (m0 = m, len = 0; m ; m = m->m_next)
len += m->m_len;
if (len > cb->s_mtu) {
}
/* FINISH THIS
} */
}
}
#endif
spp_output(cb, m0)
register struct sppcb *cb;
struct mbuf *m0;
{
struct socket *so = cb->s_nspcb->nsp_socket;
register struct mbuf *m;
register struct spidp *si = (struct spidp *) 0;
register struct sockbuf *sb = &so->so_snd;
int len = 0, win, rcv_win;
short span, off, recordp = 0;
u_short alo;
int error = 0, sendalot;
#ifdef notdef
int idle;
#endif
struct mbuf *mprev;
extern int idpcksum;
if (m0) {
int mtu = cb->s_mtu;
int datalen;
/*
* Make sure that packet isn't too big.
*/
for (m = m0; m ; m = m->m_next) {
mprev = m;
len += m->m_len;
if (m->m_flags & M_EOR)
recordp = 1;
}
datalen = (cb->s_flags & SF_HO) ?
len - sizeof (struct sphdr) : len;
if (datalen > mtu) {
if (cb->s_flags & SF_PI) {
m_freem(m0);
return (EMSGSIZE);
} else {
int oldEM = cb->s_cc & SP_EM;
cb->s_cc &= ~SP_EM;
while (len > mtu) {
/*
* Here we are only being called
* from usrreq(), so it is OK to
* block.
*/
m = m_copym(m0, 0, mtu, M_WAIT);
if (cb->s_flags & SF_NEWCALL) {
struct mbuf *mm = m;
spp_newchecks[7]++;
while (mm) {
mm->m_flags &= ~M_EOR;
mm = mm->m_next;
}
}
error = spp_output(cb, m);
if (error) {
cb->s_cc |= oldEM;
m_freem(m0);
return(error);
}
m_adj(m0, mtu);
len -= mtu;
}
cb->s_cc |= oldEM;
}
}
/*
* Force length even, by adding a "garbage byte" if
* necessary.
*/
if (len & 1) {
m = mprev;
if (M_TRAILINGSPACE(m) >= 1)
m->m_len++;
else {
struct mbuf *m1 = m_get(M_DONTWAIT, MT_DATA);
if (m1 == 0) {
m_freem(m0);
return (ENOBUFS);
}
m1->m_len = 1;
*(mtod(m1, u_char *)) = 0;
m->m_next = m1;
}
}
m = m_gethdr(M_DONTWAIT, MT_HEADER);
if (m == 0) {
m_freem(m0);
return (ENOBUFS);
}
/*
* Fill in mbuf with extended SP header
* and addresses and length put into network format.
*/
MH_ALIGN(m, sizeof (struct spidp));
m->m_len = sizeof (struct spidp);
m->m_next = m0;
si = mtod(m, struct spidp *);
si->si_i = *cb->s_idp;
si->si_s = cb->s_shdr;
if ((cb->s_flags & SF_PI) && (cb->s_flags & SF_HO)) {
register struct sphdr *sh;
if (m0->m_len < sizeof (*sh)) {
if((m0 = m_pullup(m0, sizeof(*sh))) == NULL) {
(void) m_free(m);
m_freem(m0);
return (EINVAL);
}
m->m_next = m0;
}
sh = mtod(m0, struct sphdr *);
si->si_dt = sh->sp_dt;
si->si_cc |= sh->sp_cc & SP_EM;
m0->m_len -= sizeof (*sh);
m0->m_data += sizeof (*sh);
len -= sizeof (*sh);
}
len += sizeof(*si);
if ((cb->s_flags2 & SF_NEWCALL) && recordp) {
si->si_cc |= SP_EM;
spp_newchecks[8]++;
}
if (cb->s_oobflags & SF_SOOB) {
/*
* Per jqj@cornell:
* make sure OB packets convey exactly 1 byte.
* If the packet is 1 byte or larger, we
* have already guaranted there to be at least
* one garbage byte for the checksum, and
* extra bytes shouldn't hurt!
*/
if (len > sizeof(*si)) {
si->si_cc |= SP_OB;
len = (1 + sizeof(*si));
}
}
si->si_len = htons((u_short)len);
m->m_pkthdr.len = ((len - 1) | 1) + 1;
/*
* queue stuff up for output
*/
sbappendrecord(sb, m);
cb->s_seq++;
}
#ifdef notdef
idle = (cb->s_smax == (cb->s_rack - 1));
#endif
again:
sendalot = 0;
off = cb->s_snxt - cb->s_rack;
win = min(cb->s_swnd, (cb->s_cwnd/CUNIT));
/*
* If in persist timeout with window of 0, send a probe.
* Otherwise, if window is small but nonzero
* and timer expired, send what we can and go into
* transmit state.
*/
if (cb->s_force == 1 + SPPT_PERSIST) {
if (win != 0) {
cb->s_timer[SPPT_PERSIST] = 0;
cb->s_rxtshift = 0;
}
}
span = cb->s_seq - cb->s_rack;
len = min(span, win) - off;
if (len < 0) {
/*
* Window shrank after we went into it.
* If window shrank to 0, cancel pending
* restransmission and pull s_snxt back
* to (closed) window. We will enter persist
* state below. If the widndow didn't close completely,
* just wait for an ACK.
*/
len = 0;
if (win == 0) {
cb->s_timer[SPPT_REXMT] = 0;
cb->s_snxt = cb->s_rack;
}
}
if (len > 1)
sendalot = 1;
rcv_win = sbspace(&so->so_rcv);
/*
* Send if we owe peer an ACK.
*/
if (cb->s_oobflags & SF_SOOB) {
/*
* must transmit this out of band packet
*/
cb->s_oobflags &= ~ SF_SOOB;
sendalot = 1;
sppstat.spps_sndurg++;
goto found;
}
if (cb->s_flags & SF_ACKNOW)
goto send;
if (cb->s_state < TCPS_ESTABLISHED)
goto send;
/*
* Silly window can't happen in spp.
* Code from tcp deleted.
*/
if (len)
goto send;
/*
* Compare available window to amount of window
* known to peer (as advertised window less
* next expected input.) If the difference is at least two
* packets or at least 35% of the mximum possible window,
* then want to send a window update to peer.
*/
if (rcv_win > 0) {
u_short delta = 1 + cb->s_alo - cb->s_ack;
int adv = rcv_win - (delta * cb->s_mtu);
if ((so->so_rcv.sb_cc == 0 && adv >= (2 * cb->s_mtu)) ||
(100 * adv / so->so_rcv.sb_hiwat >= 35)) {
sppstat.spps_sndwinup++;
cb->s_flags |= SF_ACKNOW;
goto send;
}
}
/*
* Many comments from tcp_output.c are appropriate here
* including . . .
* If send window is too small, there is data to transmit, and no
* retransmit or persist is pending, then go to persist state.
* If nothing happens soon, send when timer expires:
* if window is nonzero, transmit what we can,
* otherwise send a probe.
*/
if (so->so_snd.sb_cc && cb->s_timer[SPPT_REXMT] == 0 &&
cb->s_timer[SPPT_PERSIST] == 0) {
cb->s_rxtshift = 0;
spp_setpersist(cb);
}
/*
* No reason to send a packet, just return.
*/
cb->s_outx = 1;
return (0);
send:
/*
* Find requested packet.
*/
si = 0;
if (len > 0) {
cb->s_want = cb->s_snxt;
for (m = sb->sb_mb; m; m = m->m_act) {
si = mtod(m, struct spidp *);
if (SSEQ_LEQ(cb->s_snxt, si->si_seq))
break;
}
found:
if (si) {
if (si->si_seq == cb->s_snxt)
cb->s_snxt++;
else
sppstat.spps_sndvoid++, si = 0;
}
}
/*
* update window
*/
if (rcv_win < 0)
rcv_win = 0;
alo = cb->s_ack - 1 + (rcv_win / ((short)cb->s_mtu));
if (SSEQ_LT(alo, cb->s_alo))
alo = cb->s_alo;
if (si) {
/*
* must make a copy of this packet for
* idp_output to monkey with
*/
m = m_copy(dtom(si), 0, (int)M_COPYALL);
if (m == NULL) {
return (ENOBUFS);
}
si = mtod(m, struct spidp *);
if (SSEQ_LT(si->si_seq, cb->s_smax))
sppstat.spps_sndrexmitpack++;
else
sppstat.spps_sndpack++;
} else if (cb->s_force || cb->s_flags & SF_ACKNOW) {
/*
* Must send an acknowledgement or a probe
*/
if (cb->s_force)
sppstat.spps_sndprobe++;
if (cb->s_flags & SF_ACKNOW)
sppstat.spps_sndacks++;
m = m_gethdr(M_DONTWAIT, MT_HEADER);
if (m == 0)
return (ENOBUFS);
/*
* Fill in mbuf with extended SP header
* and addresses and length put into network format.
*/
MH_ALIGN(m, sizeof (struct spidp));
m->m_len = sizeof (*si);
m->m_pkthdr.len = sizeof (*si);
si = mtod(m, struct spidp *);
si->si_i = *cb->s_idp;
si->si_s = cb->s_shdr;
si->si_seq = cb->s_smax + 1;
si->si_len = htons(sizeof (*si));
si->si_cc |= SP_SP;
} else {
cb->s_outx = 3;
if (so->so_options & SO_DEBUG || traceallspps)
spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
return (0);
}
/*
* Stuff checksum and output datagram.
*/
if ((si->si_cc & SP_SP) == 0) {
if (cb->s_force != (1 + SPPT_PERSIST) ||
cb->s_timer[SPPT_PERSIST] == 0) {
/*
* If this is a new packet and we are not currently
* timing anything, time this one.
*/
if (SSEQ_LT(cb->s_smax, si->si_seq)) {
cb->s_smax = si->si_seq;
if (cb->s_rtt == 0) {
sppstat.spps_segstimed++;
cb->s_rtseq = si->si_seq;
cb->s_rtt = 1;
}
}
/*
* Set rexmt timer if not currently set,
* Initial value for retransmit timer is smoothed
* round-trip time + 2 * round-trip time variance.
* Initialize shift counter which is used for backoff
* of retransmit time.
*/
if (cb->s_timer[SPPT_REXMT] == 0 &&
cb->s_snxt != cb->s_rack) {
cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
if (cb->s_timer[SPPT_PERSIST]) {
cb->s_timer[SPPT_PERSIST] = 0;
cb->s_rxtshift = 0;
}
}
} else if (SSEQ_LT(cb->s_smax, si->si_seq)) {
cb->s_smax = si->si_seq;
}
} else if (cb->s_state < TCPS_ESTABLISHED) {
if (cb->s_rtt == 0)
cb->s_rtt = 1; /* Time initial handshake */
if (cb->s_timer[SPPT_REXMT] == 0)
cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
}
{
/*
* Do not request acks when we ack their data packets or
* when we do a gratuitous window update.
*/
if (((si->si_cc & SP_SP) == 0) || cb->s_force)
si->si_cc |= SP_SA;
si->si_seq = htons(si->si_seq);
si->si_alo = htons(alo);
si->si_ack = htons(cb->s_ack);
if (idpcksum) {
si->si_sum = 0;
len = ntohs(si->si_len);
if (len & 1)
len++;
si->si_sum = ns_cksum(m, len);
} else
si->si_sum = 0xffff;
cb->s_outx = 4;
if (so->so_options & SO_DEBUG || traceallspps)
spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
if (so->so_options & SO_DONTROUTE)
error = ns_output(m, (struct route *)0, NS_ROUTETOIF);
else
error = ns_output(m, &cb->s_nspcb->nsp_route, 0);
}
if (error) {
return (error);
}
sppstat.spps_sndtotal++;
/*
* Data sent (as far as we can tell).
* If this advertises a larger window than any other segment,
* then remember the size of the advertized window.
* Any pending ACK has now been sent.
*/
cb->s_force = 0;
cb->s_flags &= ~(SF_ACKNOW|SF_DELACK);
if (SSEQ_GT(alo, cb->s_alo))
cb->s_alo = alo;
if (sendalot)
goto again;
cb->s_outx = 5;
return (0);
}
int spp_do_persist_panics = 0;
spp_setpersist(cb)
register struct sppcb *cb;
{
register t = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
extern int spp_backoff[];
if (cb->s_timer[SPPT_REXMT] && spp_do_persist_panics)
panic("spp_output REXMT");
/*
* Start/restart persistance timer.
*/
SPPT_RANGESET(cb->s_timer[SPPT_PERSIST],
t*spp_backoff[cb->s_rxtshift],
SPPTV_PERSMIN, SPPTV_PERSMAX);
if (cb->s_rxtshift < SPP_MAXRXTSHIFT)
cb->s_rxtshift++;
}
/*ARGSUSED*/
spp_ctloutput(req, so, level, name, value)
int req;
struct socket *so;
int name;
struct mbuf **value;
{
register struct mbuf *m;
struct nspcb *nsp = sotonspcb(so);
register struct sppcb *cb;
int mask, error = 0;
if (level != NSPROTO_SPP) {
/* This will have to be changed when we do more general
stacking of protocols */
return (idp_ctloutput(req, so, level, name, value));
}
if (nsp == NULL) {
error = EINVAL;
goto release;
} else
cb = nstosppcb(nsp);
switch (req) {
case PRCO_GETOPT:
if (value == NULL)
return (EINVAL);
m = m_get(M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
switch (name) {
case SO_HEADERS_ON_INPUT:
mask = SF_HI;
goto get_flags;
case SO_HEADERS_ON_OUTPUT:
mask = SF_HO;
get_flags:
m->m_len = sizeof(short);
*mtod(m, short *) = cb->s_flags & mask;
break;
case SO_MTU:
m->m_len = sizeof(u_short);
*mtod(m, short *) = cb->s_mtu;
break;
case SO_LAST_HEADER:
m->m_len = sizeof(struct sphdr);
*mtod(m, struct sphdr *) = cb->s_rhdr;
break;
case SO_DEFAULT_HEADERS:
m->m_len = sizeof(struct spidp);
*mtod(m, struct sphdr *) = cb->s_shdr;
break;
default:
error = EINVAL;
}
*value = m;
break;
case PRCO_SETOPT:
if (value == 0 || *value == 0) {
error = EINVAL;
break;
}
switch (name) {
int *ok;
case SO_HEADERS_ON_INPUT:
mask = SF_HI;
goto set_head;
case SO_HEADERS_ON_OUTPUT:
mask = SF_HO;
set_head:
if (cb->s_flags & SF_PI) {
ok = mtod(*value, int *);
if (*ok)
cb->s_flags |= mask;
else
cb->s_flags &= ~mask;
} else error = EINVAL;
break;
case SO_MTU:
cb->s_mtu = *(mtod(*value, u_short *));
break;
#ifdef SF_NEWCALL
case SO_NEWCALL:
ok = mtod(*value, int *);
if (*ok) {
cb->s_flags2 |= SF_NEWCALL;
spp_newchecks[5]++;
} else {
cb->s_flags2 &= ~SF_NEWCALL;
spp_newchecks[6]++;
}
break;
#endif
case SO_DEFAULT_HEADERS:
{
register struct sphdr *sp
= mtod(*value, struct sphdr *);
cb->s_dt = sp->sp_dt;
cb->s_cc = sp->sp_cc & SP_EM;
}
break;
default:
error = EINVAL;
}
m_freem(*value);
break;
}
release:
return (error);
}
/*ARGSUSED*/
spp_usrreq(so, req, m, nam, controlp)
struct socket *so;
int req;
struct mbuf *m, *nam, *controlp;
{
struct nspcb *nsp = sotonspcb(so);
register struct sppcb *cb;
int s = splnet();
int error = 0, ostate;
struct mbuf *mm;
register struct sockbuf *sb;
if (req == PRU_CONTROL)
return (ns_control(so, (int)m, (caddr_t)nam,
(struct ifnet *)controlp));
if (nsp == NULL) {
if (req != PRU_ATTACH) {
error = EINVAL;
goto release;
}
} else
cb = nstosppcb(nsp);
ostate = cb ? cb->s_state : 0;
switch (req) {
case PRU_ATTACH:
if (nsp != NULL) {
error = EISCONN;
break;
}
error = ns_pcballoc(so, &nspcb);
if (error)
break;
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
error = soreserve(so, (u_long) 3072, (u_long) 3072);
if (error)
break;
}
nsp = sotonspcb(so);
mm = m_getclr(M_DONTWAIT, MT_PCB);
sb = &so->so_snd;
if (mm == NULL) {
error = ENOBUFS;
break;
}
cb = mtod(mm, struct sppcb *);
mm = m_getclr(M_DONTWAIT, MT_HEADER);
if (mm == NULL) {
(void) m_free(dtom(m));
error = ENOBUFS;
break;
}
cb->s_idp = mtod(mm, struct idp *);
cb->s_state = TCPS_LISTEN;
cb->s_smax = -1;
cb->s_swl1 = -1;
cb->s_q.si_next = cb->s_q.si_prev = &cb->s_q;
cb->s_nspcb = nsp;
cb->s_mtu = 576 - sizeof (struct spidp);
cb->s_cwnd = sbspace(sb) * CUNIT / cb->s_mtu;
cb->s_ssthresh = cb->s_cwnd;
cb->s_cwmx = sbspace(sb) * CUNIT /
(2 * sizeof (struct spidp));
/* Above is recomputed when connecting to account
for changed buffering or mtu's */
cb->s_rtt = SPPTV_SRTTBASE;
cb->s_rttvar = SPPTV_SRTTDFLT << 2;
SPPT_RANGESET(cb->s_rxtcur,
((SPPTV_SRTTBASE >> 2) + (SPPTV_SRTTDFLT << 2)) >> 1,
SPPTV_MIN, SPPTV_REXMTMAX);
nsp->nsp_pcb = (caddr_t) cb;
break;
case PRU_DETACH:
if (nsp == NULL) {
error = ENOTCONN;
break;
}
if (cb->s_state > TCPS_LISTEN)
cb = spp_disconnect(cb);
else
cb = spp_close(cb);
break;
case PRU_BIND:
error = ns_pcbbind(nsp, nam);
break;
case PRU_LISTEN:
if (nsp->nsp_lport == 0)
error = ns_pcbbind(nsp, (struct mbuf *)0);
if (error == 0)
cb->s_state = TCPS_LISTEN;
break;
/*
* Initiate connection to peer.
* Enter SYN_SENT state, and mark socket as connecting.
* Start keep-alive timer, setup prototype header,
* Send initial system packet requesting connection.
*/
case PRU_CONNECT:
if (nsp->nsp_lport == 0) {
error = ns_pcbbind(nsp, (struct mbuf *)0);
if (error)
break;
}
error = ns_pcbconnect(nsp, nam);
if (error)
break;
soisconnecting(so);
sppstat.spps_connattempt++;
cb->s_state = TCPS_SYN_SENT;
cb->s_did = 0;
spp_template(cb);
cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
cb->s_force = 1 + SPPTV_KEEP;
/*
* Other party is required to respond to
* the port I send from, but he is not
* required to answer from where I am sending to,
* so allow wildcarding.
* original port I am sending to is still saved in
* cb->s_dport.
*/
nsp->nsp_fport = 0;
error = spp_output(cb, (struct mbuf *) 0);
break;
case PRU_CONNECT2:
error = EOPNOTSUPP;
break;
/*
* We may decide later to implement connection closing
* handshaking at the spp level optionally.
* here is the hook to do it:
*/
case PRU_DISCONNECT:
cb = spp_disconnect(cb);
break;
/*
* Accept a connection. Essentially all the work is
* done at higher levels; just return the address
* of the peer, storing through addr.
*/
case PRU_ACCEPT: {
struct sockaddr_ns *sns = mtod(nam, struct sockaddr_ns *);
nam->m_len = sizeof (struct sockaddr_ns);
sns->sns_family = AF_NS;
sns->sns_addr = nsp->nsp_faddr;
break;
}
case PRU_SHUTDOWN:
socantsendmore(so);
cb = spp_usrclosed(cb);
if (cb)
error = spp_output(cb, (struct mbuf *) 0);
break;
/*
* After a receive, possibly send acknowledgment
* updating allocation.
*/
case PRU_RCVD:
cb->s_flags |= SF_RVD;
(void) spp_output(cb, (struct mbuf *) 0);
cb->s_flags &= ~SF_RVD;
break;
case PRU_ABORT:
(void) spp_drop(cb, ECONNABORTED);
break;
case PRU_SENSE:
case PRU_CONTROL:
m = NULL;
error = EOPNOTSUPP;
break;
case PRU_RCVOOB:
if ((cb->s_oobflags & SF_IOOB) || so->so_oobmark ||
(so->so_state & SS_RCVATMARK)) {
m->m_len = 1;
*mtod(m, caddr_t) = cb->s_iobc;
break;
}
error = EINVAL;
break;
case PRU_SENDOOB:
if (sbspace(&so->so_snd) < -512) {
error = ENOBUFS;
break;
}
cb->s_oobflags |= SF_SOOB;
/* fall into */
case PRU_SEND:
if (controlp) {
u_short *p = mtod(controlp, u_short *);
spp_newchecks[2]++;
if ((p[0] == 5) && p[1] == 1) { /* XXXX, for testing */
cb->s_shdr.sp_dt = *(u_char *)(&p[2]);
spp_newchecks[3]++;
}
m_freem(controlp);
}
controlp = NULL;
error = spp_output(cb, m);
m = NULL;
break;
case PRU_SOCKADDR:
ns_setsockaddr(nsp, nam);
break;
case PRU_PEERADDR:
ns_setpeeraddr(nsp, nam);
break;
case PRU_SLOWTIMO:
cb = spp_timers(cb, (int)nam);
req |= ((int)nam) << 8;
break;
case PRU_FASTTIMO:
case PRU_PROTORCV:
case PRU_PROTOSEND:
error = EOPNOTSUPP;
break;
default:
panic("sp_usrreq");
}
if (cb && (so->so_options & SO_DEBUG || traceallspps))
spp_trace(SA_USER, (u_char)ostate, cb, (struct spidp *)0, req);
release:
if (controlp != NULL)
m_freem(controlp);
if (m != NULL)
m_freem(m);
splx(s);
return (error);
}
spp_usrreq_sp(so, req, m, nam, controlp)
struct socket *so;
int req;
struct mbuf *m, *nam, *controlp;
{
int error = spp_usrreq(so, req, m, nam, controlp);
if (req == PRU_ATTACH && error == 0) {
struct nspcb *nsp = sotonspcb(so);
((struct sppcb *)nsp->nsp_pcb)->s_flags |=
(SF_HI | SF_HO | SF_PI);
}
return (error);
}
/*
* Create template to be used to send spp packets on a connection.
* Called after host entry created, fills
* in a skeletal spp header (choosing connection id),
* minimizing the amount of work necessary when the connection is used.
*/
spp_template(cb)
register struct sppcb *cb;
{
register struct nspcb *nsp = cb->s_nspcb;
register struct idp *idp = cb->s_idp;
register struct sockbuf *sb = &(nsp->nsp_socket->so_snd);
idp->idp_pt = NSPROTO_SPP;
idp->idp_sna = nsp->nsp_laddr;
idp->idp_dna = nsp->nsp_faddr;
cb->s_sid = htons(spp_iss);
spp_iss += SPP_ISSINCR/2;
cb->s_alo = 1;
cb->s_cwnd = (sbspace(sb) * CUNIT) / cb->s_mtu;
cb->s_ssthresh = cb->s_cwnd; /* Try to expand fast to full complement
of large packets */
cb->s_cwmx = (sbspace(sb) * CUNIT) / (2 * sizeof(struct spidp));
cb->s_cwmx = max(cb->s_cwmx, cb->s_cwnd);
/* But allow for lots of little packets as well */
}
/*
* Close a SPIP control block:
* discard spp control block itself
* discard ns protocol control block
* wake up any sleepers
*/
struct sppcb *
spp_close(cb)
register struct sppcb *cb;
{
register struct spidp_q *s;
struct nspcb *nsp = cb->s_nspcb;
struct socket *so = nsp->nsp_socket;
register struct mbuf *m;
s = cb->s_q.si_next;
while (s != &(cb->s_q)) {
s = s->si_next;
m = dtom(s->si_prev);
remque(s->si_prev);
m_freem(m);
}
(void) m_free(dtom(cb->s_idp));
(void) m_free(dtom(cb));
nsp->nsp_pcb = 0;
soisdisconnected(so);
ns_pcbdetach(nsp);
sppstat.spps_closed++;
return ((struct sppcb *)0);
}
/*
* Someday we may do level 3 handshaking
* to close a connection or send a xerox style error.
* For now, just close.
*/
struct sppcb *
spp_usrclosed(cb)
register struct sppcb *cb;
{
return (spp_close(cb));
}
struct sppcb *
spp_disconnect(cb)
register struct sppcb *cb;
{
return (spp_close(cb));
}
/*
* Drop connection, reporting
* the specified error.
*/
struct sppcb *
spp_drop(cb, errno)
register struct sppcb *cb;
int errno;
{
struct socket *so = cb->s_nspcb->nsp_socket;
/*
* someday, in the xerox world
* we will generate error protocol packets
* announcing that the socket has gone away.
*/
if (TCPS_HAVERCVDSYN(cb->s_state)) {
sppstat.spps_drops++;
cb->s_state = TCPS_CLOSED;
/*(void) tcp_output(cb);*/
} else
sppstat.spps_conndrops++;
so->so_error = errno;
return (spp_close(cb));
}
spp_abort(nsp)
struct nspcb *nsp;
{
(void) spp_close((struct sppcb *)nsp->nsp_pcb);
}
int spp_backoff[SPP_MAXRXTSHIFT+1] =
{ 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 };
/*
* Fast timeout routine for processing delayed acks
*/
spp_fasttimo()
{
register struct nspcb *nsp;
register struct sppcb *cb;
int s = splnet();
nsp = nspcb.nsp_next;
if (nsp)
for (; nsp != &nspcb; nsp = nsp->nsp_next)
if ((cb = (struct sppcb *)nsp->nsp_pcb) &&
(cb->s_flags & SF_DELACK)) {
cb->s_flags &= ~SF_DELACK;
cb->s_flags |= SF_ACKNOW;
sppstat.spps_delack++;
(void) spp_output(cb, (struct mbuf *) 0);
}
splx(s);
}
/*
* spp protocol timeout routine called every 500 ms.
* Updates the timers in all active pcb's and
* causes finite state machine actions if timers expire.
*/
spp_slowtimo()
{
register struct nspcb *ip, *ipnxt;
register struct sppcb *cb;
int s = splnet();
register int i;
/*
* Search through tcb's and update active timers.
*/
ip = nspcb.nsp_next;
if (ip == 0) {
splx(s);
return;
}
while (ip != &nspcb) {
cb = nstosppcb(ip);
ipnxt = ip->nsp_next;
if (cb == 0)
goto tpgone;
for (i = 0; i < SPPT_NTIMERS; i++) {
if (cb->s_timer[i] && --cb->s_timer[i] == 0) {
(void) spp_usrreq(cb->s_nspcb->nsp_socket,
PRU_SLOWTIMO, (struct mbuf *)0,
(struct mbuf *)i, (struct mbuf *)0,
(struct mbuf *)0);
if (ipnxt->nsp_prev != ip)
goto tpgone;
}
}
cb->s_idle++;
if (cb->s_rtt)
cb->s_rtt++;
tpgone:
ip = ipnxt;
}
spp_iss += SPP_ISSINCR/PR_SLOWHZ; /* increment iss */
splx(s);
}
/*
* SPP timer processing.
*/
struct sppcb *
spp_timers(cb, timer)
register struct sppcb *cb;
int timer;
{
long rexmt;
int win;
cb->s_force = 1 + timer;
switch (timer) {
/*
* 2 MSL timeout in shutdown went off. TCP deletes connection
* control block.
*/
case SPPT_2MSL:
printf("spp: SPPT_2MSL went off for no reason\n");
cb->s_timer[timer] = 0;
break;
/*
* Retransmission timer went off. Message has not
* been acked within retransmit interval. Back off
* to a longer retransmit interval and retransmit one packet.
*/
case SPPT_REXMT:
if (++cb->s_rxtshift > SPP_MAXRXTSHIFT) {
cb->s_rxtshift = SPP_MAXRXTSHIFT;
sppstat.spps_timeoutdrop++;
cb = spp_drop(cb, ETIMEDOUT);
break;
}
sppstat.spps_rexmttimeo++;
rexmt = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
rexmt *= spp_backoff[cb->s_rxtshift];
SPPT_RANGESET(cb->s_rxtcur, rexmt, SPPTV_MIN, SPPTV_REXMTMAX);
cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
/*
* If we have backed off fairly far, our srtt
* estimate is probably bogus. Clobber it
* so we'll take the next rtt measurement as our srtt;
* move the current srtt into rttvar to keep the current
* retransmit times until then.
*/
if (cb->s_rxtshift > SPP_MAXRXTSHIFT / 4 ) {
cb->s_rttvar += (cb->s_srtt >> 2);
cb->s_srtt = 0;
}
cb->s_snxt = cb->s_rack;
/*
* If timing a packet, stop the timer.
*/
cb->s_rtt = 0;
/*
* See very long discussion in tcp_timer.c about congestion
* window and sstrhesh
*/
win = min(cb->s_swnd, (cb->s_cwnd/CUNIT)) / 2;
if (win < 2)
win = 2;
cb->s_cwnd = CUNIT;
cb->s_ssthresh = win * CUNIT;
(void) spp_output(cb, (struct mbuf *) 0);
break;
/*
* Persistance timer into zero window.
* Force a probe to be sent.
*/
case SPPT_PERSIST:
sppstat.spps_persisttimeo++;
spp_setpersist(cb);
(void) spp_output(cb, (struct mbuf *) 0);
break;
/*
* Keep-alive timer went off; send something
* or drop connection if idle for too long.
*/
case SPPT_KEEP:
sppstat.spps_keeptimeo++;
if (cb->s_state < TCPS_ESTABLISHED)
goto dropit;
if (cb->s_nspcb->nsp_socket->so_options & SO_KEEPALIVE) {
if (cb->s_idle >= SPPTV_MAXIDLE)
goto dropit;
sppstat.spps_keepprobe++;
(void) spp_output(cb, (struct mbuf *) 0);
} else
cb->s_idle = 0;
cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
break;
dropit:
sppstat.spps_keepdrops++;
cb = spp_drop(cb, ETIMEDOUT);
break;
}
return (cb);
}
#ifndef lint
int SppcbSize = sizeof (struct sppcb);
int NspcbSize = sizeof (struct nspcb);
#endif /* lint */