freebsd-skq/sys/pci/intpm.c

795 lines
20 KiB
C
Raw Normal View History

/*-
* Copyright (c) 1998, 1999 Takanori Watanabe
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
2003-06-11 06:34:30 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <machine/bus.h>
#include <sys/uio.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <dev/smbus/smbconf.h>
#include "smbus_if.h"
/*This should be removed if force_pci_map_int supported*/
#include <sys/interrupt.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <pci/intpmreg.h>
#include "opt_intpm.h"
static struct _pcsid
{
u_int32_t type;
char *desc;
} pci_ids[] = {
{ 0x71138086, "Intel 82371AB Power management controller" },
{ 0x719b8086, "Intel 82443MX Power management controller" },
#if 0
/* Not a good idea yet, this stops isab0 functioning */
{ 0x02001166, "ServerWorks OSB4 PCI to ISA Bridge" },
#endif
{ 0x00000000, NULL }
};
static int intsmb_probe(device_t);
static int intsmb_attach(device_t);
static int intsmb_intr(device_t dev);
static int intsmb_slvintr(device_t dev);
static void intsmb_alrintr(device_t dev);
Minor overhaul of SMBus support: - Change smbus_callback() to pass a void * rather than caddr_t. - Change smbus_bread() to pass a pointer to the count and have it be an in/out parameter. The input is the size of the buffer (same as before), but on return it will contain the actual amount of data read back from the bus. Note that this value may be larger than the input value. It is up to the caller to treat this as an error if desired. - Change the SMB_BREAD ioctl to write out the updated struct smbcmd which will contain the actual number of bytes read in the 'count' field. To preserve the previous ABI, the old ioctl value is mapped to SMB_OLD_BREAD which doesn't copy the updated smbcmd back out to userland. I doubt anyone actually used the old BREAD anyway as it was rediculous to do a bulk-read but not tell the using program how much data was actually read. - Make the smbus driver and devclass public in the smbus module and push all the DRIVER_MODULE()'s for attaching the smbus driver to various foosmb drivers out into the foosmb modules. This makes all the foosmb logic centralized and allows new foosmb modules to be self-contained w/o having to hack smbus.c everytime a new smbus driver is added. - Add a new SMB_EINVAL error bit and use it in place of EINVAL to return an error for bad arguments (such as invalid counts for bread and bwrite). - Map SMB bus error bits to EIO in smbus_error(). - Make the smbus driver call bus_generic_probe() and require child drivers such as smb(4) to create device_t's via identify routines. Previously, smbus just created one anonymous device during attach, and if you had multiple drivers that could attach it was just random chance as to which driver got to probe for the sole device_t first. - Add a mutex to the smbus(4) softc and use it in place of dummy splhigh() to protect the 'owner' field and perform necessary synchronization for smbus_request_bus() and smbus_release_bus(). - Change the bread() and bwrite() methods of alpm(4), amdpm(4), and viapm(4) to only perform a single transaction and not try to use a loop of multiple transactions for a large request. The framing and commands to use for a large transaction depend on the upper-layer protocol (such as SSIF for IPMI over SMBus) from what I can tell, and the smb(4) driver never allowed bulk read/writes of more than 32-bytes anyway. The other smb drivers only performed single transactions. - Fix buffer overflows in the bread() methods of ichsmb(4), alpm(4), amdpm(4), amdsmb(4), intpm(4), and nfsmb(4). - Use SMB_xxx errors in viapm(4). - Destroy ichsmb(4)'s mutex after bus_generic_detach() to avoid problems from child devices making smb upcalls that would use the mutex during their detach methods. MFC after: 1 week Reviewed by: jmg (mostly)
2006-09-11 20:52:41 +00:00
static int intsmb_callback(device_t dev, int index, void *data);
static int intsmb_quick(device_t dev, u_char slave, int how);
static int intsmb_sendb(device_t dev, u_char slave, char byte);
static int intsmb_recvb(device_t dev, u_char slave, char *byte);
static int intsmb_writeb(device_t dev, u_char slave, char cmd, char byte);
static int intsmb_writew(device_t dev, u_char slave, char cmd, short word);
static int intsmb_readb(device_t dev, u_char slave, char cmd, char *byte);
static int intsmb_readw(device_t dev, u_char slave, char cmd, short *word);
static int intsmb_pcall(device_t dev, u_char slave, char cmd, short sdata, short *rdata);
static int intsmb_bwrite(device_t dev, u_char slave, char cmd, u_char count, char *buf);
Minor overhaul of SMBus support: - Change smbus_callback() to pass a void * rather than caddr_t. - Change smbus_bread() to pass a pointer to the count and have it be an in/out parameter. The input is the size of the buffer (same as before), but on return it will contain the actual amount of data read back from the bus. Note that this value may be larger than the input value. It is up to the caller to treat this as an error if desired. - Change the SMB_BREAD ioctl to write out the updated struct smbcmd which will contain the actual number of bytes read in the 'count' field. To preserve the previous ABI, the old ioctl value is mapped to SMB_OLD_BREAD which doesn't copy the updated smbcmd back out to userland. I doubt anyone actually used the old BREAD anyway as it was rediculous to do a bulk-read but not tell the using program how much data was actually read. - Make the smbus driver and devclass public in the smbus module and push all the DRIVER_MODULE()'s for attaching the smbus driver to various foosmb drivers out into the foosmb modules. This makes all the foosmb logic centralized and allows new foosmb modules to be self-contained w/o having to hack smbus.c everytime a new smbus driver is added. - Add a new SMB_EINVAL error bit and use it in place of EINVAL to return an error for bad arguments (such as invalid counts for bread and bwrite). - Map SMB bus error bits to EIO in smbus_error(). - Make the smbus driver call bus_generic_probe() and require child drivers such as smb(4) to create device_t's via identify routines. Previously, smbus just created one anonymous device during attach, and if you had multiple drivers that could attach it was just random chance as to which driver got to probe for the sole device_t first. - Add a mutex to the smbus(4) softc and use it in place of dummy splhigh() to protect the 'owner' field and perform necessary synchronization for smbus_request_bus() and smbus_release_bus(). - Change the bread() and bwrite() methods of alpm(4), amdpm(4), and viapm(4) to only perform a single transaction and not try to use a loop of multiple transactions for a large request. The framing and commands to use for a large transaction depend on the upper-layer protocol (such as SSIF for IPMI over SMBus) from what I can tell, and the smb(4) driver never allowed bulk read/writes of more than 32-bytes anyway. The other smb drivers only performed single transactions. - Fix buffer overflows in the bread() methods of ichsmb(4), alpm(4), amdpm(4), amdsmb(4), intpm(4), and nfsmb(4). - Use SMB_xxx errors in viapm(4). - Destroy ichsmb(4)'s mutex after bus_generic_detach() to avoid problems from child devices making smb upcalls that would use the mutex during their detach methods. MFC after: 1 week Reviewed by: jmg (mostly)
2006-09-11 20:52:41 +00:00
static int intsmb_bread(device_t dev, u_char slave, char cmd, u_char *count, char *buf);
static void intsmb_start(device_t dev, u_char cmd, int nointr);
static int intsmb_stop(device_t dev);
static int intsmb_stop_poll(device_t dev);
static int intsmb_free(device_t dev);
static int intpm_probe (device_t dev);
static int intpm_attach (device_t dev);
static void intpm_intr(void *arg);
static devclass_t intsmb_devclass;
static device_method_t intpm_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, intsmb_probe),
DEVMETHOD(device_attach, intsmb_attach),
/* Bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
/* SMBus interface */
DEVMETHOD(smbus_callback, intsmb_callback),
DEVMETHOD(smbus_quick, intsmb_quick),
DEVMETHOD(smbus_sendb, intsmb_sendb),
DEVMETHOD(smbus_recvb, intsmb_recvb),
DEVMETHOD(smbus_writeb, intsmb_writeb),
DEVMETHOD(smbus_writew, intsmb_writew),
DEVMETHOD(smbus_readb, intsmb_readb),
DEVMETHOD(smbus_readw, intsmb_readw),
DEVMETHOD(smbus_pcall, intsmb_pcall),
DEVMETHOD(smbus_bwrite, intsmb_bwrite),
DEVMETHOD(smbus_bread, intsmb_bread),
{ 0, 0 }
};
struct intpm_pci_softc {
bus_space_tag_t smbst;
bus_space_handle_t smbsh;
bus_space_tag_t pmst;
bus_space_handle_t pmsh;
device_t smbus;
};
struct intsmb_softc {
struct intpm_pci_softc *pci_sc;
bus_space_tag_t st;
bus_space_handle_t sh;
device_t smbus;
int isbusy;
};
static driver_t intpm_driver = {
"intsmb",
intpm_methods,
sizeof(struct intsmb_softc),
};
static devclass_t intpm_devclass;
static device_method_t intpm_pci_methods[] = {
DEVMETHOD(device_probe, intpm_probe),
DEVMETHOD(device_attach, intpm_attach),
{ 0, 0 }
};
static driver_t intpm_pci_driver = {
"intpm",
intpm_pci_methods,
sizeof(struct intpm_pci_softc)
};
static int
intsmb_probe(device_t dev)
{
struct intsmb_softc *sc = device_get_softc(dev);
sc->smbus = device_add_child(dev, "smbus", -1);
if (!sc->smbus)
return (EINVAL); /* XXX don't know what to return else */
device_set_desc(dev, "Intel PIIX4 SMBUS Interface");
return (BUS_PROBE_DEFAULT); /* XXX don't know what to return else */
}
static int
intsmb_attach(device_t dev)
{
struct intsmb_softc *sc = device_get_softc(dev);
sc->pci_sc = device_get_softc(device_get_parent(dev));
sc->isbusy = 0;
sc->sh = sc->pci_sc->smbsh;
sc->st = sc->pci_sc->smbst;
sc->pci_sc->smbus = dev;
device_probe_and_attach(sc->smbus);
#ifdef ENABLE_ALART
/*Enable Arart*/
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBSLVCNT,
PIIX4_SMBSLVCNT_ALTEN);
#endif
return (0);
}
static int
Minor overhaul of SMBus support: - Change smbus_callback() to pass a void * rather than caddr_t. - Change smbus_bread() to pass a pointer to the count and have it be an in/out parameter. The input is the size of the buffer (same as before), but on return it will contain the actual amount of data read back from the bus. Note that this value may be larger than the input value. It is up to the caller to treat this as an error if desired. - Change the SMB_BREAD ioctl to write out the updated struct smbcmd which will contain the actual number of bytes read in the 'count' field. To preserve the previous ABI, the old ioctl value is mapped to SMB_OLD_BREAD which doesn't copy the updated smbcmd back out to userland. I doubt anyone actually used the old BREAD anyway as it was rediculous to do a bulk-read but not tell the using program how much data was actually read. - Make the smbus driver and devclass public in the smbus module and push all the DRIVER_MODULE()'s for attaching the smbus driver to various foosmb drivers out into the foosmb modules. This makes all the foosmb logic centralized and allows new foosmb modules to be self-contained w/o having to hack smbus.c everytime a new smbus driver is added. - Add a new SMB_EINVAL error bit and use it in place of EINVAL to return an error for bad arguments (such as invalid counts for bread and bwrite). - Map SMB bus error bits to EIO in smbus_error(). - Make the smbus driver call bus_generic_probe() and require child drivers such as smb(4) to create device_t's via identify routines. Previously, smbus just created one anonymous device during attach, and if you had multiple drivers that could attach it was just random chance as to which driver got to probe for the sole device_t first. - Add a mutex to the smbus(4) softc and use it in place of dummy splhigh() to protect the 'owner' field and perform necessary synchronization for smbus_request_bus() and smbus_release_bus(). - Change the bread() and bwrite() methods of alpm(4), amdpm(4), and viapm(4) to only perform a single transaction and not try to use a loop of multiple transactions for a large request. The framing and commands to use for a large transaction depend on the upper-layer protocol (such as SSIF for IPMI over SMBus) from what I can tell, and the smb(4) driver never allowed bulk read/writes of more than 32-bytes anyway. The other smb drivers only performed single transactions. - Fix buffer overflows in the bread() methods of ichsmb(4), alpm(4), amdpm(4), amdsmb(4), intpm(4), and nfsmb(4). - Use SMB_xxx errors in viapm(4). - Destroy ichsmb(4)'s mutex after bus_generic_detach() to avoid problems from child devices making smb upcalls that would use the mutex during their detach methods. MFC after: 1 week Reviewed by: jmg (mostly)
2006-09-11 20:52:41 +00:00
intsmb_callback(device_t dev, int index, void *data)
{
int error = 0;
intrmask_t s;
s = splnet();
switch (index) {
case SMB_REQUEST_BUS:
break;
case SMB_RELEASE_BUS:
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
/* Counterpart of smbtx_smb_free(). */
static int
intsmb_free(device_t dev)
{
struct intsmb_softc *sc = device_get_softc(dev);
intrmask_t s;
if ((bus_space_read_1(sc->st, sc->sh, PIIX4_SMBHSTSTS) &
PIIX4_SMBHSTSTAT_BUSY) ||
#ifdef ENABLE_ALART
(bus_space_read_1(sc->st, sc->sh, PIIX4_SMBSLVSTS) &
PIIX4_SMBSLVSTS_BUSY) ||
#endif
sc->isbusy)
return (EBUSY);
s = splhigh();
sc->isbusy = 1;
/* Disable Interrupt in slave part. */
#ifndef ENABLE_ALART
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBSLVCNT, 0);
#endif
/* Reset INTR Flag to prepare INTR. */
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTSTS,
(PIIX4_SMBHSTSTAT_INTR | PIIX4_SMBHSTSTAT_ERR |
PIIX4_SMBHSTSTAT_BUSC | PIIX4_SMBHSTSTAT_FAIL));
splx(s);
return (0);
}
static int
intsmb_intr(device_t dev)
{
struct intsmb_softc *sc = device_get_softc(dev);
int status;
status = bus_space_read_1(sc->st, sc->sh, PIIX4_SMBHSTSTS);
if (status & PIIX4_SMBHSTSTAT_BUSY)
return (1);
if (status & (PIIX4_SMBHSTSTAT_INTR | PIIX4_SMBHSTSTAT_ERR |
PIIX4_SMBHSTSTAT_BUSC | PIIX4_SMBHSTSTAT_FAIL)) {
int tmp;
tmp = bus_space_read_1(sc->st, sc->sh, PIIX4_SMBHSTCNT);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTCNT,
tmp & ~PIIX4_SMBHSTCNT_INTREN);
if (sc->isbusy) {
sc->isbusy = 0;
wakeup(sc);
}
return (0);
}
return (1); /* Not Completed */
}
static int
intsmb_slvintr(device_t dev)
{
struct intsmb_softc *sc = device_get_softc(dev);
int status, retval;
retval = 1;
status = bus_space_read_1(sc->st, sc->sh, PIIX4_SMBSLVSTS);
if (status & PIIX4_SMBSLVSTS_BUSY)
return (retval);
if (status & PIIX4_SMBSLVSTS_ALART) {
intsmb_alrintr(dev);
retval = 0;
} else if (status & ~(PIIX4_SMBSLVSTS_ALART | PIIX4_SMBSLVSTS_SDW2
| PIIX4_SMBSLVSTS_SDW1)) {
retval = 0;
}
/* Reset Status Register */
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBSLVSTS,
PIIX4_SMBSLVSTS_ALART | PIIX4_SMBSLVSTS_SDW2 |
PIIX4_SMBSLVSTS_SDW1 | PIIX4_SMBSLVSTS_SLV);
return (retval);
}
static void
intsmb_alrintr(device_t dev)
{
struct intsmb_softc *sc = device_get_softc(dev);
int slvcnt;
#ifdef ENABLE_ALART
int error;
#endif
/* Stop generating INTR from ALART. */
slvcnt = bus_space_read_1(sc->st, sc->sh, PIIX4_SMBSLVCNT);
#ifdef ENABLE_ALART
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBSLVCNT,
slvcnt & ~PIIX4_SMBSLVCNT_ALTEN);
#endif
DELAY(5);
/* Ask bus who asserted it and then ask it what's the matter. */
#ifdef ENABLE_ALART
error = intsmb_free(dev);
if (!error) {
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTADD,
SMBALTRESP | LSB);
intsmb_start(dev, PIIX4_SMBHSTCNT_PROT_BYTE, 1);
if (!(error = intsmb_stop_poll(dev))) {
u_int8_t addr;
addr = bus_space_read_1(sc->st, sc->sh,
PIIX4_SMBHSTDAT0);
printf("ALART_RESPONSE: 0x%x\n", addr);
}
} else
printf("ERROR\n");
/* Re-enable INTR from ALART. */
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBSLVCNT,
slvcnt | PIIX4_SMBSLVCNT_ALTEN);
DELAY(5);
#endif
}
static void
intsmb_start(device_t dev, unsigned char cmd, int nointr)
{
struct intsmb_softc *sc = device_get_softc(dev);
unsigned char tmp;
tmp = bus_space_read_1(sc->st, sc->sh, PIIX4_SMBHSTCNT);
tmp &= 0xe0;
tmp |= cmd;
tmp |= PIIX4_SMBHSTCNT_START;
/* While not in autoconfiguration enable interrupts. */
if (!cold || !nointr)
tmp |= PIIX4_SMBHSTCNT_INTREN;
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTCNT, tmp);
}
/*
* Polling Code.
*
* Polling is not encouraged because it requires waiting for the
* device if it is busy.
* (29063505.pdf from Intel) But during boot, interrupt cannot be used, so use
* polling code then.
*/
static int
intsmb_stop_poll(device_t dev)
{
struct intsmb_softc *sc = device_get_softc(dev);
int error, i;
int tmp;
/*
* In smbtx driver, Simply waiting.
* This loops 100-200 times.
*/
for (i = 0; i < 0x7fff; i++)
if (bus_space_read_1(sc->st, sc->sh, PIIX4_SMBHSTSTS) &
PIIX4_SMBHSTSTAT_BUSY)
break;
for (i = 0; i < 0x7fff; i++) {
int status;
status = bus_space_read_1(sc->st, sc->sh, PIIX4_SMBHSTSTS);
if (!(status & PIIX4_SMBHSTSTAT_BUSY)) {
sc->isbusy = 0;
error = (status & PIIX4_SMBHSTSTAT_ERR) ? EIO :
(status & PIIX4_SMBHSTSTAT_BUSC) ? EBUSY :
(status & PIIX4_SMBHSTSTAT_FAIL) ? EIO : 0;
if (error == 0 && !(status & PIIX4_SMBHSTSTAT_INTR))
printf("unknown cause why?");
return (error);
}
}
sc->isbusy = 0;
tmp = bus_space_read_1(sc->st, sc->sh, PIIX4_SMBHSTCNT);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTCNT,
tmp & ~PIIX4_SMBHSTCNT_INTREN);
return (EIO);
}
/*
* Wait for completion and return result.
*/
static int
intsmb_stop(device_t dev)
{
struct intsmb_softc *sc = device_get_softc(dev);
int error;
intrmask_t s;
if (cold) {
/* So that it can use device during device probe on SMBus. */
error = intsmb_stop_poll(dev);
return (error);
}
if (!tsleep(sc, (PWAIT) | PCATCH, "SMBWAI", hz/8)) {
int status;
status = bus_space_read_1(sc->st, sc->sh, PIIX4_SMBHSTSTS);
if (!(status & PIIX4_SMBHSTSTAT_BUSY)) {
error = (status & PIIX4_SMBHSTSTAT_ERR) ? EIO :
(status & PIIX4_SMBHSTSTAT_BUSC) ? EBUSY :
(status & PIIX4_SMBHSTSTAT_FAIL) ? EIO : 0;
if (error == 0 && !(status & PIIX4_SMBHSTSTAT_INTR))
printf("intsmb%d: unknown cause why?\n",
device_get_unit(dev));
#ifdef ENABLE_ALART
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBSLVCNT,
PIIX4_SMBSLVCNT_ALTEN);
#endif
return (error);
}
}
/* Timeout Procedure. */
s = splhigh();
sc->isbusy = 0;
/* Re-enable supressed interrupt from slave part. */
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBSLVCNT,
PIIX4_SMBSLVCNT_ALTEN);
splx(s);
return (EIO);
}
static int
intsmb_quick(device_t dev, u_char slave, int how)
{
struct intsmb_softc *sc = device_get_softc(dev);
int error = 0;
u_char data;
data = slave;
/* Quick command is part of Address, I think. */
switch(how) {
case SMB_QWRITE:
data &= ~LSB;
break;
case SMB_QREAD:
data |= LSB;
break;
default:
error = EINVAL;
}
if (!error) {
error = intsmb_free(dev);
if (!error) {
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTADD,
data);
intsmb_start(dev, PIIX4_SMBHSTCNT_PROT_QUICK, 0);
error = intsmb_stop(dev);
}
}
return (error);
}
static int
intsmb_sendb(device_t dev, u_char slave, char byte)
{
struct intsmb_softc *sc = device_get_softc(dev);
int error;
error = intsmb_free(dev);
if (!error) {
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTADD,
slave & ~LSB);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTCMD, byte);
intsmb_start(dev, PIIX4_SMBHSTCNT_PROT_BYTE, 0);
error = intsmb_stop(dev);
}
return (error);
}
static int
intsmb_recvb(device_t dev, u_char slave, char *byte)
{
struct intsmb_softc *sc = device_get_softc(dev);
int error;
error = intsmb_free(dev);
if (!error) {
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTADD, slave | LSB);
intsmb_start(dev, PIIX4_SMBHSTCNT_PROT_BYTE, 0);
if (!(error = intsmb_stop(dev))) {
#ifdef RECV_IS_IN_CMD
/*
* Linux SMBus stuff also troubles
* Because Intel's datasheet does not make clear.
*/
*byte = bus_space_read_1(sc->st, sc->sh,
PIIX4_SMBHSTCMD);
#else
*byte = bus_space_read_1(sc->st, sc->sh,
PIIX4_SMBHSTDAT0);
#endif
}
}
return (error);
}
static int
intsmb_writeb(device_t dev, u_char slave, char cmd, char byte)
{
struct intsmb_softc *sc = device_get_softc(dev);
int error;
error = intsmb_free(dev);
if (!error) {
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTADD,
slave & ~LSB);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTCMD, cmd);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTDAT0, byte);
intsmb_start(dev, PIIX4_SMBHSTCNT_PROT_BDATA, 0);
error = intsmb_stop(dev);
}
return (error);
}
static int
intsmb_writew(device_t dev, u_char slave, char cmd, short word)
{
struct intsmb_softc *sc = device_get_softc(dev);
int error;
error = intsmb_free(dev);
if (!error) {
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTADD,
slave & ~LSB);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTCMD, cmd);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTDAT0,
word & 0xff);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTDAT1,
(word >> 8) & 0xff);
intsmb_start(dev, PIIX4_SMBHSTCNT_PROT_WDATA, 0);
error = intsmb_stop(dev);
}
return (error);
}
static int
intsmb_readb(device_t dev, u_char slave, char cmd, char *byte)
{
struct intsmb_softc *sc = device_get_softc(dev);
int error;
error = intsmb_free(dev);
if (!error) {
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTADD, slave | LSB);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTCMD, cmd);
intsmb_start(dev, PIIX4_SMBHSTCNT_PROT_BDATA, 0);
if (!(error = intsmb_stop(dev)))
*byte = bus_space_read_1(sc->st, sc->sh,
PIIX4_SMBHSTDAT0);
}
return (error);
}
static int
intsmb_readw(device_t dev, u_char slave, char cmd, short *word)
{
struct intsmb_softc *sc = device_get_softc(dev);
int error;
error = intsmb_free(dev);
if (!error) {
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTADD, slave | LSB);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTCMD, cmd);
intsmb_start(dev, PIIX4_SMBHSTCNT_PROT_WDATA, 0);
if (!(error = intsmb_stop(dev))) {
*word = bus_space_read_1(sc->st, sc->sh,
PIIX4_SMBHSTDAT0);
*word |= bus_space_read_1(sc->st, sc->sh,
PIIX4_SMBHSTDAT1) << 8;
}
}
return (error);
}
/*
* Data sheet claims that it implements all function, but also claims
* that it implements 7 function and not mention PCALL. So I don't know
* whether it will work.
*/
static int
intsmb_pcall(device_t dev, u_char slave, char cmd, short sdata, short *rdata)
{
#ifdef PROCCALL_TEST
struct intsmb_softc *sc = device_get_softc(dev);
int error;
error = intsmb_free(dev);
if (!error) {
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTADD,
slave & ~LSB);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTCMD, cmd);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTDAT0,
sdata & 0xff);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTDAT1,
(sdata & 0xff) >> 8);
intsmb_start(dev, PIIX4_SMBHSTCNT_PROT_WDATA, 0);
}
if (!(error = intsmb_stop(dev))) {
*rdata = bus_space_read_1(sc->st, sc->sh, PIIX4_SMBHSTDAT0);
*rdata |= bus_space_read_1(sc->st, sc->sh, PIIX4_SMBHSTDAT1) <<
8;
}
return (error);
#else
return (0);
#endif
}
static int
intsmb_bwrite(device_t dev, u_char slave, char cmd, u_char count, char *buf)
{
struct intsmb_softc *sc = device_get_softc(dev);
int error, i;
error = intsmb_free(dev);
if (count > SMBBLOCKTRANS_MAX || count == 0)
error = SMB_EINVAL;
if (!error) {
/* Reset internal array index. */
bus_space_read_1(sc->st, sc->sh, PIIX4_SMBHSTCNT);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTADD,
slave & ~LSB);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTCMD, cmd);
for (i = 0; i < count; i++)
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBBLKDAT,
buf[i]);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTDAT0, count);
intsmb_start(dev, PIIX4_SMBHSTCNT_PROT_BLOCK, 0);
error = intsmb_stop(dev);
}
return (error);
}
static int
Minor overhaul of SMBus support: - Change smbus_callback() to pass a void * rather than caddr_t. - Change smbus_bread() to pass a pointer to the count and have it be an in/out parameter. The input is the size of the buffer (same as before), but on return it will contain the actual amount of data read back from the bus. Note that this value may be larger than the input value. It is up to the caller to treat this as an error if desired. - Change the SMB_BREAD ioctl to write out the updated struct smbcmd which will contain the actual number of bytes read in the 'count' field. To preserve the previous ABI, the old ioctl value is mapped to SMB_OLD_BREAD which doesn't copy the updated smbcmd back out to userland. I doubt anyone actually used the old BREAD anyway as it was rediculous to do a bulk-read but not tell the using program how much data was actually read. - Make the smbus driver and devclass public in the smbus module and push all the DRIVER_MODULE()'s for attaching the smbus driver to various foosmb drivers out into the foosmb modules. This makes all the foosmb logic centralized and allows new foosmb modules to be self-contained w/o having to hack smbus.c everytime a new smbus driver is added. - Add a new SMB_EINVAL error bit and use it in place of EINVAL to return an error for bad arguments (such as invalid counts for bread and bwrite). - Map SMB bus error bits to EIO in smbus_error(). - Make the smbus driver call bus_generic_probe() and require child drivers such as smb(4) to create device_t's via identify routines. Previously, smbus just created one anonymous device during attach, and if you had multiple drivers that could attach it was just random chance as to which driver got to probe for the sole device_t first. - Add a mutex to the smbus(4) softc and use it in place of dummy splhigh() to protect the 'owner' field and perform necessary synchronization for smbus_request_bus() and smbus_release_bus(). - Change the bread() and bwrite() methods of alpm(4), amdpm(4), and viapm(4) to only perform a single transaction and not try to use a loop of multiple transactions for a large request. The framing and commands to use for a large transaction depend on the upper-layer protocol (such as SSIF for IPMI over SMBus) from what I can tell, and the smb(4) driver never allowed bulk read/writes of more than 32-bytes anyway. The other smb drivers only performed single transactions. - Fix buffer overflows in the bread() methods of ichsmb(4), alpm(4), amdpm(4), amdsmb(4), intpm(4), and nfsmb(4). - Use SMB_xxx errors in viapm(4). - Destroy ichsmb(4)'s mutex after bus_generic_detach() to avoid problems from child devices making smb upcalls that would use the mutex during their detach methods. MFC after: 1 week Reviewed by: jmg (mostly)
2006-09-11 20:52:41 +00:00
intsmb_bread(device_t dev, u_char slave, char cmd, u_char *count, char *buf)
{
struct intsmb_softc *sc = device_get_softc(dev);
int error, i;
Minor overhaul of SMBus support: - Change smbus_callback() to pass a void * rather than caddr_t. - Change smbus_bread() to pass a pointer to the count and have it be an in/out parameter. The input is the size of the buffer (same as before), but on return it will contain the actual amount of data read back from the bus. Note that this value may be larger than the input value. It is up to the caller to treat this as an error if desired. - Change the SMB_BREAD ioctl to write out the updated struct smbcmd which will contain the actual number of bytes read in the 'count' field. To preserve the previous ABI, the old ioctl value is mapped to SMB_OLD_BREAD which doesn't copy the updated smbcmd back out to userland. I doubt anyone actually used the old BREAD anyway as it was rediculous to do a bulk-read but not tell the using program how much data was actually read. - Make the smbus driver and devclass public in the smbus module and push all the DRIVER_MODULE()'s for attaching the smbus driver to various foosmb drivers out into the foosmb modules. This makes all the foosmb logic centralized and allows new foosmb modules to be self-contained w/o having to hack smbus.c everytime a new smbus driver is added. - Add a new SMB_EINVAL error bit and use it in place of EINVAL to return an error for bad arguments (such as invalid counts for bread and bwrite). - Map SMB bus error bits to EIO in smbus_error(). - Make the smbus driver call bus_generic_probe() and require child drivers such as smb(4) to create device_t's via identify routines. Previously, smbus just created one anonymous device during attach, and if you had multiple drivers that could attach it was just random chance as to which driver got to probe for the sole device_t first. - Add a mutex to the smbus(4) softc and use it in place of dummy splhigh() to protect the 'owner' field and perform necessary synchronization for smbus_request_bus() and smbus_release_bus(). - Change the bread() and bwrite() methods of alpm(4), amdpm(4), and viapm(4) to only perform a single transaction and not try to use a loop of multiple transactions for a large request. The framing and commands to use for a large transaction depend on the upper-layer protocol (such as SSIF for IPMI over SMBus) from what I can tell, and the smb(4) driver never allowed bulk read/writes of more than 32-bytes anyway. The other smb drivers only performed single transactions. - Fix buffer overflows in the bread() methods of ichsmb(4), alpm(4), amdpm(4), amdsmb(4), intpm(4), and nfsmb(4). - Use SMB_xxx errors in viapm(4). - Destroy ichsmb(4)'s mutex after bus_generic_detach() to avoid problems from child devices making smb upcalls that would use the mutex during their detach methods. MFC after: 1 week Reviewed by: jmg (mostly)
2006-09-11 20:52:41 +00:00
u_char data, nread;
error = intsmb_free(dev);
if (*count > SMBBLOCKTRANS_MAX || *count == 0)
error = SMB_EINVAL;
if (!error) {
/* Reset internal array index. */
bus_space_read_1(sc->st, sc->sh, PIIX4_SMBHSTCNT);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTADD, slave | LSB);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTCMD, cmd);
bus_space_write_1(sc->st, sc->sh, PIIX4_SMBHSTDAT0, *count);
intsmb_start(dev, PIIX4_SMBHSTCNT_PROT_BLOCK, 0);
error = intsmb_stop(dev);
if (!error) {
nread= bus_space_read_1(sc->st, sc->sh,
PIIX4_SMBHSTDAT0);
if (nread != 0 && nread <= SMBBLOCKTRANS_MAX) {
for (i = 0; i < nread; i++) {
data = bus_space_read_1(sc->st, sc->sh,
PIIX4_SMBBLKDAT);
Minor overhaul of SMBus support: - Change smbus_callback() to pass a void * rather than caddr_t. - Change smbus_bread() to pass a pointer to the count and have it be an in/out parameter. The input is the size of the buffer (same as before), but on return it will contain the actual amount of data read back from the bus. Note that this value may be larger than the input value. It is up to the caller to treat this as an error if desired. - Change the SMB_BREAD ioctl to write out the updated struct smbcmd which will contain the actual number of bytes read in the 'count' field. To preserve the previous ABI, the old ioctl value is mapped to SMB_OLD_BREAD which doesn't copy the updated smbcmd back out to userland. I doubt anyone actually used the old BREAD anyway as it was rediculous to do a bulk-read but not tell the using program how much data was actually read. - Make the smbus driver and devclass public in the smbus module and push all the DRIVER_MODULE()'s for attaching the smbus driver to various foosmb drivers out into the foosmb modules. This makes all the foosmb logic centralized and allows new foosmb modules to be self-contained w/o having to hack smbus.c everytime a new smbus driver is added. - Add a new SMB_EINVAL error bit and use it in place of EINVAL to return an error for bad arguments (such as invalid counts for bread and bwrite). - Map SMB bus error bits to EIO in smbus_error(). - Make the smbus driver call bus_generic_probe() and require child drivers such as smb(4) to create device_t's via identify routines. Previously, smbus just created one anonymous device during attach, and if you had multiple drivers that could attach it was just random chance as to which driver got to probe for the sole device_t first. - Add a mutex to the smbus(4) softc and use it in place of dummy splhigh() to protect the 'owner' field and perform necessary synchronization for smbus_request_bus() and smbus_release_bus(). - Change the bread() and bwrite() methods of alpm(4), amdpm(4), and viapm(4) to only perform a single transaction and not try to use a loop of multiple transactions for a large request. The framing and commands to use for a large transaction depend on the upper-layer protocol (such as SSIF for IPMI over SMBus) from what I can tell, and the smb(4) driver never allowed bulk read/writes of more than 32-bytes anyway. The other smb drivers only performed single transactions. - Fix buffer overflows in the bread() methods of ichsmb(4), alpm(4), amdpm(4), amdsmb(4), intpm(4), and nfsmb(4). - Use SMB_xxx errors in viapm(4). - Destroy ichsmb(4)'s mutex after bus_generic_detach() to avoid problems from child devices making smb upcalls that would use the mutex during their detach methods. MFC after: 1 week Reviewed by: jmg (mostly)
2006-09-11 20:52:41 +00:00
if (i < *count)
buf[i] = data;
}
Minor overhaul of SMBus support: - Change smbus_callback() to pass a void * rather than caddr_t. - Change smbus_bread() to pass a pointer to the count and have it be an in/out parameter. The input is the size of the buffer (same as before), but on return it will contain the actual amount of data read back from the bus. Note that this value may be larger than the input value. It is up to the caller to treat this as an error if desired. - Change the SMB_BREAD ioctl to write out the updated struct smbcmd which will contain the actual number of bytes read in the 'count' field. To preserve the previous ABI, the old ioctl value is mapped to SMB_OLD_BREAD which doesn't copy the updated smbcmd back out to userland. I doubt anyone actually used the old BREAD anyway as it was rediculous to do a bulk-read but not tell the using program how much data was actually read. - Make the smbus driver and devclass public in the smbus module and push all the DRIVER_MODULE()'s for attaching the smbus driver to various foosmb drivers out into the foosmb modules. This makes all the foosmb logic centralized and allows new foosmb modules to be self-contained w/o having to hack smbus.c everytime a new smbus driver is added. - Add a new SMB_EINVAL error bit and use it in place of EINVAL to return an error for bad arguments (such as invalid counts for bread and bwrite). - Map SMB bus error bits to EIO in smbus_error(). - Make the smbus driver call bus_generic_probe() and require child drivers such as smb(4) to create device_t's via identify routines. Previously, smbus just created one anonymous device during attach, and if you had multiple drivers that could attach it was just random chance as to which driver got to probe for the sole device_t first. - Add a mutex to the smbus(4) softc and use it in place of dummy splhigh() to protect the 'owner' field and perform necessary synchronization for smbus_request_bus() and smbus_release_bus(). - Change the bread() and bwrite() methods of alpm(4), amdpm(4), and viapm(4) to only perform a single transaction and not try to use a loop of multiple transactions for a large request. The framing and commands to use for a large transaction depend on the upper-layer protocol (such as SSIF for IPMI over SMBus) from what I can tell, and the smb(4) driver never allowed bulk read/writes of more than 32-bytes anyway. The other smb drivers only performed single transactions. - Fix buffer overflows in the bread() methods of ichsmb(4), alpm(4), amdpm(4), amdsmb(4), intpm(4), and nfsmb(4). - Use SMB_xxx errors in viapm(4). - Destroy ichsmb(4)'s mutex after bus_generic_detach() to avoid problems from child devices making smb upcalls that would use the mutex during their detach methods. MFC after: 1 week Reviewed by: jmg (mostly)
2006-09-11 20:52:41 +00:00
*count = nread;
} else {
error = EIO;
}
}
}
return (error);
}
DRIVER_MODULE(intsmb, intpm, intpm_driver, intsmb_devclass, 0, 0);
static int
intpm_attach(device_t dev)
{
struct intpm_pci_softc *sc;
struct resource *res;
device_t smbinterface;
void *ih;
char *str;
int error, rid, value;
int unit = device_get_unit(dev);
sc = device_get_softc(dev);
if (sc == NULL)
return (ENOMEM);
rid = PCI_BASE_ADDR_SMB;
res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE);
if (res == NULL) {
device_printf(dev, "Could not allocate Bus space\n");
return (ENXIO);
}
sc->smbst = rman_get_bustag(res);
sc->smbsh = rman_get_bushandle(res);
#ifdef __i386__
device_printf(dev, "%s %lx\n", (sc->smbst == I386_BUS_SPACE_IO) ?
"I/O mapped" : "Memory", rman_get_start(res));
#endif
#ifndef NO_CHANGE_PCICONF
pci_write_config(dev, PCIR_INTLINE, 0x9, 1);
pci_write_config(dev, PCI_HST_CFG_SMB,
PCI_INTR_SMB_IRQ9 | PCI_INTR_SMB_ENABLE, 1);
#endif
value = pci_read_config(dev, PCI_HST_CFG_SMB, 1);
switch (value & 0xe) {
case PCI_INTR_SMB_SMI:
str = "SMI";
break;
case PCI_INTR_SMB_IRQ9:
str = "IRQ 9";
break;
default:
str = "BOGUS";
}
device_printf(dev, "intr %s %s ", str,
(value & 1) ? "enabled" : "disabled");
value = pci_read_config(dev, PCI_REVID_SMB, 1);
printf("revision %d\n", value);
/* Install interrupt handler. */
rid = 0;
res = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 9, 9, 1,
RF_SHAREABLE | RF_ACTIVE);
if (res == NULL) {
device_printf(dev, "could not allocate irq");
return (ENOMEM);
}
error = bus_setup_intr(dev, res, INTR_TYPE_MISC, intpm_intr, sc, &ih);
if (error) {
device_printf(dev, "Failed to map intr\n");
return (error);
}
smbinterface = device_add_child(dev, "intsmb", unit);
if (!smbinterface)
printf("intsmb%d: could not add SMBus device\n", unit);
device_probe_and_attach(smbinterface);
value = pci_read_config(dev, PCI_BASE_ADDR_PM, 4);
printf("intpm%d: PM %s %x \n", unit,
(value & 1) ? "I/O mapped" : "Memory", value & 0xfffe);
return (0);
}
static int
intpm_probe(device_t dev)
{
struct _pcsid *ep = pci_ids;
uint32_t device_id = pci_get_devid(dev);
while (ep->type && ep->type != device_id)
++ep;
if (ep->desc != NULL) {
device_set_desc(dev, ep->desc);
bus_set_resource(dev, SYS_RES_IRQ, 0, 9, 1); /* XXX setup intr resource */
return (BUS_PROBE_DEFAULT);
} else {
return (ENXIO);
}
}
static void
intpm_intr(void *arg)
{
struct intpm_pci_softc *sc = arg;
intsmb_intr(sc->smbus);
intsmb_slvintr(sc->smbus);
}
DRIVER_MODULE(intpm, pci , intpm_pci_driver, intpm_devclass, 0, 0);
DRIVER_MODULE(smbus, intsmb, smbus_driver, smbus_devclass, 0, 0);
MODULE_DEPEND(intpm, smbus, SMBUS_MINVER, SMBUS_PREFVER, SMBUS_MAXVER);
MODULE_VERSION(intpm, 1);