freebsd-skq/sys/vm/vm_phys.h

74 lines
2.8 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2002-2006 Rice University
Change the management of cached pages (PQ_CACHE) in two fundamental ways: (1) Cached pages are no longer kept in the object's resident page splay tree and memq. Instead, they are kept in a separate per-object splay tree of cached pages. However, access to this new per-object splay tree is synchronized by the _free_ page queues lock, not to be confused with the heavily contended page queues lock. Consequently, a cached page can be reclaimed by vm_page_alloc(9) without acquiring the object's lock or the page queues lock. This solves a problem independently reported by tegge@ and Isilon. Specifically, they observed the page daemon consuming a great deal of CPU time because of pages bouncing back and forth between the cache queue (PQ_CACHE) and the inactive queue (PQ_INACTIVE). The source of this problem turned out to be a deadlock avoidance strategy employed when selecting a cached page to reclaim in vm_page_select_cache(). However, the root cause was really that reclaiming a cached page required the acquisition of an object lock while the page queues lock was already held. Thus, this change addresses the problem at its root, by eliminating the need to acquire the object's lock. Moreover, keeping cached pages in the object's primary splay tree and memq was, in effect, optimizing for the uncommon case. Cached pages are reclaimed far, far more often than they are reactivated. Instead, this change makes reclamation cheaper, especially in terms of synchronization overhead, and reactivation more expensive, because reactivated pages will have to be reentered into the object's primary splay tree and memq. (2) Cached pages are now stored alongside free pages in the physical memory allocator's buddy queues, increasing the likelihood that large allocations of contiguous physical memory (i.e., superpages) will succeed. Finally, as a result of this change long-standing restrictions on when and where a cached page can be reclaimed and returned by vm_page_alloc(9) are eliminated. Specifically, calls to vm_page_alloc(9) specifying VM_ALLOC_INTERRUPT can now reclaim and return a formerly cached page. Consequently, a call to malloc(9) specifying M_NOWAIT is less likely to fail. Discussed with: many over the course of the summer, including jeff@, Justin Husted @ Isilon, peter@, tegge@ Tested by: an earlier version by kris@ Approved by: re (kensmith)
2007-09-25 06:25:06 +00:00
* Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Alan L. Cox,
* Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Physical memory system definitions
*/
#ifndef _VM_PHYS_H_
#define _VM_PHYS_H_
#ifdef _KERNEL
Very rough first cut at NUMA support for the physical page allocator. For now it uses a very dumb first-touch allocation policy. This will change in the future. - Each architecture indicates the maximum number of supported memory domains via a new VM_NDOMAIN parameter in <machine/vmparam.h>. - Each cpu now has a PCPU_GET(domain) member to indicate the memory domain a CPU belongs to. Domain values are dense and numbered from 0. - When a platform supports multiple domains, the default freelist (VM_FREELIST_DEFAULT) is split up into N freelists, one for each domain. The MD code is required to populate an array of mem_affinity structures. Each entry in the array defines a range of memory (start and end) and a domain for the range. Multiple entries may be present for a single domain. The list is terminated by an entry where all fields are zero. This array of structures is used to split up phys_avail[] regions that fall in VM_FREELIST_DEFAULT into per-domain freelists. - Each memory domain has a separate lookup-array of freelists that is used when fulfulling a physical memory allocation. Right now the per-domain freelists are listed in a round-robin order for each domain. In the future a table such as the ACPI SLIT table may be used to order the per-domain lookup lists based on the penalty for each memory domain relative to a specific domain. The lookup lists may be examined via a new vm.phys.lookup_lists sysctl. - The first-touch policy is implemented by using PCPU_GET(domain) to pick a lookup list when allocating memory. Reviewed by: alc
2010-07-27 20:33:50 +00:00
/* Domains must be dense (non-sparse) and zero-based. */
struct mem_affinity {
vm_paddr_t start;
vm_paddr_t end;
int domain;
};
extern struct mem_affinity *mem_affinity;
/*
* The following functions are only to be used by the virtual memory system.
*/
void vm_phys_add_page(vm_paddr_t pa);
vm_page_t vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
u_long alignment, vm_paddr_t boundary);
Redo the page table page allocation on MIPS, as suggested by alc@. The UMA zone based allocation is replaced by a scheme that creates a new free page list for the KSEG0 region, and a new function in sys/vm that allocates pages from a specific free page list. This also fixes a race condition introduced by the UMA based page table page allocation code. Dropping the page queue and pmap locks before the call to uma_zfree, and re-acquiring them afterwards will introduce a race condtion(noted by alc@). The changes are : - Revert the earlier changes in MIPS pmap.c that added UMA zone for page table pages. - Add a new freelist VM_FREELIST_HIGHMEM to MIPS vmparam.h for memory that is not directly mapped (in 32bit kernel). Normal page allocations will first try the HIGHMEM freelist and then the default(direct mapped) freelist. - Add a new function 'vm_page_t vm_page_alloc_freelist(int flind, int order, int req)' to vm/vm_page.c to allocate a page from a specified freelist. The MIPS page table pages will be allocated using this function from the freelist containing direct mapped pages. - Move the page initialization code from vm_phys_alloc_contig() to a new function vm_page_alloc_init(), and use this function to initialize pages in vm_page_alloc_freelist() too. - Split the function vm_phys_alloc_pages(int pool, int order) to create vm_phys_alloc_freelist_pages(int flind, int pool, int order), and use this function from both vm_page_alloc_freelist() and vm_phys_alloc_pages(). Reviewed by: alc
2010-07-21 09:27:00 +00:00
vm_page_t vm_phys_alloc_freelist_pages(int flind, int pool, int order);
vm_page_t vm_phys_alloc_pages(int pool, int order);
int vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
vm_memattr_t memattr);
void vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end);
vm_page_t vm_phys_fictitious_to_vm_page(vm_paddr_t pa);
void vm_phys_free_contig(vm_page_t m, u_long npages);
void vm_phys_free_pages(vm_page_t m, int order);
void vm_phys_init(void);
vm_page_t vm_phys_paddr_to_vm_page(vm_paddr_t pa);
Change the management of cached pages (PQ_CACHE) in two fundamental ways: (1) Cached pages are no longer kept in the object's resident page splay tree and memq. Instead, they are kept in a separate per-object splay tree of cached pages. However, access to this new per-object splay tree is synchronized by the _free_ page queues lock, not to be confused with the heavily contended page queues lock. Consequently, a cached page can be reclaimed by vm_page_alloc(9) without acquiring the object's lock or the page queues lock. This solves a problem independently reported by tegge@ and Isilon. Specifically, they observed the page daemon consuming a great deal of CPU time because of pages bouncing back and forth between the cache queue (PQ_CACHE) and the inactive queue (PQ_INACTIVE). The source of this problem turned out to be a deadlock avoidance strategy employed when selecting a cached page to reclaim in vm_page_select_cache(). However, the root cause was really that reclaiming a cached page required the acquisition of an object lock while the page queues lock was already held. Thus, this change addresses the problem at its root, by eliminating the need to acquire the object's lock. Moreover, keeping cached pages in the object's primary splay tree and memq was, in effect, optimizing for the uncommon case. Cached pages are reclaimed far, far more often than they are reactivated. Instead, this change makes reclamation cheaper, especially in terms of synchronization overhead, and reactivation more expensive, because reactivated pages will have to be reentered into the object's primary splay tree and memq. (2) Cached pages are now stored alongside free pages in the physical memory allocator's buddy queues, increasing the likelihood that large allocations of contiguous physical memory (i.e., superpages) will succeed. Finally, as a result of this change long-standing restrictions on when and where a cached page can be reclaimed and returned by vm_page_alloc(9) are eliminated. Specifically, calls to vm_page_alloc(9) specifying VM_ALLOC_INTERRUPT can now reclaim and return a formerly cached page. Consequently, a call to malloc(9) specifying M_NOWAIT is less likely to fail. Discussed with: many over the course of the summer, including jeff@, Justin Husted @ Isilon, peter@, tegge@ Tested by: an earlier version by kris@ Approved by: re (kensmith)
2007-09-25 06:25:06 +00:00
void vm_phys_set_pool(int pool, vm_page_t m, int order);
boolean_t vm_phys_unfree_page(vm_page_t m);
boolean_t vm_phys_zero_pages_idle(void);
#endif /* _KERNEL */
#endif /* !_VM_PHYS_H_ */