freebsd-skq/sys/net/altq/altq_subr.c

1926 lines
43 KiB
C
Raw Normal View History

/*-
* Copyright (C) 1997-2003
* Sony Computer Science Laboratories Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $KAME: altq_subr.c,v 1.21 2003/11/06 06:32:53 kjc Exp $
* $FreeBSD$
*/
#include "opt_altq.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netpfil/pf/pf.h>
#include <netpfil/pf/pf_altq.h>
#include <net/altq/altq.h>
#ifdef ALTQ3_COMPAT
#include <net/altq/altq_conf.h>
#endif
/* machine dependent clock related includes */
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/eventhandler.h>
#include <machine/clock.h>
#if defined(__amd64__) || defined(__i386__)
#include <machine/cpufunc.h> /* for pentium tsc */
#include <machine/specialreg.h> /* for CPUID_TSC */
#include <machine/md_var.h> /* for cpu_feature */
#endif /* __amd64 || __i386__ */
/*
* internal function prototypes
*/
static void tbr_timeout(void *);
int (*altq_input)(struct mbuf *, int) = NULL;
static struct mbuf *tbr_dequeue(struct ifaltq *, int);
static int tbr_timer = 0; /* token bucket regulator timer */
#if !defined(__FreeBSD__) || (__FreeBSD_version < 600000)
static struct callout tbr_callout = CALLOUT_INITIALIZER;
#else
static struct callout tbr_callout;
#endif
#ifdef ALTQ3_CLFIER_COMPAT
static int extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *);
#ifdef INET6
static int extract_ports6(struct mbuf *, struct ip6_hdr *,
struct flowinfo_in6 *);
#endif
static int apply_filter4(u_int32_t, struct flow_filter *,
struct flowinfo_in *);
static int apply_ppfilter4(u_int32_t, struct flow_filter *,
struct flowinfo_in *);
#ifdef INET6
static int apply_filter6(u_int32_t, struct flow_filter6 *,
struct flowinfo_in6 *);
#endif
static int apply_tosfilter4(u_int32_t, struct flow_filter *,
struct flowinfo_in *);
static u_long get_filt_handle(struct acc_classifier *, int);
static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long);
static u_int32_t filt2fibmask(struct flow_filter *);
static void ip4f_cache(struct ip *, struct flowinfo_in *);
static int ip4f_lookup(struct ip *, struct flowinfo_in *);
static int ip4f_init(void);
static struct ip4_frag *ip4f_alloc(void);
static void ip4f_free(struct ip4_frag *);
#endif /* ALTQ3_CLFIER_COMPAT */
/*
* alternate queueing support routines
*/
/* look up the queue state by the interface name and the queueing type. */
void *
altq_lookup(name, type)
char *name;
int type;
{
struct ifnet *ifp;
if ((ifp = ifunit(name)) != NULL) {
/* read if_snd unlocked */
if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
return (ifp->if_snd.altq_disc);
}
return NULL;
}
int
altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
struct ifaltq *ifq;
int type;
void *discipline;
int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
struct mbuf *(*dequeue)(struct ifaltq *, int);
int (*request)(struct ifaltq *, int, void *);
void *clfier;
void *(*classify)(void *, struct mbuf *, int);
{
IFQ_LOCK(ifq);
if (!ALTQ_IS_READY(ifq)) {
IFQ_UNLOCK(ifq);
return ENXIO;
}
#ifdef ALTQ3_COMPAT
/*
* pfaltq can override the existing discipline, but altq3 cannot.
* check these if clfier is not NULL (which implies altq3).
*/
if (clfier != NULL) {
if (ALTQ_IS_ENABLED(ifq)) {
IFQ_UNLOCK(ifq);
return EBUSY;
}
if (ALTQ_IS_ATTACHED(ifq)) {
IFQ_UNLOCK(ifq);
return EEXIST;
}
}
#endif
ifq->altq_type = type;
ifq->altq_disc = discipline;
ifq->altq_enqueue = enqueue;
ifq->altq_dequeue = dequeue;
ifq->altq_request = request;
ifq->altq_clfier = clfier;
ifq->altq_classify = classify;
ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED);
#ifdef ALTQ3_COMPAT
#ifdef ALTQ_KLD
altq_module_incref(type);
#endif
#endif
IFQ_UNLOCK(ifq);
return 0;
}
int
altq_detach(ifq)
struct ifaltq *ifq;
{
IFQ_LOCK(ifq);
if (!ALTQ_IS_READY(ifq)) {
IFQ_UNLOCK(ifq);
return ENXIO;
}
if (ALTQ_IS_ENABLED(ifq)) {
IFQ_UNLOCK(ifq);
return EBUSY;
}
if (!ALTQ_IS_ATTACHED(ifq)) {
IFQ_UNLOCK(ifq);
return (0);
}
#ifdef ALTQ3_COMPAT
#ifdef ALTQ_KLD
altq_module_declref(ifq->altq_type);
#endif
#endif
ifq->altq_type = ALTQT_NONE;
ifq->altq_disc = NULL;
ifq->altq_enqueue = NULL;
ifq->altq_dequeue = NULL;
ifq->altq_request = NULL;
ifq->altq_clfier = NULL;
ifq->altq_classify = NULL;
ifq->altq_flags &= ALTQF_CANTCHANGE;
IFQ_UNLOCK(ifq);
return 0;
}
int
altq_enable(ifq)
struct ifaltq *ifq;
{
int s;
IFQ_LOCK(ifq);
if (!ALTQ_IS_READY(ifq)) {
IFQ_UNLOCK(ifq);
return ENXIO;
}
if (ALTQ_IS_ENABLED(ifq)) {
IFQ_UNLOCK(ifq);
return 0;
}
s = splnet();
IFQ_PURGE_NOLOCK(ifq);
ASSERT(ifq->ifq_len == 0);
ifq->ifq_drv_maxlen = 0; /* disable bulk dequeue */
ifq->altq_flags |= ALTQF_ENABLED;
if (ifq->altq_clfier != NULL)
ifq->altq_flags |= ALTQF_CLASSIFY;
splx(s);
IFQ_UNLOCK(ifq);
return 0;
}
int
altq_disable(ifq)
struct ifaltq *ifq;
{
int s;
IFQ_LOCK(ifq);
if (!ALTQ_IS_ENABLED(ifq)) {
IFQ_UNLOCK(ifq);
return 0;
}
s = splnet();
IFQ_PURGE_NOLOCK(ifq);
ASSERT(ifq->ifq_len == 0);
ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
splx(s);
IFQ_UNLOCK(ifq);
return 0;
}
#ifdef ALTQ_DEBUG
void
altq_assert(file, line, failedexpr)
const char *file, *failedexpr;
int line;
{
(void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
failedexpr, file, line);
panic("altq assertion");
/* NOTREACHED */
}
#endif
/*
* internal representation of token bucket parameters
* rate: byte_per_unittime << 32
* (((bits_per_sec) / 8) << 32) / machclk_freq
* depth: byte << 32
*
*/
#define TBR_SHIFT 32
#define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT)
#define TBR_UNSCALE(x) ((x) >> TBR_SHIFT)
static struct mbuf *
tbr_dequeue(ifq, op)
struct ifaltq *ifq;
int op;
{
struct tb_regulator *tbr;
struct mbuf *m;
int64_t interval;
u_int64_t now;
IFQ_LOCK_ASSERT(ifq);
tbr = ifq->altq_tbr;
if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
/* if this is a remove after poll, bypass tbr check */
} else {
/* update token only when it is negative */
if (tbr->tbr_token <= 0) {
now = read_machclk();
interval = now - tbr->tbr_last;
if (interval >= tbr->tbr_filluptime)
tbr->tbr_token = tbr->tbr_depth;
else {
tbr->tbr_token += interval * tbr->tbr_rate;
if (tbr->tbr_token > tbr->tbr_depth)
tbr->tbr_token = tbr->tbr_depth;
}
tbr->tbr_last = now;
}
/* if token is still negative, don't allow dequeue */
if (tbr->tbr_token <= 0)
return (NULL);
}
if (ALTQ_IS_ENABLED(ifq))
m = (*ifq->altq_dequeue)(ifq, op);
else {
if (op == ALTDQ_POLL)
_IF_POLL(ifq, m);
else
_IF_DEQUEUE(ifq, m);
}
if (m != NULL && op == ALTDQ_REMOVE)
tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
tbr->tbr_lastop = op;
return (m);
}
/*
* set a token bucket regulator.
* if the specified rate is zero, the token bucket regulator is deleted.
*/
int
tbr_set(ifq, profile)
struct ifaltq *ifq;
struct tb_profile *profile;
{
struct tb_regulator *tbr, *otbr;
if (tbr_dequeue_ptr == NULL)
tbr_dequeue_ptr = tbr_dequeue;
if (machclk_freq == 0)
init_machclk();
if (machclk_freq == 0) {
printf("tbr_set: no cpu clock available!\n");
return (ENXIO);
}
IFQ_LOCK(ifq);
if (profile->rate == 0) {
/* delete this tbr */
if ((tbr = ifq->altq_tbr) == NULL) {
IFQ_UNLOCK(ifq);
return (ENOENT);
}
ifq->altq_tbr = NULL;
free(tbr, M_DEVBUF);
IFQ_UNLOCK(ifq);
return (0);
}
Merge the projects/pf/head branch, that was worked on for last six months, into head. The most significant achievements in the new code: o Fine grained locking, thus much better performance. o Fixes to many problems in pf, that were specific to FreeBSD port. New code doesn't have that many ifdefs and much less OpenBSDisms, thus is more attractive to our developers. Those interested in details, can browse through SVN log of the projects/pf/head branch. And for reference, here is exact list of revisions merged: r232043, r232044, r232062, r232148, r232149, r232150, r232298, r232330, r232332, r232340, r232386, r232390, r232391, r232605, r232655, r232656, r232661, r232662, r232663, r232664, r232673, r232691, r233309, r233782, r233829, r233830, r233834, r233835, r233836, r233865, r233866, r233868, r233873, r234056, r234096, r234100, r234108, r234175, r234187, r234223, r234271, r234272, r234282, r234307, r234309, r234382, r234384, r234456, r234486, r234606, r234640, r234641, r234642, r234644, r234651, r235505, r235506, r235535, r235605, r235606, r235826, r235991, r235993, r236168, r236173, r236179, r236180, r236181, r236186, r236223, r236227, r236230, r236252, r236254, r236298, r236299, r236300, r236301, r236397, r236398, r236399, r236499, r236512, r236513, r236525, r236526, r236545, r236548, r236553, r236554, r236556, r236557, r236561, r236570, r236630, r236672, r236673, r236679, r236706, r236710, r236718, r237154, r237155, r237169, r237314, r237363, r237364, r237368, r237369, r237376, r237440, r237442, r237751, r237783, r237784, r237785, r237788, r237791, r238421, r238522, r238523, r238524, r238525, r239173, r239186, r239644, r239652, r239661, r239773, r240125, r240130, r240131, r240136, r240186, r240196, r240212. I'd like to thank people who participated in early testing: Tested by: Florian Smeets <flo freebsd.org> Tested by: Chekaluk Vitaly <artemrts ukr.net> Tested by: Ben Wilber <ben desync.com> Tested by: Ian FREISLICH <ianf cloudseed.co.za>
2012-09-08 06:41:54 +00:00
tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_NOWAIT | M_ZERO);
if (tbr == NULL) {
IFQ_UNLOCK(ifq);
return (ENOMEM);
}
tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
tbr->tbr_depth = TBR_SCALE(profile->depth);
if (tbr->tbr_rate > 0)
tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
else
tbr->tbr_filluptime = 0xffffffffffffffffLL;
tbr->tbr_token = tbr->tbr_depth;
tbr->tbr_last = read_machclk();
tbr->tbr_lastop = ALTDQ_REMOVE;
otbr = ifq->altq_tbr;
ifq->altq_tbr = tbr; /* set the new tbr */
if (otbr != NULL)
free(otbr, M_DEVBUF);
else {
if (tbr_timer == 0) {
CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
tbr_timer = 1;
}
}
IFQ_UNLOCK(ifq);
return (0);
}
/*
* tbr_timeout goes through the interface list, and kicks the drivers
* if necessary.
*
* MPSAFE
*/
static void
tbr_timeout(arg)
void *arg;
{
VNET_ITERATOR_DECL(vnet_iter);
struct ifnet *ifp;
int active, s;
active = 0;
s = splnet();
IFNET_RLOCK_NOSLEEP();
VNET_LIST_RLOCK_NOSLEEP();
VNET_FOREACH(vnet_iter) {
CURVNET_SET(vnet_iter);
for (ifp = TAILQ_FIRST(&V_ifnet); ifp;
ifp = TAILQ_NEXT(ifp, if_list)) {
/* read from if_snd unlocked */
if (!TBR_IS_ENABLED(&ifp->if_snd))
continue;
active++;
if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
ifp->if_start != NULL)
(*ifp->if_start)(ifp);
}
CURVNET_RESTORE();
}
VNET_LIST_RUNLOCK_NOSLEEP();
IFNET_RUNLOCK_NOSLEEP();
splx(s);
if (active > 0)
CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
else
tbr_timer = 0; /* don't need tbr_timer anymore */
}
/*
* get token bucket regulator profile
*/
int
tbr_get(ifq, profile)
struct ifaltq *ifq;
struct tb_profile *profile;
{
struct tb_regulator *tbr;
IFQ_LOCK(ifq);
if ((tbr = ifq->altq_tbr) == NULL) {
profile->rate = 0;
profile->depth = 0;
} else {
profile->rate =
(u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
}
IFQ_UNLOCK(ifq);
return (0);
}
/*
* attach a discipline to the interface. if one already exists, it is
* overridden.
* Locking is done in the discipline specific attach functions. Basically
* they call back to altq_attach which takes care of the attach and locking.
*/
int
altq_pfattach(struct pf_altq *a)
{
int error = 0;
switch (a->scheduler) {
case ALTQT_NONE:
break;
#ifdef ALTQ_CBQ
case ALTQT_CBQ:
error = cbq_pfattach(a);
break;
#endif
#ifdef ALTQ_PRIQ
case ALTQT_PRIQ:
error = priq_pfattach(a);
break;
#endif
#ifdef ALTQ_HFSC
case ALTQT_HFSC:
error = hfsc_pfattach(a);
break;
#endif
default:
error = ENXIO;
}
return (error);
}
/*
* detach a discipline from the interface.
* it is possible that the discipline was already overridden by another
* discipline.
*/
int
altq_pfdetach(struct pf_altq *a)
{
struct ifnet *ifp;
int s, error = 0;
if ((ifp = ifunit(a->ifname)) == NULL)
return (EINVAL);
/* if this discipline is no longer referenced, just return */
/* read unlocked from if_snd */
if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc)
return (0);
s = splnet();
/* read unlocked from if_snd, _disable and _detach take care */
if (ALTQ_IS_ENABLED(&ifp->if_snd))
error = altq_disable(&ifp->if_snd);
if (error == 0)
error = altq_detach(&ifp->if_snd);
splx(s);
return (error);
}
/*
* add a discipline or a queue
* Locking is done in the discipline specific functions with regards to
* malloc with WAITOK, also it is not yet clear which lock to use.
*/
int
altq_add(struct pf_altq *a)
{
int error = 0;
if (a->qname[0] != 0)
return (altq_add_queue(a));
if (machclk_freq == 0)
init_machclk();
if (machclk_freq == 0)
panic("altq_add: no cpu clock");
switch (a->scheduler) {
#ifdef ALTQ_CBQ
case ALTQT_CBQ:
error = cbq_add_altq(a);
break;
#endif
#ifdef ALTQ_PRIQ
case ALTQT_PRIQ:
error = priq_add_altq(a);
break;
#endif
#ifdef ALTQ_HFSC
case ALTQT_HFSC:
error = hfsc_add_altq(a);
break;
#endif
default:
error = ENXIO;
}
return (error);
}
/*
* remove a discipline or a queue
* It is yet unclear what lock to use to protect this operation, the
* discipline specific functions will determine and grab it
*/
int
altq_remove(struct pf_altq *a)
{
int error = 0;
if (a->qname[0] != 0)
return (altq_remove_queue(a));
switch (a->scheduler) {
#ifdef ALTQ_CBQ
case ALTQT_CBQ:
error = cbq_remove_altq(a);
break;
#endif
#ifdef ALTQ_PRIQ
case ALTQT_PRIQ:
error = priq_remove_altq(a);
break;
#endif
#ifdef ALTQ_HFSC
case ALTQT_HFSC:
error = hfsc_remove_altq(a);
break;
#endif
default:
error = ENXIO;
}
return (error);
}
/*
* add a queue to the discipline
* It is yet unclear what lock to use to protect this operation, the
* discipline specific functions will determine and grab it
*/
int
altq_add_queue(struct pf_altq *a)
{
int error = 0;
switch (a->scheduler) {
#ifdef ALTQ_CBQ
case ALTQT_CBQ:
error = cbq_add_queue(a);
break;
#endif
#ifdef ALTQ_PRIQ
case ALTQT_PRIQ:
error = priq_add_queue(a);
break;
#endif
#ifdef ALTQ_HFSC
case ALTQT_HFSC:
error = hfsc_add_queue(a);
break;
#endif
default:
error = ENXIO;
}
return (error);
}
/*
* remove a queue from the discipline
* It is yet unclear what lock to use to protect this operation, the
* discipline specific functions will determine and grab it
*/
int
altq_remove_queue(struct pf_altq *a)
{
int error = 0;
switch (a->scheduler) {
#ifdef ALTQ_CBQ
case ALTQT_CBQ:
error = cbq_remove_queue(a);
break;
#endif
#ifdef ALTQ_PRIQ
case ALTQT_PRIQ:
error = priq_remove_queue(a);
break;
#endif
#ifdef ALTQ_HFSC
case ALTQT_HFSC:
error = hfsc_remove_queue(a);
break;
#endif
default:
error = ENXIO;
}
return (error);
}
/*
* get queue statistics
* Locking is done in the discipline specific functions with regards to
* copyout operations, also it is not yet clear which lock to use.
*/
int
altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
{
int error = 0;
switch (a->scheduler) {
#ifdef ALTQ_CBQ
case ALTQT_CBQ:
error = cbq_getqstats(a, ubuf, nbytes);
break;
#endif
#ifdef ALTQ_PRIQ
case ALTQT_PRIQ:
error = priq_getqstats(a, ubuf, nbytes);
break;
#endif
#ifdef ALTQ_HFSC
case ALTQT_HFSC:
error = hfsc_getqstats(a, ubuf, nbytes);
break;
#endif
default:
error = ENXIO;
}
return (error);
}
/*
* read and write diffserv field in IPv4 or IPv6 header
*/
u_int8_t
read_dsfield(m, pktattr)
struct mbuf *m;
struct altq_pktattr *pktattr;
{
struct mbuf *m0;
u_int8_t ds_field = 0;
if (pktattr == NULL ||
(pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
return ((u_int8_t)0);
/* verify that pattr_hdr is within the mbuf data */
for (m0 = m; m0 != NULL; m0 = m0->m_next)
if ((pktattr->pattr_hdr >= m0->m_data) &&
(pktattr->pattr_hdr < m0->m_data + m0->m_len))
break;
if (m0 == NULL) {
/* ick, pattr_hdr is stale */
pktattr->pattr_af = AF_UNSPEC;
#ifdef ALTQ_DEBUG
printf("read_dsfield: can't locate header!\n");
#endif
return ((u_int8_t)0);
}
if (pktattr->pattr_af == AF_INET) {
struct ip *ip = (struct ip *)pktattr->pattr_hdr;
if (ip->ip_v != 4)
return ((u_int8_t)0); /* version mismatch! */
ds_field = ip->ip_tos;
}
#ifdef INET6
else if (pktattr->pattr_af == AF_INET6) {
struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
u_int32_t flowlabel;
flowlabel = ntohl(ip6->ip6_flow);
if ((flowlabel >> 28) != 6)
return ((u_int8_t)0); /* version mismatch! */
ds_field = (flowlabel >> 20) & 0xff;
}
#endif
return (ds_field);
}
void
write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield)
{
struct mbuf *m0;
if (pktattr == NULL ||
(pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
return;
/* verify that pattr_hdr is within the mbuf data */
for (m0 = m; m0 != NULL; m0 = m0->m_next)
if ((pktattr->pattr_hdr >= m0->m_data) &&
(pktattr->pattr_hdr < m0->m_data + m0->m_len))
break;
if (m0 == NULL) {
/* ick, pattr_hdr is stale */
pktattr->pattr_af = AF_UNSPEC;
#ifdef ALTQ_DEBUG
printf("write_dsfield: can't locate header!\n");
#endif
return;
}
if (pktattr->pattr_af == AF_INET) {
struct ip *ip = (struct ip *)pktattr->pattr_hdr;
u_int8_t old;
int32_t sum;
if (ip->ip_v != 4)
return; /* version mismatch! */
old = ip->ip_tos;
dsfield |= old & 3; /* leave CU bits */
if (old == dsfield)
return;
ip->ip_tos = dsfield;
/*
* update checksum (from RFC1624)
* HC' = ~(~HC + ~m + m')
*/
sum = ~ntohs(ip->ip_sum) & 0xffff;
sum += 0xff00 + (~old & 0xff) + dsfield;
sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16); /* add carry */
ip->ip_sum = htons(~sum & 0xffff);
}
#ifdef INET6
else if (pktattr->pattr_af == AF_INET6) {
struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
u_int32_t flowlabel;
flowlabel = ntohl(ip6->ip6_flow);
if ((flowlabel >> 28) != 6)
return; /* version mismatch! */
flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
ip6->ip6_flow = htonl(flowlabel);
}
#endif
return;
}
/*
* high resolution clock support taking advantage of a machine dependent
* high resolution time counter (e.g., timestamp counter of intel pentium).
* we assume
* - 64-bit-long monotonically-increasing counter
* - frequency range is 100M-4GHz (CPU speed)
*/
/* if pcc is not available or disabled, emulate 256MHz using microtime() */
#define MACHCLK_SHIFT 8
int machclk_usepcc;
u_int32_t machclk_freq;
u_int32_t machclk_per_tick;
#if defined(__i386__) && defined(__NetBSD__)
extern u_int64_t cpu_tsc_freq;
2011-03-10 19:04:18 +00:00
#endif
#if (__FreeBSD_version >= 700035)
/* Update TSC freq with the value indicated by the caller. */
static void
tsc_freq_changed(void *arg, const struct cf_level *level, int status)
{
/* If there was an error during the transition, don't do anything. */
if (status != 0)
return;
#if (__FreeBSD_version >= 701102) && (defined(__amd64__) || defined(__i386__))
/* If TSC is P-state invariant, don't do anything. */
if (tsc_is_invariant)
return;
#endif
/* Total setting for this level gives the new frequency in MHz. */
init_machclk();
}
EVENTHANDLER_DEFINE(cpufreq_post_change, tsc_freq_changed, NULL,
EVENTHANDLER_PRI_LAST);
#endif /* __FreeBSD_version >= 700035 */
static void
init_machclk_setup(void)
{
#if (__FreeBSD_version >= 600000)
callout_init(&tbr_callout, 0);
#endif
machclk_usepcc = 1;
2011-03-10 19:04:18 +00:00
#if (!defined(__amd64__) && !defined(__i386__)) || defined(ALTQ_NOPCC)
machclk_usepcc = 0;
#endif
#if defined(__FreeBSD__) && defined(SMP)
machclk_usepcc = 0;
#endif
#if defined(__NetBSD__) && defined(MULTIPROCESSOR)
machclk_usepcc = 0;
#endif
#if defined(__amd64__) || defined(__i386__)
/* check if TSC is available */
if ((cpu_feature & CPUID_TSC) == 0 ||
atomic_load_acq_64(&tsc_freq) == 0)
machclk_usepcc = 0;
#endif
}
void
init_machclk(void)
{
static int called;
/* Call one-time initialization function. */
if (!called) {
init_machclk_setup();
called = 1;
}
if (machclk_usepcc == 0) {
/* emulate 256MHz using microtime() */
machclk_freq = 1000000 << MACHCLK_SHIFT;
machclk_per_tick = machclk_freq / hz;
#ifdef ALTQ_DEBUG
printf("altq: emulate %uHz cpu clock\n", machclk_freq);
#endif
return;
}
/*
* if the clock frequency (of Pentium TSC or Alpha PCC) is
* accessible, just use it.
*/
#if defined(__amd64__) || defined(__i386__)
machclk_freq = atomic_load_acq_64(&tsc_freq);
#endif
/*
* if we don't know the clock frequency, measure it.
*/
if (machclk_freq == 0) {
static int wait;
struct timeval tv_start, tv_end;
u_int64_t start, end, diff;
int timo;
microtime(&tv_start);
start = read_machclk();
timo = hz; /* 1 sec */
(void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
microtime(&tv_end);
end = read_machclk();
diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
+ tv_end.tv_usec - tv_start.tv_usec;
if (diff != 0)
machclk_freq = (u_int)((end - start) * 1000000 / diff);
}
machclk_per_tick = machclk_freq / hz;
#ifdef ALTQ_DEBUG
printf("altq: CPU clock: %uHz\n", machclk_freq);
#endif
}
#if defined(__OpenBSD__) && defined(__i386__)
static __inline u_int64_t
rdtsc(void)
{
u_int64_t rv;
__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
return (rv);
}
#endif /* __OpenBSD__ && __i386__ */
u_int64_t
read_machclk(void)
{
u_int64_t val;
if (machclk_usepcc) {
#if defined(__amd64__) || defined(__i386__)
val = rdtsc();
#else
panic("read_machclk");
#endif
} else {
struct timeval tv;
microtime(&tv);
val = (((u_int64_t)(tv.tv_sec - boottime.tv_sec) * 1000000
+ tv.tv_usec) << MACHCLK_SHIFT);
}
return (val);
}
#ifdef ALTQ3_CLFIER_COMPAT
#ifndef IPPROTO_ESP
#define IPPROTO_ESP 50 /* encapsulating security payload */
#endif
#ifndef IPPROTO_AH
#define IPPROTO_AH 51 /* authentication header */
#endif
/*
* extract flow information from a given packet.
* filt_mask shows flowinfo fields required.
* we assume the ip header is in one mbuf, and addresses and ports are
* in network byte order.
*/
int
altq_extractflow(m, af, flow, filt_bmask)
struct mbuf *m;
int af;
struct flowinfo *flow;
u_int32_t filt_bmask;
{
switch (af) {
case PF_INET: {
struct flowinfo_in *fin;
struct ip *ip;
ip = mtod(m, struct ip *);
if (ip->ip_v != 4)
break;
fin = (struct flowinfo_in *)flow;
fin->fi_len = sizeof(struct flowinfo_in);
fin->fi_family = AF_INET;
fin->fi_proto = ip->ip_p;
fin->fi_tos = ip->ip_tos;
fin->fi_src.s_addr = ip->ip_src.s_addr;
fin->fi_dst.s_addr = ip->ip_dst.s_addr;
if (filt_bmask & FIMB4_PORTS)
/* if port info is required, extract port numbers */
extract_ports4(m, ip, fin);
else {
fin->fi_sport = 0;
fin->fi_dport = 0;
fin->fi_gpi = 0;
}
return (1);
}
#ifdef INET6
case PF_INET6: {
struct flowinfo_in6 *fin6;
struct ip6_hdr *ip6;
ip6 = mtod(m, struct ip6_hdr *);
/* should we check the ip version? */
fin6 = (struct flowinfo_in6 *)flow;
fin6->fi6_len = sizeof(struct flowinfo_in6);
fin6->fi6_family = AF_INET6;
fin6->fi6_proto = ip6->ip6_nxt;
fin6->fi6_tclass = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
fin6->fi6_src = ip6->ip6_src;
fin6->fi6_dst = ip6->ip6_dst;
if ((filt_bmask & FIMB6_PORTS) ||
((filt_bmask & FIMB6_PROTO)
&& ip6->ip6_nxt > IPPROTO_IPV6))
/*
* if port info is required, or proto is required
* but there are option headers, extract port
* and protocol numbers.
*/
extract_ports6(m, ip6, fin6);
else {
fin6->fi6_sport = 0;
fin6->fi6_dport = 0;
fin6->fi6_gpi = 0;
}
return (1);
}
#endif /* INET6 */
default:
break;
}
/* failed */
flow->fi_len = sizeof(struct flowinfo);
flow->fi_family = AF_UNSPEC;
return (0);
}
/*
* helper routine to extract port numbers
*/
/* structure for ipsec and ipv6 option header template */
struct _opt6 {
u_int8_t opt6_nxt; /* next header */
u_int8_t opt6_hlen; /* header extension length */
u_int16_t _pad;
u_int32_t ah_spi; /* security parameter index
for authentication header */
};
/*
* extract port numbers from a ipv4 packet.
*/
static int
extract_ports4(m, ip, fin)
struct mbuf *m;
struct ip *ip;
struct flowinfo_in *fin;
{
struct mbuf *m0;
u_short ip_off;
u_int8_t proto;
int off;
fin->fi_sport = 0;
fin->fi_dport = 0;
fin->fi_gpi = 0;
ip_off = ntohs(ip->ip_off);
/* if it is a fragment, try cached fragment info */
if (ip_off & IP_OFFMASK) {
ip4f_lookup(ip, fin);
return (1);
}
/* locate the mbuf containing the protocol header */
for (m0 = m; m0 != NULL; m0 = m0->m_next)
if (((caddr_t)ip >= m0->m_data) &&
((caddr_t)ip < m0->m_data + m0->m_len))
break;
if (m0 == NULL) {
#ifdef ALTQ_DEBUG
printf("extract_ports4: can't locate header! ip=%p\n", ip);
#endif
return (0);
}
off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
proto = ip->ip_p;
#ifdef ALTQ_IPSEC
again:
#endif
while (off >= m0->m_len) {
off -= m0->m_len;
m0 = m0->m_next;
if (m0 == NULL)
return (0); /* bogus ip_hl! */
}
if (m0->m_len < off + 4)
return (0);
switch (proto) {
case IPPROTO_TCP:
case IPPROTO_UDP: {
struct udphdr *udp;
udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
fin->fi_sport = udp->uh_sport;
fin->fi_dport = udp->uh_dport;
fin->fi_proto = proto;
}
break;
#ifdef ALTQ_IPSEC
case IPPROTO_ESP:
if (fin->fi_gpi == 0){
u_int32_t *gpi;
gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
fin->fi_gpi = *gpi;
}
fin->fi_proto = proto;
break;
case IPPROTO_AH: {
/* get next header and header length */
struct _opt6 *opt6;
opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
proto = opt6->opt6_nxt;
off += 8 + (opt6->opt6_hlen * 4);
if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
fin->fi_gpi = opt6->ah_spi;
}
/* goto the next header */
goto again;
#endif /* ALTQ_IPSEC */
default:
fin->fi_proto = proto;
return (0);
}
/* if this is a first fragment, cache it. */
if (ip_off & IP_MF)
ip4f_cache(ip, fin);
return (1);
}
#ifdef INET6
static int
extract_ports6(m, ip6, fin6)
struct mbuf *m;
struct ip6_hdr *ip6;
struct flowinfo_in6 *fin6;
{
struct mbuf *m0;
int off;
u_int8_t proto;
fin6->fi6_gpi = 0;
fin6->fi6_sport = 0;
fin6->fi6_dport = 0;
/* locate the mbuf containing the protocol header */
for (m0 = m; m0 != NULL; m0 = m0->m_next)
if (((caddr_t)ip6 >= m0->m_data) &&
((caddr_t)ip6 < m0->m_data + m0->m_len))
break;
if (m0 == NULL) {
#ifdef ALTQ_DEBUG
printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
#endif
return (0);
}
off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
proto = ip6->ip6_nxt;
do {
while (off >= m0->m_len) {
off -= m0->m_len;
m0 = m0->m_next;
if (m0 == NULL)
return (0);
}
if (m0->m_len < off + 4)
return (0);
switch (proto) {
case IPPROTO_TCP:
case IPPROTO_UDP: {
struct udphdr *udp;
udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
fin6->fi6_sport = udp->uh_sport;
fin6->fi6_dport = udp->uh_dport;
fin6->fi6_proto = proto;
}
return (1);
case IPPROTO_ESP:
if (fin6->fi6_gpi == 0) {
u_int32_t *gpi;
gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
fin6->fi6_gpi = *gpi;
}
fin6->fi6_proto = proto;
return (1);
case IPPROTO_AH: {
/* get next header and header length */
struct _opt6 *opt6;
opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
fin6->fi6_gpi = opt6->ah_spi;
proto = opt6->opt6_nxt;
off += 8 + (opt6->opt6_hlen * 4);
/* goto the next header */
break;
}
case IPPROTO_HOPOPTS:
case IPPROTO_ROUTING:
case IPPROTO_DSTOPTS: {
/* get next header and header length */
struct _opt6 *opt6;
opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
proto = opt6->opt6_nxt;
off += (opt6->opt6_hlen + 1) * 8;
/* goto the next header */
break;
}
case IPPROTO_FRAGMENT:
/* ipv6 fragmentations are not supported yet */
default:
fin6->fi6_proto = proto;
return (0);
}
} while (1);
/*NOTREACHED*/
}
#endif /* INET6 */
/*
* altq common classifier
*/
int
acc_add_filter(classifier, filter, class, phandle)
struct acc_classifier *classifier;
struct flow_filter *filter;
void *class;
u_long *phandle;
{
struct acc_filter *afp, *prev, *tmp;
int i, s;
#ifdef INET6
if (filter->ff_flow.fi_family != AF_INET &&
filter->ff_flow.fi_family != AF_INET6)
return (EINVAL);
#else
if (filter->ff_flow.fi_family != AF_INET)
return (EINVAL);
#endif
afp = malloc(sizeof(struct acc_filter),
M_DEVBUF, M_WAITOK);
if (afp == NULL)
return (ENOMEM);
bzero(afp, sizeof(struct acc_filter));
afp->f_filter = *filter;
afp->f_class = class;
i = ACC_WILDCARD_INDEX;
if (filter->ff_flow.fi_family == AF_INET) {
struct flow_filter *filter4 = &afp->f_filter;
/*
* if address is 0, it's a wildcard. if address mask
* isn't set, use full mask.
*/
if (filter4->ff_flow.fi_dst.s_addr == 0)
filter4->ff_mask.mask_dst.s_addr = 0;
else if (filter4->ff_mask.mask_dst.s_addr == 0)
filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
if (filter4->ff_flow.fi_src.s_addr == 0)
filter4->ff_mask.mask_src.s_addr = 0;
else if (filter4->ff_mask.mask_src.s_addr == 0)
filter4->ff_mask.mask_src.s_addr = 0xffffffff;
/* clear extra bits in addresses */
filter4->ff_flow.fi_dst.s_addr &=
filter4->ff_mask.mask_dst.s_addr;
filter4->ff_flow.fi_src.s_addr &=
filter4->ff_mask.mask_src.s_addr;
/*
* if dst address is a wildcard, use hash-entry
* ACC_WILDCARD_INDEX.
*/
if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
i = ACC_WILDCARD_INDEX;
else
i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
}
#ifdef INET6
else if (filter->ff_flow.fi_family == AF_INET6) {
struct flow_filter6 *filter6 =
(struct flow_filter6 *)&afp->f_filter;
#ifndef IN6MASK0 /* taken from kame ipv6 */
#define IN6MASK0 {{{ 0, 0, 0, 0 }}}
#define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
const struct in6_addr in6mask0 = IN6MASK0;
const struct in6_addr in6mask128 = IN6MASK128;
#endif
if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
filter6->ff_mask6.mask6_dst = in6mask0;
else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
filter6->ff_mask6.mask6_dst = in6mask128;
if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
filter6->ff_mask6.mask6_src = in6mask0;
else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
filter6->ff_mask6.mask6_src = in6mask128;
/* clear extra bits in addresses */
for (i = 0; i < 16; i++)
filter6->ff_flow6.fi6_dst.s6_addr[i] &=
filter6->ff_mask6.mask6_dst.s6_addr[i];
for (i = 0; i < 16; i++)
filter6->ff_flow6.fi6_src.s6_addr[i] &=
filter6->ff_mask6.mask6_src.s6_addr[i];
if (filter6->ff_flow6.fi6_flowlabel == 0)
i = ACC_WILDCARD_INDEX;
else
i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
}
#endif /* INET6 */
afp->f_handle = get_filt_handle(classifier, i);
/* update filter bitmask */
afp->f_fbmask = filt2fibmask(filter);
classifier->acc_fbmask |= afp->f_fbmask;
/*
* add this filter to the filter list.
* filters are ordered from the highest rule number.
*/
s = splnet();
prev = NULL;
LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
prev = tmp;
else
break;
}
if (prev == NULL)
LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
else
LIST_INSERT_AFTER(prev, afp, f_chain);
splx(s);
*phandle = afp->f_handle;
return (0);
}
int
acc_delete_filter(classifier, handle)
struct acc_classifier *classifier;
u_long handle;
{
struct acc_filter *afp;
int s;
if ((afp = filth_to_filtp(classifier, handle)) == NULL)
return (EINVAL);
s = splnet();
LIST_REMOVE(afp, f_chain);
splx(s);
free(afp, M_DEVBUF);
/* todo: update filt_bmask */
return (0);
}
/*
* delete filters referencing to the specified class.
* if the all flag is not 0, delete all the filters.
*/
int
acc_discard_filters(classifier, class, all)
struct acc_classifier *classifier;
void *class;
int all;
{
struct acc_filter *afp;
int i, s;
s = splnet();
for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
do {
LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
if (all || afp->f_class == class) {
LIST_REMOVE(afp, f_chain);
free(afp, M_DEVBUF);
/* start again from the head */
break;
}
} while (afp != NULL);
}
splx(s);
if (all)
classifier->acc_fbmask = 0;
return (0);
}
void *
acc_classify(clfier, m, af)
void *clfier;
struct mbuf *m;
int af;
{
struct acc_classifier *classifier;
struct flowinfo flow;
struct acc_filter *afp;
int i;
classifier = (struct acc_classifier *)clfier;
altq_extractflow(m, af, &flow, classifier->acc_fbmask);
if (flow.fi_family == AF_INET) {
struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
/* only tos is used */
LIST_FOREACH(afp,
&classifier->acc_filters[ACC_WILDCARD_INDEX],
f_chain)
if (apply_tosfilter4(afp->f_fbmask,
&afp->f_filter, fp))
/* filter matched */
return (afp->f_class);
} else if ((classifier->acc_fbmask &
(~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
== 0) {
/* only proto and ports are used */
LIST_FOREACH(afp,
&classifier->acc_filters[ACC_WILDCARD_INDEX],
f_chain)
if (apply_ppfilter4(afp->f_fbmask,
&afp->f_filter, fp))
/* filter matched */
return (afp->f_class);
} else {
/* get the filter hash entry from its dest address */
i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
do {
/*
* go through this loop twice. first for dst
* hash, second for wildcards.
*/
LIST_FOREACH(afp, &classifier->acc_filters[i],
f_chain)
if (apply_filter4(afp->f_fbmask,
&afp->f_filter, fp))
/* filter matched */
return (afp->f_class);
/*
* check again for filters with a dst addr
* wildcard.
* (daddr == 0 || dmask != 0xffffffff).
*/
if (i != ACC_WILDCARD_INDEX)
i = ACC_WILDCARD_INDEX;
else
break;
} while (1);
}
}
#ifdef INET6
else if (flow.fi_family == AF_INET6) {
struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
/* get the filter hash entry from its flow ID */
if (fp6->fi6_flowlabel != 0)
i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
else
/* flowlable can be zero */
i = ACC_WILDCARD_INDEX;
/* go through this loop twice. first for flow hash, second
for wildcards. */
do {
LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
if (apply_filter6(afp->f_fbmask,
(struct flow_filter6 *)&afp->f_filter,
fp6))
/* filter matched */
return (afp->f_class);
/*
* check again for filters with a wildcard.
*/
if (i != ACC_WILDCARD_INDEX)
i = ACC_WILDCARD_INDEX;
else
break;
} while (1);
}
#endif /* INET6 */
/* no filter matched */
return (NULL);
}
static int
apply_filter4(fbmask, filt, pkt)
u_int32_t fbmask;
struct flow_filter *filt;
struct flowinfo_in *pkt;
{
if (filt->ff_flow.fi_family != AF_INET)
return (0);
if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
return (0);
if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
return (0);
if ((fbmask & FIMB4_DADDR) &&
filt->ff_flow.fi_dst.s_addr !=
(pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
return (0);
if ((fbmask & FIMB4_SADDR) &&
filt->ff_flow.fi_src.s_addr !=
(pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
return (0);
if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
return (0);
if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
(pkt->fi_tos & filt->ff_mask.mask_tos))
return (0);
if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
return (0);
/* match */
return (1);
}
/*
* filter matching function optimized for a common case that checks
* only protocol and port numbers
*/
static int
apply_ppfilter4(fbmask, filt, pkt)
u_int32_t fbmask;
struct flow_filter *filt;
struct flowinfo_in *pkt;
{
if (filt->ff_flow.fi_family != AF_INET)
return (0);
if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
return (0);
if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
return (0);
if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
return (0);
/* match */
return (1);
}
/*
* filter matching function only for tos field.
*/
static int
apply_tosfilter4(fbmask, filt, pkt)
u_int32_t fbmask;
struct flow_filter *filt;
struct flowinfo_in *pkt;
{
if (filt->ff_flow.fi_family != AF_INET)
return (0);
if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
(pkt->fi_tos & filt->ff_mask.mask_tos))
return (0);
/* match */
return (1);
}
#ifdef INET6
static int
apply_filter6(fbmask, filt, pkt)
u_int32_t fbmask;
struct flow_filter6 *filt;
struct flowinfo_in6 *pkt;
{
int i;
if (filt->ff_flow6.fi6_family != AF_INET6)
return (0);
if ((fbmask & FIMB6_FLABEL) &&
filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
return (0);
if ((fbmask & FIMB6_PROTO) &&
filt->ff_flow6.fi6_proto != pkt->fi6_proto)
return (0);
if ((fbmask & FIMB6_SPORT) &&
filt->ff_flow6.fi6_sport != pkt->fi6_sport)
return (0);
if ((fbmask & FIMB6_DPORT) &&
filt->ff_flow6.fi6_dport != pkt->fi6_dport)
return (0);
if (fbmask & FIMB6_SADDR) {
for (i = 0; i < 4; i++)
if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
(pkt->fi6_src.s6_addr32[i] &
filt->ff_mask6.mask6_src.s6_addr32[i]))
return (0);
}
if (fbmask & FIMB6_DADDR) {
for (i = 0; i < 4; i++)
if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
(pkt->fi6_dst.s6_addr32[i] &
filt->ff_mask6.mask6_dst.s6_addr32[i]))
return (0);
}
if ((fbmask & FIMB6_TCLASS) &&
filt->ff_flow6.fi6_tclass !=
(pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
return (0);
if ((fbmask & FIMB6_GPI) &&
filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
return (0);
/* match */
return (1);
}
#endif /* INET6 */
/*
* filter handle:
* bit 20-28: index to the filter hash table
* bit 0-19: unique id in the hash bucket.
*/
static u_long
get_filt_handle(classifier, i)
struct acc_classifier *classifier;
int i;
{
static u_long handle_number = 1;
u_long handle;
struct acc_filter *afp;
while (1) {
handle = handle_number++ & 0x000fffff;
if (LIST_EMPTY(&classifier->acc_filters[i]))
break;
LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
if ((afp->f_handle & 0x000fffff) == handle)
break;
if (afp == NULL)
break;
/* this handle is already used, try again */
}
return ((i << 20) | handle);
}
/* convert filter handle to filter pointer */
static struct acc_filter *
filth_to_filtp(classifier, handle)
struct acc_classifier *classifier;
u_long handle;
{
struct acc_filter *afp;
int i;
i = ACC_GET_HINDEX(handle);
LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
if (afp->f_handle == handle)
return (afp);
return (NULL);
}
/* create flowinfo bitmask */
static u_int32_t
filt2fibmask(filt)
struct flow_filter *filt;
{
u_int32_t mask = 0;
#ifdef INET6
struct flow_filter6 *filt6;
#endif
switch (filt->ff_flow.fi_family) {
case AF_INET:
if (filt->ff_flow.fi_proto != 0)
mask |= FIMB4_PROTO;
if (filt->ff_flow.fi_tos != 0)
mask |= FIMB4_TOS;
if (filt->ff_flow.fi_dst.s_addr != 0)
mask |= FIMB4_DADDR;
if (filt->ff_flow.fi_src.s_addr != 0)
mask |= FIMB4_SADDR;
if (filt->ff_flow.fi_sport != 0)
mask |= FIMB4_SPORT;
if (filt->ff_flow.fi_dport != 0)
mask |= FIMB4_DPORT;
if (filt->ff_flow.fi_gpi != 0)
mask |= FIMB4_GPI;
break;
#ifdef INET6
case AF_INET6:
filt6 = (struct flow_filter6 *)filt;
if (filt6->ff_flow6.fi6_proto != 0)
mask |= FIMB6_PROTO;
if (filt6->ff_flow6.fi6_tclass != 0)
mask |= FIMB6_TCLASS;
if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
mask |= FIMB6_DADDR;
if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
mask |= FIMB6_SADDR;
if (filt6->ff_flow6.fi6_sport != 0)
mask |= FIMB6_SPORT;
if (filt6->ff_flow6.fi6_dport != 0)
mask |= FIMB6_DPORT;
if (filt6->ff_flow6.fi6_gpi != 0)
mask |= FIMB6_GPI;
if (filt6->ff_flow6.fi6_flowlabel != 0)
mask |= FIMB6_FLABEL;
break;
#endif /* INET6 */
}
return (mask);
}
/*
* helper functions to handle IPv4 fragments.
* currently only in-sequence fragments are handled.
* - fragment info is cached in a LRU list.
* - when a first fragment is found, cache its flow info.
* - when a non-first fragment is found, lookup the cache.
*/
struct ip4_frag {
TAILQ_ENTRY(ip4_frag) ip4f_chain;
char ip4f_valid;
u_short ip4f_id;
struct flowinfo_in ip4f_info;
};
static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
#define IP4F_TABSIZE 16 /* IPv4 fragment cache size */
static void
ip4f_cache(ip, fin)
struct ip *ip;
struct flowinfo_in *fin;
{
struct ip4_frag *fp;
if (TAILQ_EMPTY(&ip4f_list)) {
/* first time call, allocate fragment cache entries. */
if (ip4f_init() < 0)
/* allocation failed! */
return;
}
fp = ip4f_alloc();
fp->ip4f_id = ip->ip_id;
fp->ip4f_info.fi_proto = ip->ip_p;
fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
/* save port numbers */
fp->ip4f_info.fi_sport = fin->fi_sport;
fp->ip4f_info.fi_dport = fin->fi_dport;
fp->ip4f_info.fi_gpi = fin->fi_gpi;
}
static int
ip4f_lookup(ip, fin)
struct ip *ip;
struct flowinfo_in *fin;
{
struct ip4_frag *fp;
for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
fp = TAILQ_NEXT(fp, ip4f_chain))
if (ip->ip_id == fp->ip4f_id &&
ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
ip->ip_p == fp->ip4f_info.fi_proto) {
/* found the matching entry */
fin->fi_sport = fp->ip4f_info.fi_sport;
fin->fi_dport = fp->ip4f_info.fi_dport;
fin->fi_gpi = fp->ip4f_info.fi_gpi;
if ((ntohs(ip->ip_off) & IP_MF) == 0)
/* this is the last fragment,
release the entry. */
ip4f_free(fp);
return (1);
}
/* no matching entry found */
return (0);
}
static int
ip4f_init(void)
{
struct ip4_frag *fp;
int i;
TAILQ_INIT(&ip4f_list);
for (i=0; i<IP4F_TABSIZE; i++) {
fp = malloc(sizeof(struct ip4_frag),
M_DEVBUF, M_NOWAIT);
if (fp == NULL) {
printf("ip4f_init: can't alloc %dth entry!\n", i);
if (i == 0)
return (-1);
return (0);
}
fp->ip4f_valid = 0;
TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
}
return (0);
}
static struct ip4_frag *
ip4f_alloc(void)
{
struct ip4_frag *fp;
/* reclaim an entry at the tail, put it at the head */
fp = TAILQ_LAST(&ip4f_list, ip4f_list);
TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
fp->ip4f_valid = 1;
TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
return (fp);
}
static void
ip4f_free(fp)
struct ip4_frag *fp;
{
TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
fp->ip4f_valid = 0;
TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
}
#endif /* ALTQ3_CLFIER_COMPAT */