2001-11-09 20:19:58 +00:00
|
|
|
/*-
|
2017-11-27 15:10:39 +00:00
|
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
*
|
2001-11-09 20:19:58 +00:00
|
|
|
* Copyright (c) 1994,1995 Stefan Esser, Wolfgang StanglMeier
|
|
|
|
* Copyright (c) 2000 Michael Smith <msmith@freebsd.org>
|
|
|
|
* Copyright (c) 2000 BSDi
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
* Copyright (c) 2001, 2003 Thomas Moestl <tmm@FreeBSD.org>
|
2001-11-09 20:19:58 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
|
|
* derived from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* from: FreeBSD: src/sys/dev/pci/pci_pci.c,v 1.3 2000/12/13
|
|
|
|
*/
|
|
|
|
|
2005-12-03 18:11:26 +00:00
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
|
2001-11-09 20:19:58 +00:00
|
|
|
/*
|
|
|
|
* Support for the Sun APB (Advanced PCI Bridge) PCI-PCI bridge.
|
|
|
|
* This bridge does not fully comply to the PCI bridge specification, and is
|
|
|
|
* therefore not supported by the generic driver.
|
2004-05-08 13:53:47 +00:00
|
|
|
* We can use some of the pcib methods anyway.
|
2001-11-09 20:19:58 +00:00
|
|
|
*/
|
|
|
|
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
#include "opt_ofw_pci.h"
|
|
|
|
|
2001-11-09 20:19:58 +00:00
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/kernel.h>
|
2004-06-03 05:58:30 +00:00
|
|
|
#include <sys/module.h>
|
2001-11-09 20:19:58 +00:00
|
|
|
#include <sys/bus.h>
|
2011-05-03 17:37:24 +00:00
|
|
|
#include <sys/rman.h>
|
2011-10-02 23:22:38 +00:00
|
|
|
#include <sys/sysctl.h>
|
2001-11-09 20:19:58 +00:00
|
|
|
|
- Introduce an ofw_bus kobj-interface for retrieving the OFW node and a
subset ("compatible", "device_type", "model" and "name") of the standard
properties in drivers for devices on Open Firmware supported busses. The
standard properties "reg", "interrupts" und "address" are not covered by
this interface because they are only of interest in the respective bridge
code. There's a remaining standard property "status" which is unclear how
to support properly but which also isn't used in FreeBSD at present.
This ofw_bus kobj-interface allows to replace the various (ebus_get_node(),
ofw_pci_get_node(), etc.) and partially inconsistent (central_get_type()
vs. sbus_get_device_type(), etc.) existing IVAR ones with a common one.
This in turn allows to simplify and remove code-duplication in drivers for
devices that can hang off of more than one OFW supported bus.
- Convert the sparc64 Central, EBus, FHC, PCI and SBus bus drivers and the
drivers for their children to use the ofw_bus kobj-interface. The IVAR-
interfaces of the Central, EBus and FHC are entirely replaced by this. The
PCI bus driver used its own kobj-interface and now also uses the ofw_bus
one. The IVARs special to the SBus, e.g. for retrieving the burst size,
remain.
Beware: this causes an ABI-breakage for modules of drivers which used the
IVAR-interfaces, i.e. esp(4), hme(4), isp(4) and uart(4), which need to be
recompiled.
The style-inconsistencies introduced in some of the bus drivers will be
fixed by tmm@ in a generic clean-up of the respective drivers later (he
requested to add the changes in the "new" style).
- Convert the powerpc MacIO bus driver and the drivers for its children to
use the ofw_bus kobj-interface. This invloves removing the IVARs related
to the "reg" property which were unused and a leftover from the NetBSD
origini of the code. There's no ABI-breakage caused by this because none
of these driver are currently built as modules.
There are other powerpc bus drivers which can be converted to the ofw_bus
kobj-interface, e.g. the PCI bus driver, which should be done together
with converting powerpc to use the OFW PCI code from sparc64.
- Make the SBus and FHC front-end of zs(4) and the sparc64 eeprom(4) take
advantage of the ofw_bus kobj-interface and simplify them a bit.
Reviewed by: grehan, tmm
Approved by: re (scottl)
Discussed with: tmm
Tested with: Sun AX1105, AXe, Ultra 2, Ultra 60; PPC cross-build on i386
2004-08-12 17:41:33 +00:00
|
|
|
#include <dev/ofw/ofw_bus.h>
|
2002-03-24 02:11:06 +00:00
|
|
|
#include <dev/ofw/openfirm.h>
|
|
|
|
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
#include <machine/bus.h>
|
2001-11-09 20:19:58 +00:00
|
|
|
#include <machine/resource.h>
|
|
|
|
|
2003-08-22 07:39:05 +00:00
|
|
|
#include <dev/pci/pcireg.h>
|
|
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <dev/pci/pcib_private.h>
|
2001-11-09 20:19:58 +00:00
|
|
|
|
|
|
|
#include "pcib_if.h"
|
|
|
|
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
#include <sparc64/pci/ofw_pci.h>
|
|
|
|
#include <sparc64/pci/ofw_pcib_subr.h>
|
|
|
|
|
2001-11-09 20:19:58 +00:00
|
|
|
/*
|
|
|
|
* Bridge-specific data.
|
|
|
|
*/
|
|
|
|
struct apb_softc {
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
struct ofw_pcib_gen_softc sc_bsc;
|
2005-12-03 18:11:26 +00:00
|
|
|
uint8_t sc_iomap;
|
|
|
|
uint8_t sc_memmap;
|
2001-11-09 20:19:58 +00:00
|
|
|
};
|
|
|
|
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
static device_probe_t apb_probe;
|
|
|
|
static device_attach_t apb_attach;
|
|
|
|
static bus_alloc_resource_t apb_alloc_resource;
|
2011-10-02 23:22:38 +00:00
|
|
|
static bus_adjust_resource_t apb_adjust_resource;
|
2001-11-09 20:19:58 +00:00
|
|
|
|
|
|
|
static device_method_t apb_methods[] = {
|
|
|
|
/* Device interface */
|
|
|
|
DEVMETHOD(device_probe, apb_probe),
|
|
|
|
DEVMETHOD(device_attach, apb_attach),
|
|
|
|
|
|
|
|
/* Bus interface */
|
|
|
|
DEVMETHOD(bus_alloc_resource, apb_alloc_resource),
|
2011-10-02 23:22:38 +00:00
|
|
|
DEVMETHOD(bus_adjust_resource, apb_adjust_resource),
|
|
|
|
DEVMETHOD(bus_release_resource, bus_generic_release_resource),
|
2001-11-09 20:19:58 +00:00
|
|
|
|
|
|
|
/* pcib interface */
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
DEVMETHOD(pcib_route_interrupt, ofw_pcib_gen_route_interrupt),
|
2017-02-25 06:11:59 +00:00
|
|
|
DEVMETHOD(pcib_request_feature, pcib_request_feature_allow),
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
|
- Introduce an ofw_bus kobj-interface for retrieving the OFW node and a
subset ("compatible", "device_type", "model" and "name") of the standard
properties in drivers for devices on Open Firmware supported busses. The
standard properties "reg", "interrupts" und "address" are not covered by
this interface because they are only of interest in the respective bridge
code. There's a remaining standard property "status" which is unclear how
to support properly but which also isn't used in FreeBSD at present.
This ofw_bus kobj-interface allows to replace the various (ebus_get_node(),
ofw_pci_get_node(), etc.) and partially inconsistent (central_get_type()
vs. sbus_get_device_type(), etc.) existing IVAR ones with a common one.
This in turn allows to simplify and remove code-duplication in drivers for
devices that can hang off of more than one OFW supported bus.
- Convert the sparc64 Central, EBus, FHC, PCI and SBus bus drivers and the
drivers for their children to use the ofw_bus kobj-interface. The IVAR-
interfaces of the Central, EBus and FHC are entirely replaced by this. The
PCI bus driver used its own kobj-interface and now also uses the ofw_bus
one. The IVARs special to the SBus, e.g. for retrieving the burst size,
remain.
Beware: this causes an ABI-breakage for modules of drivers which used the
IVAR-interfaces, i.e. esp(4), hme(4), isp(4) and uart(4), which need to be
recompiled.
The style-inconsistencies introduced in some of the bus drivers will be
fixed by tmm@ in a generic clean-up of the respective drivers later (he
requested to add the changes in the "new" style).
- Convert the powerpc MacIO bus driver and the drivers for its children to
use the ofw_bus kobj-interface. This invloves removing the IVARs related
to the "reg" property which were unused and a leftover from the NetBSD
origini of the code. There's no ABI-breakage caused by this because none
of these driver are currently built as modules.
There are other powerpc bus drivers which can be converted to the ofw_bus
kobj-interface, e.g. the PCI bus driver, which should be done together
with converting powerpc to use the OFW PCI code from sparc64.
- Make the SBus and FHC front-end of zs(4) and the sparc64 eeprom(4) take
advantage of the ofw_bus kobj-interface and simplify them a bit.
Reviewed by: grehan, tmm
Approved by: re (scottl)
Discussed with: tmm
Tested with: Sun AX1105, AXe, Ultra 2, Ultra 60; PPC cross-build on i386
2004-08-12 17:41:33 +00:00
|
|
|
/* ofw_bus interface */
|
|
|
|
DEVMETHOD(ofw_bus_get_node, ofw_pcib_gen_get_node),
|
|
|
|
|
2011-11-22 21:55:40 +00:00
|
|
|
DEVMETHOD_END
|
2001-11-09 20:19:58 +00:00
|
|
|
};
|
|
|
|
|
2006-01-06 19:22:19 +00:00
|
|
|
static devclass_t pcib_devclass;
|
2001-11-09 20:19:58 +00:00
|
|
|
|
2011-01-04 16:21:14 +00:00
|
|
|
DEFINE_CLASS_1(pcib, apb_driver, apb_methods, sizeof(struct apb_softc),
|
|
|
|
pcib_driver);
|
2009-12-22 21:02:46 +00:00
|
|
|
EARLY_DRIVER_MODULE(apb, pci, apb_driver, pcib_devclass, 0, 0, BUS_PASS_BUS);
|
2009-12-21 21:29:16 +00:00
|
|
|
MODULE_DEPEND(apb, pci, 1, 1, 1);
|
2001-11-09 20:19:58 +00:00
|
|
|
|
|
|
|
/* APB specific registers */
|
|
|
|
#define APBR_IOMAP 0xde
|
|
|
|
#define APBR_MEMMAP 0xdf
|
|
|
|
|
|
|
|
/* Definitions for the mapping registers */
|
|
|
|
#define APB_IO_SCALE 0x200000
|
|
|
|
#define APB_MEM_SCALE 0x20000000
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generic device interface
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
apb_probe(device_t dev)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (pci_get_vendor(dev) == 0x108e && /* Sun */
|
|
|
|
pci_get_device(dev) == 0x5000) { /* APB */
|
|
|
|
device_set_desc(dev, "APB PCI-PCI bridge");
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
return (ENXIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2016-01-27 02:23:54 +00:00
|
|
|
apb_map_print(uint8_t map, rman_res_t scale)
|
2001-11-09 20:19:58 +00:00
|
|
|
{
|
|
|
|
int i, first;
|
|
|
|
|
|
|
|
for (first = 1, i = 0; i < 8; i++) {
|
|
|
|
if ((map & (1 << i)) != 0) {
|
Use uintmax_t (typedef'd to rman_res_t type) for rman ranges.
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
2016-03-18 01:28:41 +00:00
|
|
|
printf("%s0x%jx-0x%jx", first ? "" : ", ",
|
2001-11-09 20:19:58 +00:00
|
|
|
i * scale, (i + 1) * scale - 1);
|
|
|
|
first = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2016-01-27 02:23:54 +00:00
|
|
|
apb_checkrange(uint8_t map, rman_res_t scale, rman_res_t start, rman_res_t end)
|
2001-11-09 20:19:58 +00:00
|
|
|
{
|
|
|
|
int i, ei;
|
|
|
|
|
|
|
|
i = start / scale;
|
|
|
|
ei = end / scale;
|
|
|
|
if (i > 7 || ei > 7)
|
|
|
|
return (0);
|
|
|
|
for (; i <= ei; i++)
|
|
|
|
if ((map & (1 << i)) == 0)
|
|
|
|
return (0);
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
apb_attach(device_t dev)
|
|
|
|
{
|
2001-12-21 21:28:54 +00:00
|
|
|
struct apb_softc *sc;
|
2011-10-02 23:22:38 +00:00
|
|
|
struct sysctl_ctx_list *sctx;
|
|
|
|
struct sysctl_oid *soid;
|
2001-11-09 20:19:58 +00:00
|
|
|
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get current bridge configuration.
|
|
|
|
*/
|
2008-04-17 12:38:00 +00:00
|
|
|
sc->sc_bsc.ops_pcib_sc.domain = pci_get_domain(dev);
|
2015-04-24 13:12:04 +00:00
|
|
|
sc->sc_bsc.ops_pcib_sc.pribus = pci_get_bus(dev);
|
|
|
|
pci_write_config(dev, PCIR_PRIBUS_1, sc->sc_bsc.ops_pcib_sc.pribus, 1);
|
2014-02-12 04:30:37 +00:00
|
|
|
sc->sc_bsc.ops_pcib_sc.bus.sec =
|
2008-04-17 12:38:00 +00:00
|
|
|
pci_read_config(dev, PCIR_SECBUS_1, 1);
|
2014-02-12 04:30:37 +00:00
|
|
|
sc->sc_bsc.ops_pcib_sc.bus.sub =
|
2008-04-17 12:38:00 +00:00
|
|
|
pci_read_config(dev, PCIR_SUBBUS_1, 1);
|
2011-10-02 23:22:38 +00:00
|
|
|
sc->sc_bsc.ops_pcib_sc.bridgectl =
|
|
|
|
pci_read_config(dev, PCIR_BRIDGECTL_1, 2);
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
sc->sc_iomap = pci_read_config(dev, APBR_IOMAP, 1);
|
|
|
|
sc->sc_memmap = pci_read_config(dev, APBR_MEMMAP, 1);
|
2011-10-02 23:22:38 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Setup SYSCTL reporting nodes.
|
|
|
|
*/
|
|
|
|
sctx = device_get_sysctl_ctx(dev);
|
|
|
|
soid = device_get_sysctl_tree(dev);
|
|
|
|
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "domain",
|
|
|
|
CTLFLAG_RD, &sc->sc_bsc.ops_pcib_sc.domain, 0,
|
|
|
|
"Domain number");
|
|
|
|
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "pribus",
|
|
|
|
CTLFLAG_RD, &sc->sc_bsc.ops_pcib_sc.pribus, 0,
|
|
|
|
"Primary bus number");
|
|
|
|
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "secbus",
|
2014-02-12 04:30:37 +00:00
|
|
|
CTLFLAG_RD, &sc->sc_bsc.ops_pcib_sc.bus.sec, 0,
|
2011-10-02 23:22:38 +00:00
|
|
|
"Secondary bus number");
|
|
|
|
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "subbus",
|
2014-02-12 04:30:37 +00:00
|
|
|
CTLFLAG_RD, &sc->sc_bsc.ops_pcib_sc.bus.sub, 0,
|
2011-10-02 23:22:38 +00:00
|
|
|
"Subordinate bus number");
|
|
|
|
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
ofw_pcib_gen_setup(dev);
|
2001-11-09 20:19:58 +00:00
|
|
|
|
|
|
|
if (bootverbose) {
|
2007-09-30 11:05:18 +00:00
|
|
|
device_printf(dev, " domain %d\n",
|
|
|
|
sc->sc_bsc.ops_pcib_sc.domain);
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
device_printf(dev, " secondary bus %d\n",
|
2014-02-12 04:30:37 +00:00
|
|
|
sc->sc_bsc.ops_pcib_sc.bus.sec);
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
device_printf(dev, " subordinate bus %d\n",
|
2014-02-12 04:30:37 +00:00
|
|
|
sc->sc_bsc.ops_pcib_sc.bus.sub);
|
2001-11-09 20:19:58 +00:00
|
|
|
device_printf(dev, " I/O decode ");
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
apb_map_print(sc->sc_iomap, APB_IO_SCALE);
|
2001-11-09 20:19:58 +00:00
|
|
|
printf("\n");
|
|
|
|
device_printf(dev, " memory decode ");
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
apb_map_print(sc->sc_memmap, APB_MEM_SCALE);
|
2001-11-09 20:19:58 +00:00
|
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
|
2008-04-17 12:38:00 +00:00
|
|
|
device_add_child(dev, "pci", -1);
|
Add the new sparc64 OFW PCI framework, conditional on options OFW_NEWPCI
for now. It introduces a OFW PCI bus driver and a generic OFW PCI-PCI
bridge driver. By utilizing these, the PCI handling is much more elegant
now.
The advantages of the new approach are:
- Device enumeration should hopefully be more like on Solaris now,
so unit numbers should match what's printed on the box more
closely.
- Real interrupt routing is implemented now, so cardbus bridges
etc. have at least a chance to work.
- The quirk tables are gone and have been replaced by (hopefully
sufficient) heuristics.
- Much cleaner code.
There was also a report that previously bogus interrupt assignments
are fixed now, which can be attributed to the new heuristics.
A pitfall, and the reason why this is not the default yet, is that
it changes device enumeration, as mentioned above, which can make
it necessary to change the system configuration if more than one
unit of a device type is present (on a system with two hme cars,
for example, it is possible that hme0 becomes hme1 and vice versa
after enabling the option). Systems with multiple disk controllers
may need to be booted into single user (and require manual specification
of the root file system on boot) to adjust the fstab.
Nevertheless, I would like to encourage users to use this option,
so that it can be made the default soon.
In detail, the changes are:
- Introduce an OFW PCI bus driver; it inherits most methods from the
generic PCI bus driver, but uses the firmware for enumeration,
performs additional initialization for devices and firmware-specific
interrupt routing. It also implements an OFW-specific method to allow
child devices to get their firmware nodes.
- Introduce an OFW PCI-PCI bridge driver; again, it inherits most
of the generic PCI-PCI bridge driver; it has it's own method for
interrupt routing, as well as some sparc64-specific methods (one to
get the node again, and one to adjust the bridge bus range, since
we need to reenumerate all PCI buses).
- Convert the apb driver to the new way of handling things.
- Provide a common framework for OFW bridge drivers, used be the two
drivers above.
- Provide a small common framework for interrupt routing (for all
bridge types).
- Convert the psycho driver to the new framework; this gets rid of a
bunch of old kludges in pci_read_config(), and the whole
preinitialization (ofw_pci_init()).
- Convert the ISA MD part and the EBus driver to the new way
interrupts and nodes are handled.
- Introduce types for firmware interrupt properties.
- Rename the old sparcbus_if to ofw_pci_if by repo copy (it is only
required for PCI), and move it to a more correct location (new
support methodsx were also added, and an old one was deprecated).
- Fix a bunch of minor bugs, perform some cleanups.
In some cases, I introduced some minor code duplication to keep the
new code clean, in hopes that the old code will be unifdef'ed soon.
Reviewed in part by: imp
Tested by: jake, Marius Strobl <marius@alchemy.franken.de>,
Sergey Mokryshev <mokr@mokr.net>,
Chris Jackman <cjackNOSPAM@klatsch.org>
Info on u30 firmware provided by: kris
2003-07-01 14:52:47 +00:00
|
|
|
return (bus_generic_attach(dev));
|
2001-11-09 20:19:58 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We have to trap resource allocation requests and ensure that the bridge
|
|
|
|
* is set up to, or capable of handling them.
|
|
|
|
*/
|
|
|
|
static struct resource *
|
2008-04-17 12:38:00 +00:00
|
|
|
apb_alloc_resource(device_t dev, device_t child, int type, int *rid,
|
2016-01-27 02:23:54 +00:00
|
|
|
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
|
2001-11-09 20:19:58 +00:00
|
|
|
{
|
2001-12-21 21:28:54 +00:00
|
|
|
struct apb_softc *sc;
|
2001-11-09 20:19:58 +00:00
|
|
|
|
|
|
|
sc = device_get_softc(dev);
|
2005-04-28 03:33:46 +00:00
|
|
|
|
2001-11-09 20:19:58 +00:00
|
|
|
/*
|
|
|
|
* If this is a "default" allocation against this rid, we can't work
|
2004-05-08 13:53:47 +00:00
|
|
|
* out where it's coming from (we should actually never see these) so
|
|
|
|
* we just have to punt.
|
2001-11-09 20:19:58 +00:00
|
|
|
*/
|
2016-02-20 01:32:58 +00:00
|
|
|
if (RMAN_IS_DEFAULT_RANGE(start, end)) {
|
2001-11-09 20:19:58 +00:00
|
|
|
device_printf(dev, "can't decode default resource id %d for "
|
2010-03-31 22:27:33 +00:00
|
|
|
"%s, bypassing\n", *rid, device_get_nameunit(child));
|
2005-04-28 03:33:46 +00:00
|
|
|
goto passup;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Fail the allocation for this range if it's not supported.
|
|
|
|
* XXX we should probably just fix up the bridge decode and
|
|
|
|
* soldier on.
|
|
|
|
*/
|
|
|
|
switch (type) {
|
|
|
|
case SYS_RES_IOPORT:
|
|
|
|
if (!apb_checkrange(sc->sc_iomap, APB_IO_SCALE, start, end)) {
|
2010-03-31 22:27:33 +00:00
|
|
|
device_printf(dev, "device %s requested unsupported "
|
Use uintmax_t (typedef'd to rman_res_t type) for rman ranges.
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
2016-03-18 01:28:41 +00:00
|
|
|
"I/O range 0x%jx-0x%jx\n",
|
2010-03-31 22:27:33 +00:00
|
|
|
device_get_nameunit(child), start, end);
|
2005-04-28 03:33:46 +00:00
|
|
|
return (NULL);
|
|
|
|
}
|
|
|
|
if (bootverbose)
|
|
|
|
device_printf(sc->sc_bsc.ops_pcib_sc.dev, "device "
|
Use uintmax_t (typedef'd to rman_res_t type) for rman ranges.
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
2016-03-18 01:28:41 +00:00
|
|
|
"%s requested decoded I/O range 0x%jx-0x%jx\n",
|
2010-03-31 22:27:33 +00:00
|
|
|
device_get_nameunit(child), start, end);
|
2005-04-28 03:33:46 +00:00
|
|
|
break;
|
|
|
|
case SYS_RES_MEMORY:
|
2011-10-02 23:22:38 +00:00
|
|
|
if (!apb_checkrange(sc->sc_memmap, APB_MEM_SCALE, start,
|
|
|
|
end)) {
|
2010-03-31 22:27:33 +00:00
|
|
|
device_printf(dev, "device %s requested unsupported "
|
Use uintmax_t (typedef'd to rman_res_t type) for rman ranges.
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
2016-03-18 01:28:41 +00:00
|
|
|
"memory range 0x%jx-0x%jx\n",
|
2010-03-31 22:27:33 +00:00
|
|
|
device_get_nameunit(child), start, end);
|
2005-04-28 03:33:46 +00:00
|
|
|
return (NULL);
|
2001-11-09 20:19:58 +00:00
|
|
|
}
|
2005-04-28 03:33:46 +00:00
|
|
|
if (bootverbose)
|
|
|
|
device_printf(sc->sc_bsc.ops_pcib_sc.dev, "device "
|
Use uintmax_t (typedef'd to rman_res_t type) for rman ranges.
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
2016-03-18 01:28:41 +00:00
|
|
|
"%s requested decoded memory range 0x%jx-0x%jx\n",
|
2010-03-31 22:27:33 +00:00
|
|
|
device_get_nameunit(child), start, end);
|
2005-04-28 03:33:46 +00:00
|
|
|
break;
|
2001-11-09 20:19:58 +00:00
|
|
|
}
|
|
|
|
|
2005-04-28 03:33:46 +00:00
|
|
|
passup:
|
2001-11-09 20:19:58 +00:00
|
|
|
/*
|
|
|
|
* Bridge is OK decoding this resource, so pass it up.
|
|
|
|
*/
|
|
|
|
return (bus_generic_alloc_resource(dev, child, type, rid, start, end,
|
|
|
|
count, flags));
|
|
|
|
}
|
2011-10-02 23:22:38 +00:00
|
|
|
|
|
|
|
static int
|
|
|
|
apb_adjust_resource(device_t dev, device_t child, int type,
|
2016-01-27 02:23:54 +00:00
|
|
|
struct resource *r, rman_res_t start, rman_res_t end)
|
2011-10-02 23:22:38 +00:00
|
|
|
{
|
|
|
|
struct apb_softc *sc;
|
|
|
|
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
switch (type) {
|
|
|
|
case SYS_RES_IOPORT:
|
|
|
|
if (!apb_checkrange(sc->sc_iomap, APB_IO_SCALE, start, end))
|
|
|
|
return (ENXIO);
|
|
|
|
break;
|
|
|
|
case SYS_RES_MEMORY:
|
|
|
|
if (!apb_checkrange(sc->sc_memmap, APB_MEM_SCALE, start, end))
|
|
|
|
return (ENXIO);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return (bus_generic_adjust_resource(dev, child, type, r, start, end));
|
|
|
|
}
|