freebsd-skq/sys/kern/uipc_socket2.c

1509 lines
36 KiB
C
Raw Normal View History

/*-
1994-05-24 10:09:53 +00:00
* Copyright (c) 1982, 1986, 1988, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
*/
2003-06-11 00:56:59 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_mac.h"
#include "opt_param.h"
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/aio.h> /* for aio_swake proto */
#include <sys/domain.h>
#include <sys/event.h>
#include <sys/file.h> /* for maxfiles */
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mac.h>
#include <sys/malloc.h>
1994-05-24 10:09:53 +00:00
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
1994-05-24 10:09:53 +00:00
#include <sys/protosw.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
1994-05-24 10:09:53 +00:00
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
int maxsockets;
void (*aio_swake)(struct socket *, struct sockbuf *);
1994-05-24 10:09:53 +00:00
/*
* Primitive routines for operating on sockets and socket buffers
*/
u_long sb_max = SB_MAX;
static u_long sb_max_adj =
SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
1994-05-24 10:09:53 +00:00
static u_long sb_efficiency = 8; /* parameter for sbreserve() */
1994-05-24 10:09:53 +00:00
/*
* Procedures to manipulate state flags of socket
* and do appropriate wakeups. Normal sequence from the
* active (originating) side is that soisconnecting() is
* called during processing of connect() call,
* resulting in an eventual call to soisconnected() if/when the
* connection is established. When the connection is torn down
* soisdisconnecting() is called during processing of disconnect() call,
* and soisdisconnected() is called when the connection to the peer
* is totally severed. The semantics of these routines are such that
* connectionless protocols can call soisconnected() and soisdisconnected()
* only, bypassing the in-progress calls when setting up a ``connection''
* takes no time.
*
* From the passive side, a socket is created with
* two queues of sockets: so_incomp for connections in progress
* and so_comp for connections already made and awaiting user acceptance.
1994-05-24 10:09:53 +00:00
* As a protocol is preparing incoming connections, it creates a socket
* structure queued on so_incomp by calling sonewconn(). When the connection
1994-05-24 10:09:53 +00:00
* is established, soisconnected() is called, and transfers the
* socket structure to so_comp, making it available to accept().
1995-05-30 08:16:23 +00:00
*
1994-05-24 10:09:53 +00:00
* If a socket is closed with sockets on either
* so_incomp or so_comp, these sockets are dropped.
1994-05-24 10:09:53 +00:00
*
* If higher level protocols are implemented in
* the kernel, the wakeups done here will sometimes
* cause software-interrupt process scheduling.
*/
void
1994-05-24 10:09:53 +00:00
soisconnecting(so)
register struct socket *so;
{
SOCK_LOCK(so);
1994-05-24 10:09:53 +00:00
so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
so->so_state |= SS_ISCONNECTING;
SOCK_UNLOCK(so);
1994-05-24 10:09:53 +00:00
}
void
soisconnected(so)
struct socket *so;
{
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
struct socket *head;
SOCK_LOCK(so);
so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
so->so_state |= SS_ISCONNECTED;
SOCK_UNLOCK(so);
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
ACCEPT_LOCK();
head = so->so_head;
if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
if ((so->so_options & SO_ACCEPTFILTER) == 0) {
TAILQ_REMOVE(&head->so_incomp, so, so_list);
head->so_incqlen--;
so->so_qstate &= ~SQ_INCOMP;
TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
head->so_qlen++;
so->so_qstate |= SQ_COMP;
ACCEPT_UNLOCK();
sorwakeup(head);
wakeup_one(&head->so_timeo);
} else {
ACCEPT_UNLOCK();
SOCK_LOCK(so);
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
so->so_upcall =
head->so_accf->so_accept_filter->accf_callback;
so->so_upcallarg = head->so_accf->so_accept_filter_arg;
so->so_rcv.sb_flags |= SB_UPCALL;
so->so_options &= ~SO_ACCEPTFILTER;
SOCK_UNLOCK(so);
so->so_upcall(so, so->so_upcallarg, M_TRYWAIT);
}
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
return;
1994-05-24 10:09:53 +00:00
}
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
ACCEPT_UNLOCK();
wakeup(&so->so_timeo);
sorwakeup(so);
sowwakeup(so);
1994-05-24 10:09:53 +00:00
}
void
1994-05-24 10:09:53 +00:00
soisdisconnecting(so)
register struct socket *so;
{
/*
* XXXRW: This code separately acquires SOCK_LOCK(so) and
* SOCKBUF_LOCK(&so->so_rcv) even though they are the same mutex to
* avoid introducing the assumption that they are the same.
*/
SOCK_LOCK(so);
1994-05-24 10:09:53 +00:00
so->so_state &= ~SS_ISCONNECTING;
so->so_state |= SS_ISDISCONNECTING;
SOCK_UNLOCK(so);
SOCKBUF_LOCK(&so->so_rcv);
so->so_rcv.sb_state |= SBS_CANTRCVMORE;
sorwakeup_locked(so);
SOCKBUF_LOCK(&so->so_snd);
so->so_snd.sb_state |= SBS_CANTSENDMORE;
sowwakeup_locked(so);
wakeup(&so->so_timeo);
1994-05-24 10:09:53 +00:00
}
void
soisdisconnected(so)
1994-05-24 10:09:53 +00:00
register struct socket *so;
{
/*
* XXXRW: This code separately acquires SOCK_LOCK(so) and
* SOCKBUF_LOCK(&so->so_rcv) even though they are the same mutex to
* avoid introducing the assumption that they are the same.
*/
/* XXXRW: so_state locking? */
SOCK_LOCK(so);
1994-05-24 10:09:53 +00:00
so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
so->so_state |= SS_ISDISCONNECTED;
SOCK_UNLOCK(so);
SOCKBUF_LOCK(&so->so_rcv);
so->so_rcv.sb_state |= SBS_CANTRCVMORE;
sorwakeup_locked(so);
SOCKBUF_LOCK(&so->so_snd);
so->so_snd.sb_state |= SBS_CANTSENDMORE;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
sowwakeup_locked(so);
wakeup(&so->so_timeo);
1994-05-24 10:09:53 +00:00
}
/*
* When an attempt at a new connection is noted on a socket
* which accepts connections, sonewconn is called. If the
* connection is possible (subject to space constraints, etc.)
* then we allocate a new structure, propoerly linked into the
* data structure of the original socket, and return this.
* Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
*
* note: the ref count on the socket is 0 on return
1994-05-24 10:09:53 +00:00
*/
struct socket *
sonewconn(head, connstatus)
1994-05-24 10:09:53 +00:00
register struct socket *head;
int connstatus;
{
register struct socket *so;
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
int over;
1994-05-24 10:09:53 +00:00
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
ACCEPT_LOCK();
over = (head->so_qlen > 3 * head->so_qlimit / 2);
ACCEPT_UNLOCK();
if (over)
1994-05-24 10:09:53 +00:00
return ((struct socket *)0);
so = soalloc(M_NOWAIT);
1995-05-30 08:16:23 +00:00
if (so == NULL)
1994-05-24 10:09:53 +00:00
return ((struct socket *)0);
if ((head->so_options & SO_ACCEPTFILTER) != 0)
connstatus = 0;
so->so_head = head;
1994-05-24 10:09:53 +00:00
so->so_type = head->so_type;
so->so_options = head->so_options &~ SO_ACCEPTCONN;
so->so_linger = head->so_linger;
so->so_state = head->so_state | SS_NOFDREF;
so->so_proto = head->so_proto;
so->so_timeo = head->so_timeo;
so->so_cred = crhold(head->so_cred);
#ifdef MAC
SOCK_LOCK(head);
mac_create_socket_from_socket(head, so);
SOCK_UNLOCK(head);
#endif
knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
(*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
sodealloc(so);
return ((struct socket *)0);
}
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
ACCEPT_LOCK();
if (connstatus) {
TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
so->so_qstate |= SQ_COMP;
head->so_qlen++;
} else {
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
/*
* Keep removing sockets from the head until there's room for
* us to insert on the tail. In pre-locking revisions, this
* was a simple if(), but as we could be racing with other
* threads and soabort() requires dropping locks, we must
* loop waiting for the condition to be true.
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
*/
while (head->so_incqlen > head->so_qlimit) {
struct socket *sp;
sp = TAILQ_FIRST(&head->so_incomp);
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
TAILQ_REMOVE(&so->so_incomp, sp, so_list);
head->so_incqlen--;
sp->so_qstate &= ~SQ_INCOMP;
sp->so_head = NULL;
ACCEPT_UNLOCK();
(void) soabort(sp);
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
ACCEPT_LOCK();
}
TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
so->so_qstate |= SQ_INCOMP;
head->so_incqlen++;
}
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
ACCEPT_UNLOCK();
1994-05-24 10:09:53 +00:00
if (connstatus) {
Integrate accept locking from rwatson_netperf, introducing a new global mutex, accept_mtx, which serializes access to the following fields across all sockets: so_qlen so_incqlen so_qstate so_comp so_incomp so_list so_head While providing only coarse granularity, this approach avoids lock order issues between sockets by avoiding ownership of the fields by a specific socket and its per-socket mutexes. While here, rewrite soclose(), sofree(), soaccept(), and sonewconn() to add assertions, close additional races and address lock order concerns. In particular: - Reorganize the optimistic concurrency behavior in accept1() to always allocate a file descriptor with falloc() so that if we do find a socket, we don't have to encounter the "Oh, there wasn't a socket" race that can occur if falloc() sleeps in the current code, which broke inbound accept() ordering, not to mention requiring backing out socket state changes in a way that raced with the protocol level. We may want to add a lockless read of the queue state if polling of empty queues proves to be important to optimize. - In accept1(), soref() the socket while holding the accept lock so that the socket cannot be free'd in a race with the protocol layer. Likewise in netgraph equivilents of the accept1() code. - In sonewconn(), loop waiting for the queue to be small enough to insert our new socket once we've committed to inserting it, or races can occur that cause the incomplete socket queue to overfill. In the previously implementation, it was sufficient to simply tested once since calling soabort() didn't release synchronization permitting another thread to insert a socket as we discard a previous one. - In soclose()/sofree()/et al, it is the responsibility of the caller to remove a socket from the incomplete connection queue before calling soabort(), which prevents soabort() from having to walk into the accept socket to release the socket from its queue, and avoids races when releasing the accept mutex to enter soabort(), permitting soabort() to avoid lock ordering issues with the caller. - Generally cluster accept queue related operations together throughout these functions in order to facilitate locking. Annotate new locking in socketvar.h.
2004-06-02 04:15:39 +00:00
so->so_state |= connstatus;
sorwakeup(head);
wakeup_one(&head->so_timeo);
1994-05-24 10:09:53 +00:00
}
return (so);
}
/*
* Socantsendmore indicates that no more data will be sent on the
* socket; it would normally be applied to a socket when the user
* informs the system that no more data is to be sent, by the protocol
* code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
* will be received, and will normally be applied to the socket by a
* protocol when it detects that the peer will send no more data.
* Data queued for reading in the socket may yet be read.
*/
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
void
socantsendmore_locked(so)
struct socket *so;
{
SOCKBUF_LOCK_ASSERT(&so->so_snd);
so->so_snd.sb_state |= SBS_CANTSENDMORE;
sowwakeup_locked(so);
mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
}
1994-05-24 10:09:53 +00:00
void
1994-05-24 10:09:53 +00:00
socantsendmore(so)
struct socket *so;
{
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK(&so->so_snd);
socantsendmore_locked(so);
mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
1994-05-24 10:09:53 +00:00
}
void
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
socantrcvmore_locked(so)
1994-05-24 10:09:53 +00:00
struct socket *so;
{
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
so->so_rcv.sb_state |= SBS_CANTRCVMORE;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sorwakeup_locked(so);
mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
}
void
socantrcvmore(so)
struct socket *so;
{
SOCKBUF_LOCK(&so->so_rcv);
socantrcvmore_locked(so);
mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
1994-05-24 10:09:53 +00:00
}
/*
* Wait for data to arrive at/drain from a socket buffer.
*/
int
1994-05-24 10:09:53 +00:00
sbwait(sb)
struct sockbuf *sb;
{
SOCKBUF_LOCK_ASSERT(sb);
1994-05-24 10:09:53 +00:00
sb->sb_flags |= SB_WAIT;
return (msleep(&sb->sb_cc, &sb->sb_mtx,
(sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
1994-05-24 10:09:53 +00:00
sb->sb_timeo));
}
1995-05-30 08:16:23 +00:00
/*
1994-05-24 10:09:53 +00:00
* Lock a sockbuf already known to be locked;
* return any error returned from sleep (EINTR).
*/
int
1994-05-24 10:09:53 +00:00
sb_lock(sb)
register struct sockbuf *sb;
{
int error;
SOCKBUF_LOCK_ASSERT(sb);
1994-05-24 10:09:53 +00:00
while (sb->sb_flags & SB_LOCK) {
sb->sb_flags |= SB_WANT;
error = msleep(&sb->sb_flags, &sb->sb_mtx,
1994-05-24 10:09:53 +00:00
(sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
"sblock", 0);
if (error)
1994-05-24 10:09:53 +00:00
return (error);
}
sb->sb_flags |= SB_LOCK;
return (0);
}
/*
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
* Wakeup processes waiting on a socket buffer. Do asynchronous
* notification via SIGIO if the socket has the SS_ASYNC flag set.
*
* Called with the socket buffer lock held; will release the lock by the end
* of the function. This allows the caller to acquire the socket buffer lock
* while testing for the need for various sorts of wakeup and hold it through
* to the point where it's no longer required. We currently hold the lock
* through calls out to other subsystems (with the exception of kqueue), and
* then release it to avoid lock order issues. It's not clear that's
* correct.
1994-05-24 10:09:53 +00:00
*/
void
1994-05-24 10:09:53 +00:00
sowakeup(so, sb)
register struct socket *so;
register struct sockbuf *sb;
{
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
selwakeuppri(&sb->sb_sel, PSOCK);
1994-05-24 10:09:53 +00:00
sb->sb_flags &= ~SB_SEL;
if (sb->sb_flags & SB_WAIT) {
sb->sb_flags &= ~SB_WAIT;
wakeup(&sb->sb_cc);
1994-05-24 10:09:53 +00:00
}
KNOTE_LOCKED(&sb->sb_sel.si_note, 0);
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_UNLOCK(sb);
if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
pgsigio(&so->so_sigio, SIGIO, 0);
if (sb->sb_flags & SB_UPCALL)
(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
if (sb->sb_flags & SB_AIO)
aio_swake(so, sb);
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
1994-05-24 10:09:53 +00:00
}
/*
* Socket buffer (struct sockbuf) utility routines.
*
* Each socket contains two socket buffers: one for sending data and
* one for receiving data. Each buffer contains a queue of mbufs,
* information about the number of mbufs and amount of data in the
* queue, and other fields allowing select() statements and notification
* on data availability to be implemented.
*
* Data stored in a socket buffer is maintained as a list of records.
* Each record is a list of mbufs chained together with the m_next
* field. Records are chained together with the m_nextpkt field. The upper
* level routine soreceive() expects the following conventions to be
* observed when placing information in the receive buffer:
*
* 1. If the protocol requires each message be preceded by the sender's
* name, then a record containing that name must be present before
* any associated data (mbuf's must be of type MT_SONAME).
* 2. If the protocol supports the exchange of ``access rights'' (really
* just additional data associated with the message), and there are
* ``rights'' to be received, then a record containing this data
* should be present (mbuf's must be of type MT_RIGHTS).
* 3. If a name or rights record exists, then it must be followed by
* a data record, perhaps of zero length.
*
* Before using a new socket structure it is first necessary to reserve
* buffer space to the socket, by calling sbreserve(). This should commit
* some of the available buffer space in the system buffer pool for the
* socket (currently, it does nothing but enforce limits). The space
* should be released by calling sbrelease() when the socket is destroyed.
*/
int
1994-05-24 10:09:53 +00:00
soreserve(so, sndcc, rcvcc)
register struct socket *so;
u_long sndcc, rcvcc;
{
struct thread *td = curthread;
1994-05-24 10:09:53 +00:00
SOCKBUF_LOCK(&so->so_snd);
SOCKBUF_LOCK(&so->so_rcv);
if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
1994-05-24 10:09:53 +00:00
goto bad;
if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
1994-05-24 10:09:53 +00:00
goto bad2;
if (so->so_rcv.sb_lowat == 0)
so->so_rcv.sb_lowat = 1;
if (so->so_snd.sb_lowat == 0)
so->so_snd.sb_lowat = MCLBYTES;
if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
SOCKBUF_UNLOCK(&so->so_rcv);
SOCKBUF_UNLOCK(&so->so_snd);
1994-05-24 10:09:53 +00:00
return (0);
bad2:
sbrelease_locked(&so->so_snd, so);
1994-05-24 10:09:53 +00:00
bad:
SOCKBUF_UNLOCK(&so->so_rcv);
SOCKBUF_UNLOCK(&so->so_snd);
1994-05-24 10:09:53 +00:00
return (ENOBUFS);
}
static int
sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
{
int error = 0;
u_long old_sb_max = sb_max;
error = SYSCTL_OUT(req, arg1, sizeof(u_long));
if (error || !req->newptr)
return (error);
error = SYSCTL_IN(req, arg1, sizeof(u_long));
if (error)
return (error);
if (sb_max < MSIZE + MCLBYTES) {
sb_max = old_sb_max;
return (EINVAL);
}
sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
return (0);
}
1994-05-24 10:09:53 +00:00
/*
* Allot mbufs to a sockbuf.
* Attempt to scale mbmax so that mbcnt doesn't become limiting
* if buffering efficiency is near the normal case.
*/
int
sbreserve_locked(sb, cc, so, td)
1994-05-24 10:09:53 +00:00
struct sockbuf *sb;
u_long cc;
struct socket *so;
struct thread *td;
1994-05-24 10:09:53 +00:00
{
Locking for the per-process resource limits structure. - struct plimit includes a mutex to protect a reference count. The plimit structure is treated similarly to struct ucred in that is is always copy on write, so having a reference to a structure is sufficient to read from it without needing a further lock. - The proc lock protects the p_limit pointer and must be held while reading limits from a process to keep the limit structure from changing out from under you while reading from it. - Various global limits that are ints are not protected by a lock since int writes are atomic on all the archs we support and thus a lock wouldn't buy us anything. - All accesses to individual resource limits from a process are abstracted behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return either an rlimit, or the current or max individual limit of the specified resource from a process. - dosetrlimit() was renamed to kern_setrlimit() to match existing style of other similar syscall helper functions. - The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit() (it didn't used the stackgap when it should have) but uses lim_rlimit() and kern_setrlimit() instead. - The svr4 compat no longer uses the stackgap for resource limits calls, but uses lim_rlimit() and kern_setrlimit() instead. - The ibcs2 compat no longer uses the stackgap for resource limits. It also no longer uses the stackgap for accessing sysctl's for the ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result, ibcs2_sysconf() no longer needs Giant. - The p_rlimit macro no longer exists. Submitted by: mtm (mostly, I only did a few cleanups and catchups) Tested on: i386 Compiled on: alpha, amd64
2004-02-04 21:52:57 +00:00
rlim_t sbsize_limit;
SOCKBUF_LOCK_ASSERT(sb);
/*
* td will only be NULL when we're in an interrupt
* (e.g. in tcp_input())
*/
if (cc > sb_max_adj)
1994-05-24 10:09:53 +00:00
return (0);
Locking for the per-process resource limits structure. - struct plimit includes a mutex to protect a reference count. The plimit structure is treated similarly to struct ucred in that is is always copy on write, so having a reference to a structure is sufficient to read from it without needing a further lock. - The proc lock protects the p_limit pointer and must be held while reading limits from a process to keep the limit structure from changing out from under you while reading from it. - Various global limits that are ints are not protected by a lock since int writes are atomic on all the archs we support and thus a lock wouldn't buy us anything. - All accesses to individual resource limits from a process are abstracted behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return either an rlimit, or the current or max individual limit of the specified resource from a process. - dosetrlimit() was renamed to kern_setrlimit() to match existing style of other similar syscall helper functions. - The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit() (it didn't used the stackgap when it should have) but uses lim_rlimit() and kern_setrlimit() instead. - The svr4 compat no longer uses the stackgap for resource limits calls, but uses lim_rlimit() and kern_setrlimit() instead. - The ibcs2 compat no longer uses the stackgap for resource limits. It also no longer uses the stackgap for accessing sysctl's for the ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result, ibcs2_sysconf() no longer needs Giant. - The p_rlimit macro no longer exists. Submitted by: mtm (mostly, I only did a few cleanups and catchups) Tested on: i386 Compiled on: alpha, amd64
2004-02-04 21:52:57 +00:00
if (td != NULL) {
PROC_LOCK(td->td_proc);
sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE);
PROC_UNLOCK(td->td_proc);
} else
sbsize_limit = RLIM_INFINITY;
if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
Locking for the per-process resource limits structure. - struct plimit includes a mutex to protect a reference count. The plimit structure is treated similarly to struct ucred in that is is always copy on write, so having a reference to a structure is sufficient to read from it without needing a further lock. - The proc lock protects the p_limit pointer and must be held while reading limits from a process to keep the limit structure from changing out from under you while reading from it. - Various global limits that are ints are not protected by a lock since int writes are atomic on all the archs we support and thus a lock wouldn't buy us anything. - All accesses to individual resource limits from a process are abstracted behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return either an rlimit, or the current or max individual limit of the specified resource from a process. - dosetrlimit() was renamed to kern_setrlimit() to match existing style of other similar syscall helper functions. - The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit() (it didn't used the stackgap when it should have) but uses lim_rlimit() and kern_setrlimit() instead. - The svr4 compat no longer uses the stackgap for resource limits calls, but uses lim_rlimit() and kern_setrlimit() instead. - The ibcs2 compat no longer uses the stackgap for resource limits. It also no longer uses the stackgap for accessing sysctl's for the ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result, ibcs2_sysconf() no longer needs Giant. - The p_rlimit macro no longer exists. Submitted by: mtm (mostly, I only did a few cleanups and catchups) Tested on: i386 Compiled on: alpha, amd64
2004-02-04 21:52:57 +00:00
sbsize_limit))
return (0);
sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
1994-05-24 10:09:53 +00:00
if (sb->sb_lowat > sb->sb_hiwat)
sb->sb_lowat = sb->sb_hiwat;
return (1);
}
int
sbreserve(sb, cc, so, td)
struct sockbuf *sb;
u_long cc;
struct socket *so;
struct thread *td;
{
int error;
SOCKBUF_LOCK(sb);
error = sbreserve_locked(sb, cc, so, td);
SOCKBUF_UNLOCK(sb);
return (error);
}
1994-05-24 10:09:53 +00:00
/*
* Free mbufs held by a socket, and reserved mbuf space.
*/
void
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbrelease_locked(sb, so)
1994-05-24 10:09:53 +00:00
struct sockbuf *sb;
struct socket *so;
1994-05-24 10:09:53 +00:00
{
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
sbflush_locked(sb);
(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
RLIM_INFINITY);
sb->sb_mbmax = 0;
1994-05-24 10:09:53 +00:00
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
void
sbrelease(sb, so)
struct sockbuf *sb;
struct socket *so;
{
SOCKBUF_LOCK(sb);
sbrelease_locked(sb, so);
SOCKBUF_UNLOCK(sb);
}
1994-05-24 10:09:53 +00:00
/*
* Routines to add and remove
* data from an mbuf queue.
*
* The routines sbappend() or sbappendrecord() are normally called to
* append new mbufs to a socket buffer, after checking that adequate
* space is available, comparing the function sbspace() with the amount
* of data to be added. sbappendrecord() differs from sbappend() in
* that data supplied is treated as the beginning of a new record.
* To place a sender's address, optional access rights, and data in a
* socket receive buffer, sbappendaddr() should be used. To place
* access rights and data in a socket receive buffer, sbappendrights()
* should be used. In either case, the new data begins a new record.
* Note that unlike sbappend() and sbappendrecord(), these routines check
* for the caller that there will be enough space to store the data.
* Each fails if there is not enough space, or if it cannot find mbufs
* to store additional information in.
*
* Reliable protocols may use the socket send buffer to hold data
* awaiting acknowledgement. Data is normally copied from a socket
* send buffer in a protocol with m_copy for output to a peer,
* and then removing the data from the socket buffer with sbdrop()
* or sbdroprecord() when the data is acknowledged by the peer.
*/
#ifdef SOCKBUF_DEBUG
void
sblastrecordchk(struct sockbuf *sb, const char *file, int line)
{
struct mbuf *m = sb->sb_mb;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
while (m && m->m_nextpkt)
m = m->m_nextpkt;
if (m != sb->sb_lastrecord) {
printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
__func__, sb->sb_mb, sb->sb_lastrecord, m);
printf("packet chain:\n");
for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
printf("\t%p\n", m);
panic("%s from %s:%u", __func__, file, line);
}
}
void
sblastmbufchk(struct sockbuf *sb, const char *file, int line)
{
struct mbuf *m = sb->sb_mb;
struct mbuf *n;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
while (m && m->m_nextpkt)
m = m->m_nextpkt;
while (m && m->m_next)
m = m->m_next;
if (m != sb->sb_mbtail) {
printf("%s: sb_mb %p sb_mbtail %p last %p\n",
__func__, sb->sb_mb, sb->sb_mbtail, m);
printf("packet tree:\n");
for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
printf("\t");
for (n = m; n != NULL; n = n->m_next)
printf("%p ", n);
printf("\n");
}
panic("%s from %s:%u", __func__, file, line);
}
}
#endif /* SOCKBUF_DEBUG */
#define SBLINKRECORD(sb, m0) do { \
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb); \
if ((sb)->sb_lastrecord != NULL) \
(sb)->sb_lastrecord->m_nextpkt = (m0); \
else \
(sb)->sb_mb = (m0); \
(sb)->sb_lastrecord = (m0); \
} while (/*CONSTCOND*/0)
1994-05-24 10:09:53 +00:00
/*
* Append mbuf chain m to the last record in the
* socket buffer sb. The additional space associated
* the mbuf chain is recorded in sb. Empty mbufs are
* discarded and mbufs are compacted where possible.
*/
void
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbappend_locked(sb, m)
1994-05-24 10:09:53 +00:00
struct sockbuf *sb;
struct mbuf *m;
{
register struct mbuf *n;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
1994-05-24 10:09:53 +00:00
if (m == 0)
return;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SBLASTRECORDCHK(sb);
n = sb->sb_mb;
if (n) {
1994-05-24 10:09:53 +00:00
while (n->m_nextpkt)
n = n->m_nextpkt;
do {
if (n->m_flags & M_EOR) {
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
1994-05-24 10:09:53 +00:00
return;
}
} while (n->m_next && (n = n->m_next));
} else {
/*
* XXX Would like to simply use sb_mbtail here, but
* XXX I need to verify that I won't miss an EOR that
* XXX way.
*/
if ((n = sb->sb_lastrecord) != NULL) {
do {
if (n->m_flags & M_EOR) {
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
return;
}
} while (n->m_next && (n = n->m_next));
} else {
/*
* If this is the first record in the socket buffer,
* it's also the last record.
*/
sb->sb_lastrecord = m;
}
1994-05-24 10:09:53 +00:00
}
sbcompress(sb, m, n);
SBLASTRECORDCHK(sb);
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
/*
* Append mbuf chain m to the last record in the
* socket buffer sb. The additional space associated
* the mbuf chain is recorded in sb. Empty mbufs are
* discarded and mbufs are compacted where possible.
*/
void
sbappend(sb, m)
struct sockbuf *sb;
struct mbuf *m;
{
SOCKBUF_LOCK(sb);
sbappend_locked(sb, m);
SOCKBUF_UNLOCK(sb);
}
/*
* This version of sbappend() should only be used when the caller
* absolutely knows that there will never be more than one record
* in the socket buffer, that is, a stream protocol (such as TCP).
*/
void
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbappendstream_locked(struct sockbuf *sb, struct mbuf *m)
{
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
SBLASTMBUFCHK(sb);
sbcompress(sb, m, sb->sb_mbtail);
sb->sb_lastrecord = sb->sb_mb;
SBLASTRECORDCHK(sb);
1994-05-24 10:09:53 +00:00
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
/*
* This version of sbappend() should only be used when the caller
* absolutely knows that there will never be more than one record
* in the socket buffer, that is, a stream protocol (such as TCP).
*/
void
sbappendstream(struct sockbuf *sb, struct mbuf *m)
{
SOCKBUF_LOCK(sb);
sbappendstream_locked(sb, m);
SOCKBUF_UNLOCK(sb);
}
1994-05-24 10:09:53 +00:00
#ifdef SOCKBUF_DEBUG
void
1994-05-24 10:09:53 +00:00
sbcheck(sb)
struct sockbuf *sb;
1994-05-24 10:09:53 +00:00
{
struct mbuf *m;
struct mbuf *n = 0;
u_long len = 0, mbcnt = 0;
1994-05-24 10:09:53 +00:00
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
for (m = sb->sb_mb; m; m = n) {
n = m->m_nextpkt;
for (; m; m = m->m_next) {
1994-05-24 10:09:53 +00:00
len += m->m_len;
mbcnt += MSIZE;
if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
1994-05-24 10:09:53 +00:00
mbcnt += m->m_ext.ext_size;
}
1994-05-24 10:09:53 +00:00
}
if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc,
1994-05-24 10:09:53 +00:00
mbcnt, sb->sb_mbcnt);
panic("sbcheck");
}
}
#endif
/*
* As above, except the mbuf chain
* begins a new record.
*/
void
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbappendrecord_locked(sb, m0)
1994-05-24 10:09:53 +00:00
register struct sockbuf *sb;
register struct mbuf *m0;
{
register struct mbuf *m;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
1994-05-24 10:09:53 +00:00
if (m0 == 0)
return;
m = sb->sb_mb;
if (m)
1994-05-24 10:09:53 +00:00
while (m->m_nextpkt)
m = m->m_nextpkt;
/*
* Put the first mbuf on the queue.
* Note this permits zero length records.
*/
sballoc(sb, m0);
SBLASTRECORDCHK(sb);
SBLINKRECORD(sb, m0);
1994-05-24 10:09:53 +00:00
if (m)
m->m_nextpkt = m0;
else
sb->sb_mb = m0;
m = m0->m_next;
m0->m_next = 0;
if (m && (m0->m_flags & M_EOR)) {
m0->m_flags &= ~M_EOR;
m->m_flags |= M_EOR;
}
sbcompress(sb, m, m0);
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
/*
* As above, except the mbuf chain
* begins a new record.
*/
void
sbappendrecord(sb, m0)
register struct sockbuf *sb;
register struct mbuf *m0;
{
SOCKBUF_LOCK(sb);
sbappendrecord_locked(sb, m0);
SOCKBUF_UNLOCK(sb);
}
1994-05-24 10:09:53 +00:00
/*
* As above except that OOB data
* is inserted at the beginning of the sockbuf,
* but after any other OOB data.
*/
void
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbinsertoob_locked(sb, m0)
1994-05-24 10:09:53 +00:00
register struct sockbuf *sb;
register struct mbuf *m0;
{
register struct mbuf *m;
register struct mbuf **mp;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
1994-05-24 10:09:53 +00:00
if (m0 == 0)
return;
for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
m = *mp;
1994-05-24 10:09:53 +00:00
again:
switch (m->m_type) {
case MT_OOBDATA:
continue; /* WANT next train */
case MT_CONTROL:
m = m->m_next;
if (m)
1994-05-24 10:09:53 +00:00
goto again; /* inspect THIS train further */
}
break;
}
/*
* Put the first mbuf on the queue.
* Note this permits zero length records.
*/
sballoc(sb, m0);
m0->m_nextpkt = *mp;
*mp = m0;
m = m0->m_next;
m0->m_next = 0;
if (m && (m0->m_flags & M_EOR)) {
m0->m_flags &= ~M_EOR;
m->m_flags |= M_EOR;
}
sbcompress(sb, m, m0);
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
/*
* As above except that OOB data
* is inserted at the beginning of the sockbuf,
* but after any other OOB data.
*/
void
sbinsertoob(sb, m0)
register struct sockbuf *sb;
register struct mbuf *m0;
{
SOCKBUF_LOCK(sb);
sbinsertoob_locked(sb, m0);
SOCKBUF_UNLOCK(sb);
}
1994-05-24 10:09:53 +00:00
/*
* Append address and data, and optionally, control (ancillary) data
* to the receive queue of a socket. If present,
* m0 must include a packet header with total length.
* Returns 0 if no space in sockbuf or insufficient mbufs.
*/
int
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbappendaddr_locked(sb, asa, m0, control)
struct sockbuf *sb;
const struct sockaddr *asa;
1994-05-24 10:09:53 +00:00
struct mbuf *m0, *control;
{
struct mbuf *m, *n, *nlast;
1994-05-24 10:09:53 +00:00
int space = asa->sa_len;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
2001-06-29 04:01:38 +00:00
if (m0 && (m0->m_flags & M_PKTHDR) == 0)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
panic("sbappendaddr_locked");
1994-05-24 10:09:53 +00:00
if (m0)
space += m0->m_pkthdr.len;
space += m_length(control, &n);
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
1994-05-24 10:09:53 +00:00
if (space > sbspace(sb))
return (0);
#if MSIZE <= 256
1994-05-24 10:09:53 +00:00
if (asa->sa_len > MLEN)
return (0);
#endif
MGET(m, M_DONTWAIT, MT_SONAME);
1994-05-24 10:09:53 +00:00
if (m == 0)
return (0);
m->m_len = asa->sa_len;
bcopy(asa, mtod(m, caddr_t), asa->sa_len);
1994-05-24 10:09:53 +00:00
if (n)
n->m_next = m0; /* concatenate data to control */
else
control = m0;
m->m_next = control;
for (n = m; n->m_next != NULL; n = n->m_next)
1994-05-24 10:09:53 +00:00
sballoc(sb, n);
sballoc(sb, n);
nlast = n;
SBLINKRECORD(sb, m);
sb->sb_mbtail = nlast;
SBLASTMBUFCHK(sb);
SBLASTRECORDCHK(sb);
1994-05-24 10:09:53 +00:00
return (1);
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
/*
* Append address and data, and optionally, control (ancillary) data
* to the receive queue of a socket. If present,
* m0 must include a packet header with total length.
* Returns 0 if no space in sockbuf or insufficient mbufs.
*/
int
sbappendaddr(sb, asa, m0, control)
struct sockbuf *sb;
const struct sockaddr *asa;
struct mbuf *m0, *control;
{
int retval;
SOCKBUF_LOCK(sb);
retval = sbappendaddr_locked(sb, asa, m0, control);
SOCKBUF_UNLOCK(sb);
return (retval);
}
int
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbappendcontrol_locked(sb, m0, control)
1994-05-24 10:09:53 +00:00
struct sockbuf *sb;
struct mbuf *control, *m0;
{
struct mbuf *m, *n, *mlast;
int space;
1994-05-24 10:09:53 +00:00
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
1994-05-24 10:09:53 +00:00
if (control == 0)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
panic("sbappendcontrol_locked");
space = m_length(control, &n) + m_length(m0, NULL);
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
1994-05-24 10:09:53 +00:00
if (space > sbspace(sb))
return (0);
n->m_next = m0; /* concatenate data to control */
SBLASTRECORDCHK(sb);
for (m = control; m->m_next; m = m->m_next)
1994-05-24 10:09:53 +00:00
sballoc(sb, m);
sballoc(sb, m);
mlast = m;
SBLINKRECORD(sb, control);
sb->sb_mbtail = mlast;
SBLASTMBUFCHK(sb);
SBLASTRECORDCHK(sb);
1994-05-24 10:09:53 +00:00
return (1);
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
int
sbappendcontrol(sb, m0, control)
struct sockbuf *sb;
struct mbuf *control, *m0;
{
int retval;
SOCKBUF_LOCK(sb);
retval = sbappendcontrol_locked(sb, m0, control);
SOCKBUF_UNLOCK(sb);
return (retval);
}
1994-05-24 10:09:53 +00:00
/*
* Compress mbuf chain m into the socket
* buffer sb following mbuf n. If n
* is null, the buffer is presumed empty.
*/
void
1994-05-24 10:09:53 +00:00
sbcompress(sb, m, n)
register struct sockbuf *sb;
register struct mbuf *m, *n;
{
register int eor = 0;
register struct mbuf *o;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
1994-05-24 10:09:53 +00:00
while (m) {
eor |= m->m_flags & M_EOR;
if (m->m_len == 0 &&
(eor == 0 ||
(((o = m->m_next) || (o = n)) &&
o->m_type == m->m_type))) {
if (sb->sb_lastrecord == m)
sb->sb_lastrecord = m->m_next;
1994-05-24 10:09:53 +00:00
m = m_free(m);
continue;
}
if (n && (n->m_flags & M_EOR) == 0 &&
M_WRITABLE(n) &&
m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
m->m_len <= M_TRAILINGSPACE(n) &&
1994-05-24 10:09:53 +00:00
n->m_type == m->m_type) {
bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
(unsigned)m->m_len);
n->m_len += m->m_len;
sb->sb_cc += m->m_len;
if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
m->m_type != MT_OOBDATA)
/* XXX: Probably don't need.*/
sb->sb_ctl += m->m_len;
1994-05-24 10:09:53 +00:00
m = m_free(m);
continue;
}
if (n)
n->m_next = m;
else
sb->sb_mb = m;
sb->sb_mbtail = m;
1994-05-24 10:09:53 +00:00
sballoc(sb, m);
n = m;
m->m_flags &= ~M_EOR;
m = m->m_next;
n->m_next = 0;
}
if (eor) {
if (n)
n->m_flags |= eor;
else
printf("semi-panic: sbcompress\n");
}
SBLASTMBUFCHK(sb);
1994-05-24 10:09:53 +00:00
}
/*
* Free all mbufs in a sockbuf.
* Check that all resources are reclaimed.
*/
void
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbflush_locked(sb)
1994-05-24 10:09:53 +00:00
register struct sockbuf *sb;
{
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
1994-05-24 10:09:53 +00:00
if (sb->sb_flags & SB_LOCK)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
panic("sbflush_locked: locked");
while (sb->sb_mbcnt) {
/*
* Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
* we would loop forever. Panic instead.
*/
if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
break;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbdrop_locked(sb, (int)sb->sb_cc);
}
if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
panic("sbflush_locked: cc %u || mb %p || mbcnt %u", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
}
void
sbflush(sb)
register struct sockbuf *sb;
{
SOCKBUF_LOCK(sb);
sbflush_locked(sb);
SOCKBUF_UNLOCK(sb);
1994-05-24 10:09:53 +00:00
}
/*
* Drop data from (the front of) a sockbuf.
*/
void
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbdrop_locked(sb, len)
1994-05-24 10:09:53 +00:00
register struct sockbuf *sb;
register int len;
{
register struct mbuf *m;
1994-05-24 10:09:53 +00:00
struct mbuf *next;
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
1994-05-24 10:09:53 +00:00
next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
while (len > 0) {
if (m == 0) {
if (next == 0)
panic("sbdrop");
m = next;
next = m->m_nextpkt;
continue;
}
if (m->m_len > len) {
m->m_len -= len;
m->m_data += len;
sb->sb_cc -= len;
if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
m->m_type != MT_OOBDATA)
sb->sb_ctl -= len;
1994-05-24 10:09:53 +00:00
break;
}
len -= m->m_len;
sbfree(sb, m);
m = m_free(m);
1994-05-24 10:09:53 +00:00
}
while (m && m->m_len == 0) {
sbfree(sb, m);
m = m_free(m);
1994-05-24 10:09:53 +00:00
}
if (m) {
sb->sb_mb = m;
m->m_nextpkt = next;
} else
sb->sb_mb = next;
/*
* First part is an inline SB_EMPTY_FIXUP(). Second part
* makes sure sb_lastrecord is up-to-date if we dropped
* part of the last record.
*/
m = sb->sb_mb;
if (m == NULL) {
sb->sb_mbtail = NULL;
sb->sb_lastrecord = NULL;
} else if (m->m_nextpkt == NULL) {
sb->sb_lastrecord = m;
}
1994-05-24 10:09:53 +00:00
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
/*
* Drop data from (the front of) a sockbuf.
*/
void
sbdrop(sb, len)
register struct sockbuf *sb;
register int len;
{
SOCKBUF_LOCK(sb);
sbdrop_locked(sb, len);
SOCKBUF_UNLOCK(sb);
}
1994-05-24 10:09:53 +00:00
/*
* Drop a record off the front of a sockbuf
* and move the next record to the front.
*/
void
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
sbdroprecord_locked(sb)
1994-05-24 10:09:53 +00:00
register struct sockbuf *sb;
{
register struct mbuf *m;
1994-05-24 10:09:53 +00:00
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
SOCKBUF_LOCK_ASSERT(sb);
1994-05-24 10:09:53 +00:00
m = sb->sb_mb;
if (m) {
sb->sb_mb = m->m_nextpkt;
do {
sbfree(sb, m);
m = m_free(m);
} while (m);
1994-05-24 10:09:53 +00:00
}
SB_EMPTY_FIXUP(sb);
1994-05-24 10:09:53 +00:00
}
Merge next step in socket buffer locking: - sowakeup() now asserts the socket buffer lock on entry. Move the call to KNOTE higher in sowakeup() so that it is made with the socket buffer lock held for consistency with other calls. Release the socket buffer lock prior to calling into pgsigio(), so_upcall(), or aio_swake(). Locking for this event management will need revisiting in the future, but this model avoids lock order reversals when upcalls into other subsystems result in socket/socket buffer operations. Assert that the socket buffer lock is not held at the end of the function. - Wrapper macros for sowakeup(), sorwakeup() and sowwakeup(), now have _locked versions which assert the socket buffer lock on entry. If a wakeup is required by sb_notify(), invoke sowakeup(); otherwise, unconditionally release the socket buffer lock. This results in the socket buffer lock being released whether a wakeup is required or not. - Break out socantsendmore() into socantsendmore_locked() that asserts the socket buffer lock. socantsendmore() unconditionally locks the socket buffer before calling socantsendmore_locked(). Note that both functions return with the socket buffer unlocked as socantsendmore_locked() calls sowwakeup_locked() which has the same properties. Assert that the socket buffer is unlocked on return. - Break out socantrcvmore() into socantrcvmore_locked() that asserts the socket buffer lock. socantrcvmore() unconditionally locks the socket buffer before calling socantrcvmore_locked(). Note that both functions return with the socket buffer unlocked as socantrcvmore_locked() calls sorwakeup_locked() which has similar properties. Assert that the socket buffer is unlocked on return. - Break out sbrelease() into a sbrelease_locked() that asserts the socket buffer lock. sbrelease() unconditionally locks the socket buffer before calling sbrelease_locked(). sbrelease_locked() now invokes sbflush_locked() instead of sbflush(). - Assert the socket buffer lock in socket buffer sanity check functions sblastrecordchk(), sblastmbufchk(). - Assert the socket buffer lock in SBLINKRECORD(). - Break out various sbappend() functions into sbappend_locked() (and variations on that name) that assert the socket buffer lock. The !_locked() variations unconditionally lock the socket buffer before calling their _locked counterparts. Internally, make sure to call _locked() support routines, etc, if already holding the socket buffer lock. - Break out sbinsertoob() into sbinsertoob_locked() that asserts the socket buffer lock. sbinsertoob() unconditionally locks the socket buffer before calling sbinsertoob_locked(). - Break out sbflush() into sbflush_locked() that asserts the socket buffer lock. sbflush() unconditionally locks the socket buffer before calling sbflush_locked(). Update panic strings for new function names. - Break out sbdrop() into sbdrop_locked() that asserts the socket buffer lock. sbdrop() unconditionally locks the socket buffer before calling sbdrop_locked(). - Break out sbdroprecord() into sbdroprecord_locked() that asserts the socket buffer lock. sbdroprecord() unconditionally locks the socket buffer before calling sbdroprecord_locked(). - sofree() now calls socantsendmore_locked() and re-acquires the socket buffer lock on return. It also now calls sbrelease_locked(). - sorflush() now calls socantrcvmore_locked() and re-acquires the socket buffer lock on return. Clean up/mess up other behavior in sorflush() relating to the temporary stack copy of the socket buffer used with dom_dispose by more properly initializing the temporary copy, and selectively bzeroing/copying more carefully to prevent WITNESS from getting confused by improperly initialized mutexes. Annotate why that's necessary, or at least, needed. - soisconnected() now calls sbdrop_locked() before unlocking the socket buffer to avoid locking overhead. Some parts of this change were: Submitted by: sam Sponsored by: FreeBSD Foundation Obtained from: BSD/OS
2004-06-21 00:20:43 +00:00
/*
* Drop a record off the front of a sockbuf
* and move the next record to the front.
*/
void
sbdroprecord(sb)
register struct sockbuf *sb;
{
SOCKBUF_LOCK(sb);
sbdroprecord_locked(sb);
SOCKBUF_UNLOCK(sb);
}
/*
* Create a "control" mbuf containing the specified data
* with the specified type for presentation on a socket buffer.
*/
struct mbuf *
sbcreatecontrol(p, size, type, level)
caddr_t p;
register int size;
int type, level;
{
register struct cmsghdr *cp;
struct mbuf *m;
if (CMSG_SPACE((u_int)size) > MCLBYTES)
return ((struct mbuf *) NULL);
if (CMSG_SPACE((u_int)size) > MLEN)
Bring in mbuma to replace mballoc. mbuma is an Mbuf & Cluster allocator built on top of a number of extensions to the UMA framework, all included herein. Extensions to UMA worth noting: - Better layering between slab <-> zone caches; introduce Keg structure which splits off slab cache away from the zone structure and allows multiple zones to be stacked on top of a single Keg (single type of slab cache); perhaps we should look into defining a subset API on top of the Keg for special use by malloc(9), for example. - UMA_ZONE_REFCNT zones can now be added, and reference counters automagically allocated for them within the end of the associated slab structures. uma_find_refcnt() does a kextract to fetch the slab struct reference from the underlying page, and lookup the corresponding refcnt. mbuma things worth noting: - integrates mbuf & cluster allocations with extended UMA and provides caches for commonly-allocated items; defines several zones (two primary, one secondary) and two kegs. - change up certain code paths that always used to do: m_get() + m_clget() to instead just use m_getcl() and try to take advantage of the newly defined secondary Packet zone. - netstat(1) and systat(1) quickly hacked up to do basic stat reporting but additional stats work needs to be done once some other details within UMA have been taken care of and it becomes clearer to how stats will work within the modified framework. From the user perspective, one implication is that the NMBCLUSTERS compile-time option is no longer used. The maximum number of clusters is still capped off according to maxusers, but it can be made unlimited by setting the kern.ipc.nmbclusters boot-time tunable to zero. Work should be done to write an appropriate sysctl handler allowing dynamic tuning of kern.ipc.nmbclusters at runtime. Additional things worth noting/known issues (READ): - One report of 'ips' (ServeRAID) driver acting really slow in conjunction with mbuma. Need more data. Latest report is that ips is equally sucking with and without mbuma. - Giant leak in NFS code sometimes occurs, can't reproduce but currently analyzing; brueffer is able to reproduce but THIS IS NOT an mbuma-specific problem and currently occurs even WITHOUT mbuma. - Issues in network locking: there is at least one code path in the rip code where one or more locks are acquired and we end up in m_prepend() with M_WAITOK, which causes WITNESS to whine from within UMA. Current temporary solution: force all UMA allocations to be M_NOWAIT from within UMA for now to avoid deadlocks unless WITNESS is defined and we can determine with certainty that we're not holding any locks when we're M_WAITOK. - I've seen at least one weird socketbuffer empty-but- mbuf-still-attached panic. I don't believe this to be related to mbuma but please keep your eyes open, turn on debugging, and capture crash dumps. This change removes more code than it adds. A paper is available detailing the change and considering various performance issues, it was presented at BSDCan2004: http://www.unixdaemons.com/~bmilekic/netbuf_bmilekic.pdf Please read the paper for Future Work and implementation details, as well as credits. Testing and Debugging: rwatson, brueffer, Ketrien I. Saihr-Kesenchedra, ... Reviewed by: Lots of people (for different parts)
2004-05-31 21:46:06 +00:00
m = m_getcl(M_DONTWAIT, MT_CONTROL, 0);
else
m = m_get(M_DONTWAIT, MT_CONTROL);
if (m == NULL)
return ((struct mbuf *) NULL);
cp = mtod(m, struct cmsghdr *);
m->m_len = 0;
KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
("sbcreatecontrol: short mbuf"));
if (p != NULL)
(void)memcpy(CMSG_DATA(cp), p, size);
m->m_len = CMSG_SPACE(size);
cp->cmsg_len = CMSG_LEN(size);
cp->cmsg_level = level;
cp->cmsg_type = type;
return (m);
}
/*
* Some routines that return EOPNOTSUPP for entry points that are not
* supported by a protocol. Fill in as needed.
*/
Support for dynamically loadable and unloadable protocols within existing protocol families. The protosw[] array of any particular protocol family ("domain") is of fixed size defined at compile time. This made it impossible to dynamically add or remove any protocols to or from it. We work around this by introducing so called SPACER's which are embedded into the protosw[] array at compile time. The SPACER's have a special protocol number (32767) to indicate the fact that they are SPACER's but are otherwise NULL. Only as many protocols can be dynamically loaded as SPACER's are provided in the protosw[] structure. The pr_usrreqs structure is treated more special and contains pointers to dummy functions only returning EOPNOTSUPP. This is needed because the use of those functions pointers is usually not checked within the kernel because until now it was assumed to be a valid function pointer. Instead of fixing all potential callers we just return a proper error code. Two new functions provide a clean API to register and unregister a protocol. The register function expects a pointer to a valid and complete struct protosw including a pointer to struct pru_usrreqs provided by the caller. Upon successful registration the pr_init() function will be called to finish initialization of the protocol. The unregister function restores the SPACER in place of the protocol again. It is the responseability of the caller to ensure proper closing of all sockets and freeing of memory allocation by the unloading protocol. sys/protosw.h o Define generic PROTO_SPACER to be 32767 o Prototypes for all pru_*_notsupp() functions o Prototypes for pf_proto_[un]register() functions kern/uipc_domain.c o Global struct pr_usrreqs nousrreqs containing valid pointers to the pru_*_notsupp() functions o New functions pf_proto_[un]register() kern/uipc_socket2.c o New functions bodies for all pru_*_notsupp() functions
2004-10-19 15:13:30 +00:00
int
pru_abort_notsupp(struct socket *so)
{
return EOPNOTSUPP;
}
int
pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
{
return EOPNOTSUPP;
}
Support for dynamically loadable and unloadable protocols within existing protocol families. The protosw[] array of any particular protocol family ("domain") is of fixed size defined at compile time. This made it impossible to dynamically add or remove any protocols to or from it. We work around this by introducing so called SPACER's which are embedded into the protosw[] array at compile time. The SPACER's have a special protocol number (32767) to indicate the fact that they are SPACER's but are otherwise NULL. Only as many protocols can be dynamically loaded as SPACER's are provided in the protosw[] structure. The pr_usrreqs structure is treated more special and contains pointers to dummy functions only returning EOPNOTSUPP. This is needed because the use of those functions pointers is usually not checked within the kernel because until now it was assumed to be a valid function pointer. Instead of fixing all potential callers we just return a proper error code. Two new functions provide a clean API to register and unregister a protocol. The register function expects a pointer to a valid and complete struct protosw including a pointer to struct pru_usrreqs provided by the caller. Upon successful registration the pr_init() function will be called to finish initialization of the protocol. The unregister function restores the SPACER in place of the protocol again. It is the responseability of the caller to ensure proper closing of all sockets and freeing of memory allocation by the unloading protocol. sys/protosw.h o Define generic PROTO_SPACER to be 32767 o Prototypes for all pru_*_notsupp() functions o Prototypes for pf_proto_[un]register() functions kern/uipc_domain.c o Global struct pr_usrreqs nousrreqs containing valid pointers to the pru_*_notsupp() functions o New functions pf_proto_[un]register() kern/uipc_socket2.c o New functions bodies for all pru_*_notsupp() functions
2004-10-19 15:13:30 +00:00
int
pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
{
return EOPNOTSUPP;
}
int
pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
{
return EOPNOTSUPP;
}
int
pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
{
return EOPNOTSUPP;
}
int
pru_connect2_notsupp(struct socket *so1, struct socket *so2)
{
return EOPNOTSUPP;
}
int
pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
Support for dynamically loadable and unloadable protocols within existing protocol families. The protosw[] array of any particular protocol family ("domain") is of fixed size defined at compile time. This made it impossible to dynamically add or remove any protocols to or from it. We work around this by introducing so called SPACER's which are embedded into the protosw[] array at compile time. The SPACER's have a special protocol number (32767) to indicate the fact that they are SPACER's but are otherwise NULL. Only as many protocols can be dynamically loaded as SPACER's are provided in the protosw[] structure. The pr_usrreqs structure is treated more special and contains pointers to dummy functions only returning EOPNOTSUPP. This is needed because the use of those functions pointers is usually not checked within the kernel because until now it was assumed to be a valid function pointer. Instead of fixing all potential callers we just return a proper error code. Two new functions provide a clean API to register and unregister a protocol. The register function expects a pointer to a valid and complete struct protosw including a pointer to struct pru_usrreqs provided by the caller. Upon successful registration the pr_init() function will be called to finish initialization of the protocol. The unregister function restores the SPACER in place of the protocol again. It is the responseability of the caller to ensure proper closing of all sockets and freeing of memory allocation by the unloading protocol. sys/protosw.h o Define generic PROTO_SPACER to be 32767 o Prototypes for all pru_*_notsupp() functions o Prototypes for pf_proto_[un]register() functions kern/uipc_domain.c o Global struct pr_usrreqs nousrreqs containing valid pointers to the pru_*_notsupp() functions o New functions pf_proto_[un]register() kern/uipc_socket2.c o New functions bodies for all pru_*_notsupp() functions
2004-10-19 15:13:30 +00:00
struct ifnet *ifp, struct thread *td)
{
return EOPNOTSUPP;
}
int
pru_detach_notsupp(struct socket *so)
{
return EOPNOTSUPP;
}
int
pru_disconnect_notsupp(struct socket *so)
{
return EOPNOTSUPP;
}
int
pru_listen_notsupp(struct socket *so, struct thread *td)
{
return EOPNOTSUPP;
}
Support for dynamically loadable and unloadable protocols within existing protocol families. The protosw[] array of any particular protocol family ("domain") is of fixed size defined at compile time. This made it impossible to dynamically add or remove any protocols to or from it. We work around this by introducing so called SPACER's which are embedded into the protosw[] array at compile time. The SPACER's have a special protocol number (32767) to indicate the fact that they are SPACER's but are otherwise NULL. Only as many protocols can be dynamically loaded as SPACER's are provided in the protosw[] structure. The pr_usrreqs structure is treated more special and contains pointers to dummy functions only returning EOPNOTSUPP. This is needed because the use of those functions pointers is usually not checked within the kernel because until now it was assumed to be a valid function pointer. Instead of fixing all potential callers we just return a proper error code. Two new functions provide a clean API to register and unregister a protocol. The register function expects a pointer to a valid and complete struct protosw including a pointer to struct pru_usrreqs provided by the caller. Upon successful registration the pr_init() function will be called to finish initialization of the protocol. The unregister function restores the SPACER in place of the protocol again. It is the responseability of the caller to ensure proper closing of all sockets and freeing of memory allocation by the unloading protocol. sys/protosw.h o Define generic PROTO_SPACER to be 32767 o Prototypes for all pru_*_notsupp() functions o Prototypes for pf_proto_[un]register() functions kern/uipc_domain.c o Global struct pr_usrreqs nousrreqs containing valid pointers to the pru_*_notsupp() functions o New functions pf_proto_[un]register() kern/uipc_socket2.c o New functions bodies for all pru_*_notsupp() functions
2004-10-19 15:13:30 +00:00
int
pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
{
return EOPNOTSUPP;
}
int
pru_rcvd_notsupp(struct socket *so, int flags)
{
return EOPNOTSUPP;
}
int
pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
{
return EOPNOTSUPP;
}
Support for dynamically loadable and unloadable protocols within existing protocol families. The protosw[] array of any particular protocol family ("domain") is of fixed size defined at compile time. This made it impossible to dynamically add or remove any protocols to or from it. We work around this by introducing so called SPACER's which are embedded into the protosw[] array at compile time. The SPACER's have a special protocol number (32767) to indicate the fact that they are SPACER's but are otherwise NULL. Only as many protocols can be dynamically loaded as SPACER's are provided in the protosw[] structure. The pr_usrreqs structure is treated more special and contains pointers to dummy functions only returning EOPNOTSUPP. This is needed because the use of those functions pointers is usually not checked within the kernel because until now it was assumed to be a valid function pointer. Instead of fixing all potential callers we just return a proper error code. Two new functions provide a clean API to register and unregister a protocol. The register function expects a pointer to a valid and complete struct protosw including a pointer to struct pru_usrreqs provided by the caller. Upon successful registration the pr_init() function will be called to finish initialization of the protocol. The unregister function restores the SPACER in place of the protocol again. It is the responseability of the caller to ensure proper closing of all sockets and freeing of memory allocation by the unloading protocol. sys/protosw.h o Define generic PROTO_SPACER to be 32767 o Prototypes for all pru_*_notsupp() functions o Prototypes for pf_proto_[un]register() functions kern/uipc_domain.c o Global struct pr_usrreqs nousrreqs containing valid pointers to the pru_*_notsupp() functions o New functions pf_proto_[un]register() kern/uipc_socket2.c o New functions bodies for all pru_*_notsupp() functions
2004-10-19 15:13:30 +00:00
int
pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
struct sockaddr *addr, struct mbuf *control, struct thread *td)
{
return EOPNOTSUPP;
}
/*
* This isn't really a ``null'' operation, but it's the default one
* and doesn't do anything destructive.
*/
int
pru_sense_null(struct socket *so, struct stat *sb)
{
sb->st_blksize = so->so_snd.sb_hiwat;
return 0;
}
Support for dynamically loadable and unloadable protocols within existing protocol families. The protosw[] array of any particular protocol family ("domain") is of fixed size defined at compile time. This made it impossible to dynamically add or remove any protocols to or from it. We work around this by introducing so called SPACER's which are embedded into the protosw[] array at compile time. The SPACER's have a special protocol number (32767) to indicate the fact that they are SPACER's but are otherwise NULL. Only as many protocols can be dynamically loaded as SPACER's are provided in the protosw[] structure. The pr_usrreqs structure is treated more special and contains pointers to dummy functions only returning EOPNOTSUPP. This is needed because the use of those functions pointers is usually not checked within the kernel because until now it was assumed to be a valid function pointer. Instead of fixing all potential callers we just return a proper error code. Two new functions provide a clean API to register and unregister a protocol. The register function expects a pointer to a valid and complete struct protosw including a pointer to struct pru_usrreqs provided by the caller. Upon successful registration the pr_init() function will be called to finish initialization of the protocol. The unregister function restores the SPACER in place of the protocol again. It is the responseability of the caller to ensure proper closing of all sockets and freeing of memory allocation by the unloading protocol. sys/protosw.h o Define generic PROTO_SPACER to be 32767 o Prototypes for all pru_*_notsupp() functions o Prototypes for pf_proto_[un]register() functions kern/uipc_domain.c o Global struct pr_usrreqs nousrreqs containing valid pointers to the pru_*_notsupp() functions o New functions pf_proto_[un]register() kern/uipc_socket2.c o New functions bodies for all pru_*_notsupp() functions
2004-10-19 15:13:30 +00:00
int
pru_shutdown_notsupp(struct socket *so)
{
return EOPNOTSUPP;
}
int
pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
{
return EOPNOTSUPP;
}
int
pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
{
return EOPNOTSUPP;
}
int
pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
struct uio *uio, struct mbuf **mp0, struct mbuf **controlp,
int *flagsp)
{
return EOPNOTSUPP;
}
int
pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
struct thread *td)
{
return EOPNOTSUPP;
}
/*
* For protocol types that don't keep cached copies of labels in their
* pcbs, provide a null sosetlabel that does a NOOP.
*/
void
pru_sosetlabel_null(struct socket *so)
{
}
/*
* Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
*/
struct sockaddr *
sodupsockaddr(const struct sockaddr *sa, int mflags)
{
struct sockaddr *sa2;
sa2 = malloc(sa->sa_len, M_SONAME, mflags);
if (sa2)
bcopy(sa, sa2, sa->sa_len);
return sa2;
}
/*
* Create an external-format (``xsocket'') structure using the information
* in the kernel-format socket structure pointed to by so. This is done
* to reduce the spew of irrelevant information over this interface,
* to isolate user code from changes in the kernel structure, and
* potentially to provide information-hiding if we decide that
* some of this information should be hidden from users.
*/
void
sotoxsocket(struct socket *so, struct xsocket *xso)
{
xso->xso_len = sizeof *xso;
xso->xso_so = so;
xso->so_type = so->so_type;
xso->so_options = so->so_options;
xso->so_linger = so->so_linger;
xso->so_state = so->so_state;
xso->so_pcb = so->so_pcb;
xso->xso_protocol = so->so_proto->pr_protocol;
xso->xso_family = so->so_proto->pr_domain->dom_family;
xso->so_qlen = so->so_qlen;
xso->so_incqlen = so->so_incqlen;
xso->so_qlimit = so->so_qlimit;
xso->so_timeo = so->so_timeo;
xso->so_error = so->so_error;
xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
xso->so_oobmark = so->so_oobmark;
sbtoxsockbuf(&so->so_snd, &xso->so_snd);
sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
xso->so_uid = so->so_cred->cr_uid;
}
/*
* This does the same for sockbufs. Note that the xsockbuf structure,
* since it is always embedded in a socket, does not include a self
* pointer nor a length. We make this entry point public in case
* some other mechanism needs it.
*/
void
sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
{
xsb->sb_cc = sb->sb_cc;
xsb->sb_hiwat = sb->sb_hiwat;
xsb->sb_mbcnt = sb->sb_mbcnt;
xsb->sb_mbmax = sb->sb_mbmax;
xsb->sb_lowat = sb->sb_lowat;
xsb->sb_flags = sb->sb_flags;
xsb->sb_timeo = sb->sb_timeo;
}
/*
* Here is the definition of some of the basic objects in the kern.ipc
* branch of the MIB.
*/
SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
static int dummy;
SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW,
&sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RDTUN,
&maxsockets, 0, "Maximum number of sockets avaliable");
SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
&sb_efficiency, 0, "");
/*
* Initialise maxsockets
*/
static void init_maxsockets(void *ignored)
{
TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
}
SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);