freebsd-skq/lib/libc/x86/sys/__vdso_gettc.c

269 lines
6.5 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
* Copyright (c) 2016, 2017 The FreeBSD Foundation
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
* All rights reserved.
*
* Portions of this software were developed by Konstantin Belousov
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
#include <sys/param.h>
#include "namespace.h"
#include <sys/elf.h>
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
#include <sys/fcntl.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/vdso.h>
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include "un-namespace.h"
#include <machine/atomic.h>
#include <machine/cpufunc.h>
#include <machine/specialreg.h>
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
#include <dev/acpica/acpi_hpet.h>
#ifdef WANT_HYPERV
#include <dev/hyperv/hyperv.h>
#endif
#include "libc_private.h"
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
static void
lfence_mb(void)
{
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
#if defined(__i386__)
static int lfence_works = -1;
u_int cpuid_supported, p[4];
if (lfence_works == -1) {
__asm __volatile(
" pushfl\n"
" popl %%eax\n"
" movl %%eax,%%ecx\n"
" xorl $0x200000,%%eax\n"
" pushl %%eax\n"
" popfl\n"
" pushfl\n"
" popl %%eax\n"
" xorl %%eax,%%ecx\n"
" je 1f\n"
" movl $1,%0\n"
" jmp 2f\n"
"1: movl $0,%0\n"
"2:\n"
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
: "=r" (cpuid_supported) : : "eax", "ecx", "cc");
if (cpuid_supported) {
__asm __volatile(
" pushl %%ebx\n"
" cpuid\n"
" movl %%ebx,%1\n"
" popl %%ebx\n"
: "=a" (p[0]), "=r" (p[1]), "=c" (p[2]), "=d" (p[3])
: "0" (0x1));
lfence_works = (p[3] & CPUID_SSE2) != 0;
} else
lfence_works = 0;
}
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
if (lfence_works == 1)
lfence();
#elif defined(__amd64__)
lfence();
#else
#error "arch"
#endif
}
static u_int
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
__vdso_gettc_rdtsc_low(const struct vdso_timehands *th)
{
u_int rv;
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
lfence_mb();
__asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
: "=a" (rv) : "c" (th->th_x86_shift) : "edx");
return (rv);
}
static u_int
__vdso_rdtsc32(void)
{
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
lfence_mb();
return (rdtsc32());
}
#define HPET_DEV_MAP_MAX 10
static volatile char *hpet_dev_map[HPET_DEV_MAP_MAX];
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
static void
__vdso_init_hpet(uint32_t u)
{
static const char devprefix[] = "/dev/hpet";
char devname[64], *c, *c1, t;
volatile char *new_map, *old_map;
uint32_t u1;
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
int fd;
c1 = c = stpcpy(devname, devprefix);
u1 = u;
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
do {
*c++ = u1 % 10 + '0';
u1 /= 10;
} while (u1 != 0);
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
*c = '\0';
for (c--; c1 != c; c1++, c--) {
t = *c1;
*c1 = *c;
*c = t;
}
old_map = hpet_dev_map[u];
if (old_map != NULL)
return;
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
fd = _open(devname, O_RDONLY);
if (fd == -1) {
atomic_cmpset_rel_ptr((volatile uintptr_t *)&hpet_dev_map[u],
(uintptr_t)old_map, (uintptr_t)MAP_FAILED);
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
return;
}
new_map = mmap(NULL, PAGE_SIZE, PROT_READ, MAP_SHARED, fd, 0);
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
_close(fd);
if (atomic_cmpset_rel_ptr((volatile uintptr_t *)&hpet_dev_map[u],
(uintptr_t)old_map, (uintptr_t)new_map) == 0 &&
new_map != MAP_FAILED)
munmap((void *)new_map, PAGE_SIZE);
}
#ifdef WANT_HYPERV
#define HYPERV_REFTSC_DEVPATH "/dev/" HYPERV_REFTSC_DEVNAME
/*
* NOTE:
* We use 'NULL' for this variable to indicate that initialization
* is required. And if this variable is 'MAP_FAILED', then Hyper-V
* reference TSC can not be used, e.g. in misconfigured jail.
*/
static struct hyperv_reftsc *hyperv_ref_tsc;
static void
__vdso_init_hyperv_tsc(void)
{
int fd;
fd = _open(HYPERV_REFTSC_DEVPATH, O_RDONLY);
if (fd < 0) {
/* Prevent the caller from re-entering. */
hyperv_ref_tsc = MAP_FAILED;
return;
}
hyperv_ref_tsc = mmap(NULL, sizeof(*hyperv_ref_tsc), PROT_READ,
MAP_SHARED, fd, 0);
_close(fd);
}
static int
__vdso_hyperv_tsc(struct hyperv_reftsc *tsc_ref, u_int *tc)
{
uint64_t disc, ret, tsc, scale;
uint32_t seq;
int64_t ofs;
while ((seq = atomic_load_acq_int(&tsc_ref->tsc_seq)) != 0) {
scale = tsc_ref->tsc_scale;
ofs = tsc_ref->tsc_ofs;
lfence_mb();
tsc = rdtsc();
/* ret = ((tsc * scale) >> 64) + ofs */
__asm__ __volatile__ ("mulq %3" :
"=d" (ret), "=a" (disc) :
"a" (tsc), "r" (scale));
ret += ofs;
atomic_thread_fence_acq();
if (tsc_ref->tsc_seq == seq) {
*tc = ret;
return (0);
}
/* Sequence changed; re-sync. */
}
return (ENOSYS);
}
#endif /* WANT_HYPERV */
#pragma weak __vdso_gettc
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
int
__vdso_gettc(const struct vdso_timehands *th, u_int *tc)
{
volatile char *map;
uint32_t idx;
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
switch (th->th_algo) {
case VDSO_TH_ALGO_X86_TSC:
*tc = th->th_x86_shift > 0 ? __vdso_gettc_rdtsc_low(th) :
__vdso_rdtsc32();
return (0);
case VDSO_TH_ALGO_X86_HPET:
idx = th->th_x86_hpet_idx;
if (idx >= HPET_DEV_MAP_MAX)
return (ENOSYS);
map = (volatile char *)atomic_load_acq_ptr(
(volatile uintptr_t *)&hpet_dev_map[idx]);
if (map == NULL) {
__vdso_init_hpet(idx);
map = (volatile char *)atomic_load_acq_ptr(
(volatile uintptr_t *)&hpet_dev_map[idx]);
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
}
if (map == MAP_FAILED)
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
return (ENOSYS);
*tc = *(volatile uint32_t *)(map + HPET_MAIN_COUNTER);
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
return (0);
#ifdef WANT_HYPERV
case VDSO_TH_ALGO_X86_HVTSC:
if (hyperv_ref_tsc == NULL)
__vdso_init_hyperv_tsc();
if (hyperv_ref_tsc == MAP_FAILED)
return (ENOSYS);
return (__vdso_hyperv_tsc(hyperv_ref_tsc, tc));
#endif
Implement userspace gettimeofday(2) with HPET timecounter. Right now, userspace (fast) gettimeofday(2) on x86 only works for RDTSC. For older machines, like Core2, where RDTSC is not C2/C3 invariant, and which fall to HPET hardware, this means that the call has both the penalty of the syscall and of the uncached hw behind the QPI or PCIe connection to the sought bridge. Nothing can me done against the access latency, but the syscall overhead can be removed. System already provides mappable /dev/hpetX devices, which gives straight access to the HPET registers page. Add yet another algorithm to the x86 'vdso' timehands. Libc is updated to handle both RDTSC and HPET. For HPET, the index of the hpet device to mmap is passed from kernel to userspace, index might be changed and libc invalidates its mapping as needed. Remove cpu_fill_vdso_timehands() KPI, instead require that timecounters which can be used from userspace, to provide tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64 libc/<arch>/sys/__vdso_gettc.c into one source file in the new libc/x86/sys location. __vdso_gettc() internal interface is changed to move timecounter algorithm detection into the MD code. Measurements show that RDTSC even with the syscall overhead is faster than userspace HPET access. But still, userspace HPET is three-four times faster than syscall HPET on several Core2 and SandyBridge machines. Tested by: Howard Su <howard0su@gmail.com> Sponsored by: The FreeBSD Foundation MFC after: 1 month Differential revision: https://reviews.freebsd.org/D7473
2016-08-17 09:52:09 +00:00
default:
return (ENOSYS);
}
}
#pragma weak __vdso_gettimekeep
int
__vdso_gettimekeep(struct vdso_timekeep **tk)
{
return (_elf_aux_info(AT_TIMEKEEP, tk, sizeof(*tk)));
}