961 lines
24 KiB
C
Raw Normal View History

/*-
* Copyright (C) 2010 Nathan Whitehorn
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <machine/pio.h>
#include <machine/bus.h>
#include <machine/platform.h>
#include <machine/pmap.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include "ps3bus.h"
#include "ps3-hvcall.h"
#include "if_glcreg.h"
static int glc_probe(device_t);
static int glc_attach(device_t);
static void glc_init(void *xsc);
static void glc_start(struct ifnet *ifp);
static int glc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
static void glc_set_multicast(struct glc_softc *sc);
static int glc_add_rxbuf(struct glc_softc *sc, int idx);
static int glc_add_rxbuf_dma(struct glc_softc *sc, int idx);
static int glc_encap(struct glc_softc *sc, struct mbuf **m_head,
bus_addr_t *pktdesc);
static int glc_intr_filter(void *xsc);
static void glc_intr(void *xsc);
static void glc_tick(void *xsc);
static void glc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
static int glc_media_change(struct ifnet *ifp);
static MALLOC_DEFINE(M_GLC, "gelic", "PS3 GELIC ethernet");
static device_method_t glc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, glc_probe),
DEVMETHOD(device_attach, glc_attach),
{ 0, 0 }
};
static driver_t glc_driver = {
"glc",
glc_methods,
sizeof(struct glc_softc)
};
static devclass_t glc_devclass;
DRIVER_MODULE(glc, ps3bus, glc_driver, glc_devclass, 0, 0);
static int
glc_probe(device_t dev)
{
if (ps3bus_get_bustype(dev) != PS3_BUSTYPE_SYSBUS ||
ps3bus_get_devtype(dev) != PS3_DEVTYPE_GELIC)
return (ENXIO);
device_set_desc(dev, "Playstation 3 GELIC Network Controller");
return (BUS_PROBE_SPECIFIC);
}
static void
glc_getphys(void *xaddr, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0)
return;
*(bus_addr_t *)xaddr = segs[0].ds_addr;
}
static int
glc_attach(device_t dev)
{
struct glc_softc *sc;
struct glc_txsoft *txs;
uint64_t mac64, val, junk;
int i, err;
sc = device_get_softc(dev);
sc->sc_bus = ps3bus_get_bus(dev);
sc->sc_dev = ps3bus_get_device(dev);
sc->sc_self = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
sc->next_txdma_slot = 0;
sc->bsy_txdma_slots = 0;
sc->sc_next_rxdma_slot = 0;
sc->first_used_txdma_slot = -1;
/*
* Shut down existing tasks.
*/
lv1_net_stop_tx_dma(sc->sc_bus, sc->sc_dev, 0);
lv1_net_stop_rx_dma(sc->sc_bus, sc->sc_dev, 0);
sc->sc_ifp = if_alloc(IFT_ETHER);
sc->sc_ifp->if_softc = sc;
/*
* Get MAC address and VLAN id
*/
lv1_net_control(sc->sc_bus, sc->sc_dev, GELIC_GET_MAC_ADDRESS,
0, 0, 0, &mac64, &junk);
memcpy(sc->sc_enaddr, &((uint8_t *)&mac64)[2], sizeof(sc->sc_enaddr));
sc->sc_tx_vlan = sc->sc_rx_vlan = -1;
err = lv1_net_control(sc->sc_bus, sc->sc_dev, GELIC_GET_VLAN_ID,
GELIC_VLAN_TX_ETHERNET, 0, 0, &val, &junk);
if (err == 0)
sc->sc_tx_vlan = val;
err = lv1_net_control(sc->sc_bus, sc->sc_dev, GELIC_GET_VLAN_ID,
GELIC_VLAN_RX_ETHERNET, 0, 0, &val, &junk);
if (err == 0)
sc->sc_rx_vlan = val;
/*
* Set up interrupt handler
*/
sc->sc_irqid = 0;
sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irqid,
RF_ACTIVE);
if (sc->sc_irq == NULL) {
device_printf(dev, "Could not allocate IRQ!\n");
mtx_destroy(&sc->sc_mtx);
return (ENXIO);
}
bus_setup_intr(dev, sc->sc_irq,
INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY,
glc_intr_filter, glc_intr, sc, &sc->sc_irqctx);
sc->sc_hwirq_status = (uint64_t *)contigmalloc(8, M_GLC, M_ZERO, 0,
BUS_SPACE_MAXADDR_32BIT, 8, PAGE_SIZE);
lv1_net_set_interrupt_status_indicator(sc->sc_bus, sc->sc_dev,
vtophys(sc->sc_hwirq_status), 0);
lv1_net_set_interrupt_mask(sc->sc_bus, sc->sc_dev,
GELIC_INT_RXDONE | GELIC_INT_RXFRAME | GELIC_INT_PHY |
GELIC_INT_TX_CHAIN_END, 0);
/*
* Set up DMA.
*/
err = bus_dma_tag_create(bus_get_dma_tag(dev), 32, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
129*sizeof(struct glc_dmadesc), 1, 128*sizeof(struct glc_dmadesc),
0, NULL,NULL, &sc->sc_dmadesc_tag);
err = bus_dmamem_alloc(sc->sc_dmadesc_tag, (void **)&sc->sc_txdmadesc,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
&sc->sc_txdmadesc_map);
err = bus_dmamap_load(sc->sc_dmadesc_tag, sc->sc_txdmadesc_map,
sc->sc_txdmadesc, 128*sizeof(struct glc_dmadesc), glc_getphys,
&sc->sc_txdmadesc_phys, 0);
err = bus_dmamem_alloc(sc->sc_dmadesc_tag, (void **)&sc->sc_rxdmadesc,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
&sc->sc_rxdmadesc_map);
err = bus_dmamap_load(sc->sc_dmadesc_tag, sc->sc_rxdmadesc_map,
sc->sc_rxdmadesc, 128*sizeof(struct glc_dmadesc), glc_getphys,
&sc->sc_rxdmadesc_phys, 0);
err = bus_dma_tag_create(bus_get_dma_tag(dev), 128, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL,NULL,
&sc->sc_rxdma_tag);
err = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
BUS_SPACE_MAXSIZE_32BIT, 16, BUS_SPACE_MAXSIZE_32BIT, 0, NULL,NULL,
&sc->sc_txdma_tag);
/* init transmit descriptors */
STAILQ_INIT(&sc->sc_txfreeq);
STAILQ_INIT(&sc->sc_txdirtyq);
/* create TX DMA maps */
err = ENOMEM;
for (i = 0; i < GLC_MAX_TX_PACKETS; i++) {
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
err = bus_dmamap_create(sc->sc_txdma_tag, 0, &txs->txs_dmamap);
if (err) {
device_printf(dev,
"unable to create TX DMA map %d, error = %d\n",
i, err);
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/* Create the receive buffer DMA maps. */
for (i = 0; i < GLC_MAX_RX_PACKETS; i++) {
err = bus_dmamap_create(sc->sc_rxdma_tag, 0,
&sc->sc_rxsoft[i].rxs_dmamap);
if (err) {
device_printf(dev,
"unable to create RX DMA map %d, error = %d\n",
i, err);
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/*
* Attach to network stack
*/
if_initname(sc->sc_ifp, device_get_name(dev), device_get_unit(dev));
sc->sc_ifp->if_mtu = ETHERMTU;
sc->sc_ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
sc->sc_ifp->if_hwassist = CSUM_TCP | CSUM_UDP;
sc->sc_ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_RXCSUM;
sc->sc_ifp->if_capenable = IFCAP_HWCSUM | IFCAP_RXCSUM;
sc->sc_ifp->if_start = glc_start;
sc->sc_ifp->if_ioctl = glc_ioctl;
sc->sc_ifp->if_init = glc_init;
ifmedia_init(&sc->sc_media, IFM_IMASK, glc_media_change,
glc_media_status);
ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
IFQ_SET_MAXLEN(&sc->sc_ifp->if_snd, GLC_MAX_TX_PACKETS);
sc->sc_ifp->if_snd.ifq_drv_maxlen = GLC_MAX_TX_PACKETS;
IFQ_SET_READY(&sc->sc_ifp->if_snd);
ether_ifattach(sc->sc_ifp, sc->sc_enaddr);
sc->sc_ifp->if_hwassist = 0;
return (0);
mtx_destroy(&sc->sc_mtx);
if_free(sc->sc_ifp);
return (ENXIO);
}
static void
glc_init_locked(struct glc_softc *sc)
{
int i, error;
struct glc_rxsoft *rxs;
struct glc_txsoft *txs;
mtx_assert(&sc->sc_mtx, MA_OWNED);
lv1_net_stop_tx_dma(sc->sc_bus, sc->sc_dev, 0);
lv1_net_stop_rx_dma(sc->sc_bus, sc->sc_dev, 0);
glc_set_multicast(sc);
for (i = 0; i < GLC_MAX_RX_PACKETS; i++) {
rxs = &sc->sc_rxsoft[i];
rxs->rxs_desc_slot = i;
if (rxs->rxs_mbuf == NULL) {
glc_add_rxbuf(sc, i);
if (rxs->rxs_mbuf == NULL) {
rxs->rxs_desc_slot = -1;
break;
}
}
glc_add_rxbuf_dma(sc, i);
bus_dmamap_sync(sc->sc_dmadesc_tag, sc->sc_rxdmadesc_map,
BUS_DMASYNC_PREREAD);
}
/* Clear TX dirty queue */
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
bus_dmamap_unload(sc->sc_txdma_tag, txs->txs_dmamap);
if (txs->txs_mbuf != NULL) {
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
sc->first_used_txdma_slot = -1;
sc->bsy_txdma_slots = 0;
error = lv1_net_start_rx_dma(sc->sc_bus, sc->sc_dev,
sc->sc_rxsoft[0].rxs_desc, 0);
if (error != 0)
device_printf(sc->sc_self,
"lv1_net_start_rx_dma error: %d\n", error);
sc->sc_ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->sc_ifpflags = sc->sc_ifp->if_flags;
sc->sc_wdog_timer = 0;
callout_reset(&sc->sc_tick_ch, hz, glc_tick, sc);
}
static void
glc_stop(void *xsc)
{
struct glc_softc *sc = xsc;
mtx_assert(&sc->sc_mtx, MA_OWNED);
lv1_net_stop_tx_dma(sc->sc_bus, sc->sc_dev, 0);
lv1_net_stop_rx_dma(sc->sc_bus, sc->sc_dev, 0);
}
static void
glc_init(void *xsc)
{
struct glc_softc *sc = xsc;
mtx_lock(&sc->sc_mtx);
glc_init_locked(sc);
mtx_unlock(&sc->sc_mtx);
}
static void
glc_tick(void *xsc)
{
struct glc_softc *sc = xsc;
mtx_assert(&sc->sc_mtx, MA_OWNED);
/*
* XXX: Sometimes the RX queue gets stuck. Poke it periodically until
* we figure out why. This will fail harmlessly if the RX queue is
* already running.
*/
lv1_net_start_rx_dma(sc->sc_bus, sc->sc_dev,
sc->sc_rxsoft[sc->sc_next_rxdma_slot].rxs_desc, 0);
if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0) {
callout_reset(&sc->sc_tick_ch, hz, glc_tick, sc);
return;
}
/* Problems */
device_printf(sc->sc_self, "device timeout\n");
glc_init_locked(sc);
}
static void
glc_start_locked(struct ifnet *ifp)
{
struct glc_softc *sc = ifp->if_softc;
bus_addr_t first, pktdesc;
int kickstart = 0;
int error;
struct mbuf *mb_head;
mtx_assert(&sc->sc_mtx, MA_OWNED);
first = 0;
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
if (STAILQ_EMPTY(&sc->sc_txdirtyq))
kickstart = 1;
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
if (mb_head == NULL)
break;
/* Check if the ring buffer is full */
if (sc->bsy_txdma_slots > 125) {
/* Put the packet back and stop */
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
break;
}
BPF_MTAP(ifp, mb_head);
if (sc->sc_tx_vlan >= 0)
mb_head = ether_vlanencap(mb_head, sc->sc_tx_vlan);
if (glc_encap(sc, &mb_head, &pktdesc)) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
if (first == 0)
first = pktdesc;
}
if (kickstart && first != 0) {
error = lv1_net_start_tx_dma(sc->sc_bus, sc->sc_dev, first, 0);
if (error != 0)
device_printf(sc->sc_self,
"lv1_net_start_tx_dma error: %d\n", error);
sc->sc_wdog_timer = 5;
}
}
static void
glc_start(struct ifnet *ifp)
{
struct glc_softc *sc = ifp->if_softc;
mtx_lock(&sc->sc_mtx);
glc_start_locked(ifp);
mtx_unlock(&sc->sc_mtx);
}
static int
glc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct glc_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int err = 0;
switch (cmd) {
case SIOCSIFFLAGS:
mtx_lock(&sc->sc_mtx);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->sc_ifpflags) &
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
glc_set_multicast(sc);
else
glc_init_locked(sc);
}
else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
glc_stop(sc);
sc->sc_ifpflags = ifp->if_flags;
mtx_unlock(&sc->sc_mtx);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
mtx_lock(&sc->sc_mtx);
glc_set_multicast(sc);
mtx_unlock(&sc->sc_mtx);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
err = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
break;
default:
err = ether_ioctl(ifp, cmd, data);
break;
}
return (err);
}
static void
glc_set_multicast(struct glc_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ifmultiaddr *inm;
uint64_t addr;
int naddrs;
/* Clear multicast filter */
lv1_net_remove_multicast_address(sc->sc_bus, sc->sc_dev, 0, 1);
/* Add broadcast */
lv1_net_add_multicast_address(sc->sc_bus, sc->sc_dev,
0xffffffffffffL, 0);
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
lv1_net_add_multicast_address(sc->sc_bus, sc->sc_dev, 0, 1);
} else {
if_maddr_rlock(ifp);
naddrs = 1; /* Include broadcast */
TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
if (inm->ifma_addr->sa_family != AF_LINK)
continue;
addr = 0;
memcpy(&((uint8_t *)(&addr))[2],
LLADDR((struct sockaddr_dl *)inm->ifma_addr),
ETHER_ADDR_LEN);
lv1_net_add_multicast_address(sc->sc_bus, sc->sc_dev,
addr, 0);
/*
* Filter can only hold 32 addresses, so fall back to
* the IFF_ALLMULTI case if we have too many.
*/
if (++naddrs >= 32) {
lv1_net_add_multicast_address(sc->sc_bus,
sc->sc_dev, 0, 1);
break;
}
}
if_maddr_runlock(ifp);
}
}
static int
glc_add_rxbuf(struct glc_softc *sc, int idx)
{
struct glc_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
bus_dma_segment_t segs[1];
int error, nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_sync(sc->sc_rxdma_tag, rxs->rxs_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_rxdma_tag, rxs->rxs_dmamap);
}
error = bus_dmamap_load_mbuf_sg(sc->sc_rxdma_tag, rxs->rxs_dmamap, m,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_self,
"cannot load RS DMA map %d, error = %d\n", idx, error);
m_freem(m);
return (error);
}
/* If nsegs is wrong then the stack is corrupt. */
KASSERT(nsegs == 1,
("%s: too many DMA segments (%d)", __func__, nsegs));
rxs->rxs_mbuf = m;
rxs->segment = segs[0];
bus_dmamap_sync(sc->sc_rxdma_tag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD);
return (0);
}
static int
glc_add_rxbuf_dma(struct glc_softc *sc, int idx)
{
struct glc_rxsoft *rxs = &sc->sc_rxsoft[idx];
bzero(&sc->sc_rxdmadesc[idx], sizeof(sc->sc_rxdmadesc[idx]));
sc->sc_rxdmadesc[idx].paddr = rxs->segment.ds_addr;
sc->sc_rxdmadesc[idx].len = rxs->segment.ds_len;
sc->sc_rxdmadesc[idx].next = sc->sc_rxdmadesc_phys +
((idx + 1) % GLC_MAX_RX_PACKETS)*sizeof(sc->sc_rxdmadesc[idx]);
sc->sc_rxdmadesc[idx].cmd_stat = GELIC_DESCR_OWNED;
rxs->rxs_desc_slot = idx;
rxs->rxs_desc = sc->sc_rxdmadesc_phys + idx*sizeof(struct glc_dmadesc);
return (0);
}
static int
glc_encap(struct glc_softc *sc, struct mbuf **m_head, bus_addr_t *pktdesc)
{
bus_dma_segment_t segs[16];
struct glc_txsoft *txs;
struct mbuf *m;
bus_addr_t firstslotphys;
int i, idx, nsegs, nsegs_max;
int err = 0;
/* Max number of segments is the number of free DMA slots */
nsegs_max = 128 - sc->bsy_txdma_slots;
if (nsegs_max > 16 || sc->first_used_txdma_slot < 0)
nsegs_max = 16;
/* Get a work queue entry. */
if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
/* Ran out of descriptors. */
return (ENOBUFS);
}
nsegs = 0;
for (m = *m_head; m != NULL; m = m->m_next)
nsegs++;
if (nsegs > nsegs_max) {
m = m_collapse(*m_head, M_DONTWAIT, nsegs_max);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
err = bus_dmamap_load_mbuf_sg(sc->sc_txdma_tag, txs->txs_dmamap,
*m_head, segs, &nsegs, BUS_DMA_NOWAIT);
if (err != 0) {
m_freem(*m_head);
*m_head = NULL;
return (err);
}
KASSERT(nsegs <= 128 - sc->bsy_txdma_slots,
("GLC: Mapped too many (%d) DMA segments with %d available",
nsegs, 128 - sc->bsy_txdma_slots));
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
txs->txs_ndescs = nsegs;
txs->txs_firstdesc = sc->next_txdma_slot;
idx = txs->txs_firstdesc;
firstslotphys = sc->sc_txdmadesc_phys +
txs->txs_firstdesc*sizeof(struct glc_dmadesc);
for (i = 0; i < nsegs; i++) {
bzero(&sc->sc_txdmadesc[idx], sizeof(sc->sc_txdmadesc[idx]));
sc->sc_txdmadesc[idx].paddr = segs[i].ds_addr;
sc->sc_txdmadesc[idx].len = segs[i].ds_len;
sc->sc_txdmadesc[idx].next = sc->sc_txdmadesc_phys +
((idx + 1) % GLC_MAX_TX_PACKETS)*sizeof(struct glc_dmadesc);
sc->sc_txdmadesc[idx].cmd_stat |= GELIC_CMDSTAT_NOIPSEC;
if (i+1 == nsegs) {
txs->txs_lastdesc = idx;
sc->sc_txdmadesc[idx].next = 0;
sc->sc_txdmadesc[idx].cmd_stat |= GELIC_CMDSTAT_LAST;
}
if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
sc->sc_txdmadesc[idx].cmd_stat |= GELIC_CMDSTAT_CSUM_TCP;
if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
sc->sc_txdmadesc[idx].cmd_stat |= GELIC_CMDSTAT_CSUM_UDP;
sc->sc_txdmadesc[idx].cmd_stat |= GELIC_DESCR_OWNED;
idx = (idx + 1) % GLC_MAX_TX_PACKETS;
}
sc->next_txdma_slot = idx;
sc->bsy_txdma_slots += nsegs;
if (txs->txs_firstdesc != 0)
idx = txs->txs_firstdesc - 1;
else
idx = GLC_MAX_TX_PACKETS - 1;
if (sc->first_used_txdma_slot < 0)
sc->first_used_txdma_slot = txs->txs_firstdesc;
bus_dmamap_sync(sc->sc_txdma_tag, txs->txs_dmamap,
BUS_DMASYNC_PREWRITE);
sc->sc_txdmadesc[idx].next = firstslotphys;
STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
txs->txs_mbuf = *m_head;
*pktdesc = firstslotphys;
return (0);
}
static void
glc_rxintr(struct glc_softc *sc)
{
int i, restart_rxdma, error;
struct mbuf *m;
struct ifnet *ifp = sc->sc_ifp;
bus_dmamap_sync(sc->sc_dmadesc_tag, sc->sc_rxdmadesc_map,
BUS_DMASYNC_POSTREAD);
restart_rxdma = 0;
while ((sc->sc_rxdmadesc[sc->sc_next_rxdma_slot].cmd_stat &
GELIC_DESCR_OWNED) == 0) {
i = sc->sc_next_rxdma_slot;
sc->sc_next_rxdma_slot++;
if (sc->sc_next_rxdma_slot >= GLC_MAX_RX_PACKETS)
sc->sc_next_rxdma_slot = 0;
if (sc->sc_rxdmadesc[i].cmd_stat & GELIC_CMDSTAT_CHAIN_END)
restart_rxdma = 1;
if (sc->sc_rxdmadesc[i].rxerror & GELIC_RXERRORS) {
ifp->if_ierrors++;
goto requeue;
}
m = sc->sc_rxsoft[i].rxs_mbuf;
if (sc->sc_rxdmadesc[i].data_stat & GELIC_RX_IPCSUM) {
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED | CSUM_IP_VALID;
}
if (sc->sc_rxdmadesc[i].data_stat & GELIC_RX_TCPUDPCSUM) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
if (glc_add_rxbuf(sc, i)) {
ifp->if_ierrors++;
goto requeue;
}
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
m->m_len = sc->sc_rxdmadesc[i].valid_size;
m->m_pkthdr.len = m->m_len;
/*
* Remove VLAN tag. Even on early firmwares that do not allow
* multiple VLANs, the VLAN tag is still in place here.
*/
m_adj(m, 2);
mtx_unlock(&sc->sc_mtx);
(*ifp->if_input)(ifp, m);
mtx_lock(&sc->sc_mtx);
requeue:
glc_add_rxbuf_dma(sc, i);
}
bus_dmamap_sync(sc->sc_dmadesc_tag, sc->sc_rxdmadesc_map,
BUS_DMASYNC_PREWRITE);
if (restart_rxdma) {
error = lv1_net_start_rx_dma(sc->sc_bus, sc->sc_dev,
sc->sc_rxsoft[sc->sc_next_rxdma_slot].rxs_desc, 0);
if (error != 0)
device_printf(sc->sc_self,
"lv1_net_start_rx_dma error: %d\n", error);
}
}
static void
glc_txintr(struct glc_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct glc_txsoft *txs;
int progress = 0, kickstart = 0, error;
bus_dmamap_sync(sc->sc_dmadesc_tag, sc->sc_txdmadesc_map,
BUS_DMASYNC_POSTREAD);
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
if (sc->sc_txdmadesc[txs->txs_lastdesc].cmd_stat
& GELIC_DESCR_OWNED)
break;
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
bus_dmamap_unload(sc->sc_txdma_tag, txs->txs_dmamap);
sc->bsy_txdma_slots -= txs->txs_ndescs;
if (txs->txs_mbuf != NULL) {
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
if ((sc->sc_txdmadesc[txs->txs_lastdesc].cmd_stat & 0xf0000000)
!= 0) {
lv1_net_stop_tx_dma(sc->sc_bus, sc->sc_dev, 0);
kickstart = 1;
ifp->if_oerrors++;
}
if (sc->sc_txdmadesc[txs->txs_lastdesc].cmd_stat &
GELIC_CMDSTAT_CHAIN_END)
kickstart = 1;
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
ifp->if_opackets++;
progress = 1;
}
if (txs != NULL)
sc->first_used_txdma_slot = txs->txs_firstdesc;
else
sc->first_used_txdma_slot = -1;
if (kickstart || txs != NULL) {
/* Speculatively (or necessarily) start the TX queue again */
error = lv1_net_start_tx_dma(sc->sc_bus, sc->sc_dev,
sc->sc_txdmadesc_phys +
txs->txs_firstdesc*sizeof(struct glc_dmadesc), 0);
if (error != 0)
device_printf(sc->sc_self,
"lv1_net_start_tx_dma error: %d\n", error);
}
if (progress) {
/*
* We freed some descriptors, so reset IFF_DRV_OACTIVE
* and restart.
*/
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->sc_wdog_timer = STAILQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
glc_start_locked(ifp);
}
}
static int
glc_intr_filter(void *xsc)
{
struct glc_softc *sc = xsc;
powerpc_sync();
atomic_set_64(&sc->sc_interrupt_status, *sc->sc_hwirq_status);
return (FILTER_SCHEDULE_THREAD);
}
static void
glc_intr(void *xsc)
{
struct glc_softc *sc = xsc;
uint64_t status, linkstat, junk;
mtx_lock(&sc->sc_mtx);
status = atomic_readandclear_64(&sc->sc_interrupt_status);
if (status == 0) {
mtx_unlock(&sc->sc_mtx);
return;
}
if (status & (GELIC_INT_RXDONE | GELIC_INT_RXFRAME))
glc_rxintr(sc);
if (status & (GELIC_INT_TXDONE | GELIC_INT_TX_CHAIN_END))
glc_txintr(sc);
if (status & GELIC_INT_PHY) {
lv1_net_control(sc->sc_bus, sc->sc_dev, GELIC_GET_LINK_STATUS,
GELIC_VLAN_TX_ETHERNET, 0, 0, &linkstat, &junk);
linkstat = (linkstat & GELIC_LINK_UP) ?
LINK_STATE_UP : LINK_STATE_DOWN;
if (linkstat != sc->sc_ifp->if_link_state)
if_link_state_change(sc->sc_ifp, linkstat);
}
mtx_unlock(&sc->sc_mtx);
}
static void
glc_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct glc_softc *sc = ifp->if_softc;
uint64_t status, junk;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
lv1_net_control(sc->sc_bus, sc->sc_dev, GELIC_GET_LINK_STATUS,
GELIC_VLAN_TX_ETHERNET, 0, 0, &status, &junk);
if (status & GELIC_LINK_UP)
ifmr->ifm_status |= IFM_ACTIVE;
if (status & GELIC_SPEED_10)
ifmr->ifm_active |= IFM_10_T;
else if (status & GELIC_SPEED_100)
ifmr->ifm_active |= IFM_100_TX;
else if (status & GELIC_SPEED_1000)
ifmr->ifm_active |= IFM_1000_T;
if (status & GELIC_FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
}
static int
glc_media_change(struct ifnet *ifp)
{
struct glc_softc *sc = ifp->if_softc;
uint64_t mode, junk;
int result;
if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
return (EINVAL);
switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
case IFM_AUTO:
mode = GELIC_AUTO_NEG;
break;
case IFM_10_T:
mode = GELIC_SPEED_10;
break;
case IFM_100_TX:
mode = GELIC_SPEED_100;
break;
case IFM_1000_T:
mode = GELIC_SPEED_1000 | GELIC_FULL_DUPLEX;
break;
default:
return (EINVAL);
}
if (IFM_OPTIONS(sc->sc_media.ifm_media) & IFM_FDX)
mode |= GELIC_FULL_DUPLEX;
result = lv1_net_control(sc->sc_bus, sc->sc_dev, GELIC_SET_LINK_MODE,
GELIC_VLAN_TX_ETHERNET, mode, 0, &junk, &junk);
return (result ? EIO : 0);
}