2012-05-20 02:49:42 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer,
|
|
|
|
* without modification.
|
|
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
|
|
* redistribution must be conditioned upon including a substantially
|
|
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
|
|
*
|
|
|
|
* NO WARRANTY
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
|
|
*
|
|
|
|
* $FreeBSD$
|
|
|
|
*/
|
|
|
|
#ifndef __IF_ATH_BEACON_H__
|
|
|
|
#define __IF_ATH_BEACON_H__
|
|
|
|
|
|
|
|
extern int ath_bstuck_threshold;
|
|
|
|
|
2012-08-11 23:26:19 +00:00
|
|
|
extern int ath_beaconq_setup(struct ath_softc *sc);
|
2012-05-20 02:49:42 +00:00
|
|
|
extern int ath_beaconq_config(struct ath_softc *sc);
|
|
|
|
extern void ath_beacon_config(struct ath_softc *sc,
|
|
|
|
struct ieee80211vap *vap);
|
|
|
|
extern struct ath_buf * ath_beacon_generate(struct ath_softc *sc,
|
|
|
|
struct ieee80211vap *vap);
|
Overhaul the TXQ locking (again!) as part of some beacon/cabq timing
related issues.
Moving the TX locking under one lock made things easier to progress on
but it had one important side-effect - it increased the latency when
handling CABQ setup when sending beacons.
This commit introduces a bunch of new changes and a few unrelated changs
that are just easier to lump in here.
The aim is to have the CABQ locking separate from other locking.
The CABQ transmit path in the beacon process thus doesn't have to grab
the general TX lock, reducing lock contention/latency and making it
more likely that we'll make the beacon TX timing.
The second half of this commit is the CABQ related setup changes needed
for sane looking EDMA CABQ support. Right now the EDMA TX code naively
assumes that only one frame (MPDU or A-MPDU) is being pushed into each
FIFO slot. For the CABQ this isn't true - a whole list of frames is
being pushed in - and thus CABQ handling breaks very quickly.
The aim here is to setup the CABQ list and then push _that list_ to
the hardware for transmission. I can then extend the EDMA TX code
to stamp that list as being "one" FIFO entry (likely by tagging the
last buffer in that list as "FIFO END") so the EDMA TX completion code
correctly tracks things.
Major:
* Migrate the per-TXQ add/removal locking back to per-TXQ, rather than
a single lock.
* Leave the software queue side of things under the ATH_TX_LOCK lock,
(continuing) to serialise things as they are.
* Add a new function which is called whenever there's a beacon miss,
to print out some debugging. This is primarily designed to help
me figure out if the beacon miss events are due to a noisy environment,
issues with the PHY/MAC, or other.
* Move the CABQ setup/enable to occur _after_ all the VAPs have been
looked at. This means that for multiple VAPS in bursted mode, the
CABQ gets primed once all VAPs are checked, rather than being primed
on the first VAP and then having frames appended after this.
Minor:
* Add a (disabled) twiddle to let me enable/disable cabq traffic.
It's primarily there to let me easily debug what's going on with beacon
and CABQ setup/traffic; there's some DMA engine hangs which I'm finally
trying to trace down.
* Clear bf_next when flushing frames; it should quieten some warnings
that show up when a node goes away.
Tested:
* AR9280, STA/hostap, up to 4 vaps (staggered)
* AR5416, STA/hostap, up to 4 vaps (staggered)
TODO:
* (Lots) more AR9380 and later testing, as I may have missed something here.
* Leverage this to fix CABQ hanling for AR9380 and later chips.
* Force bursted beaconing on the chips that default to staggered beacons and
ensure the CABQ stuff is all sane (eg, the MORE bits that aren't being
correctly set when chaining descriptors.)
2013-03-24 00:03:12 +00:00
|
|
|
extern void ath_beacon_cabq_start(struct ath_softc *sc);
|
2012-05-20 02:49:42 +00:00
|
|
|
extern int ath_wme_update(struct ieee80211com *ic);
|
2012-05-20 04:14:29 +00:00
|
|
|
extern void ath_beacon_update(struct ieee80211vap *vap, int item);
|
|
|
|
extern void ath_beacon_start_adhoc(struct ath_softc *sc,
|
|
|
|
struct ieee80211vap *vap);
|
|
|
|
extern int ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni);
|
|
|
|
extern void ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf);
|
|
|
|
extern void ath_beacon_free(struct ath_softc *sc);
|
|
|
|
extern void ath_beacon_proc(void *arg, int pending);
|
Bring over some initial power save management support, reset path
fixes and beacon programming / debugging into the ath(4) driver.
The basic power save tracking:
* Add some new code to track the current desired powersave state; and
* Add some reference count tracking so we know when the NIC is awake; then
* Add code in all the points where we're about to touch the hardware and
push it to force-wake.
Then, how things are moved into power save:
* Only move into network-sleep during a RUN->SLEEP transition;
* Force wake the hardware up everywhere that we're about to touch
the hardware.
The net80211 stack takes care of doing RUN<->SLEEP<->(other) state
transitions so we don't have to do it in the driver.
Next, when to wake things up:
* In short - everywhere we touch the hardware.
* The hardware will take care of staying awake if things are queued
in the transmit queue(s); it'll then transit down to sleep if
there's nothing left. This way we don't have to track the
software / hardware transmit queue(s) and keep the hardware
awake for those.
Then, some transmit path fixes that aren't related but useful:
* Force EAPOL frames to go out at the lowest rate. This improves
reliability during the encryption handshake after 802.11
negotiation.
Next, some reset path fixes!
* Fix the overlap between reset and transmit pause so we don't
transmit frames during a reset.
* Some noisy environments will end up taking a lot longer to reset
than normal, so extend the reset period and drop the raise the
reset interval to be more realistic and give the hardware some
time to finish calibration.
* Skip calibration during the reset path. Tsk!
Then, beacon fixes in station mode!
* Add a _lot_ more debugging in the station beacon reset path.
This is all quite fluid right now.
* Modify the STA beacon programming code to try and take
the TU gap between desired TSF and the target TU into
account. (Lifted from QCA.)
Tested:
* AR5210
* AR5211
* AR5212
* AR5413
* AR5416
* AR9280
* AR9285
TODO:
* More AP, IBSS, mesh, TDMA testing
* Thorough AR9380 and later testing!
* AR9160 and AR9287 testing
Obtained from: QCA
2014-04-30 02:19:41 +00:00
|
|
|
extern void ath_beacon_miss(struct ath_softc *sc);
|
2012-05-20 02:49:42 +00:00
|
|
|
|
|
|
|
#endif
|
Bring over some initial power save management support, reset path
fixes and beacon programming / debugging into the ath(4) driver.
The basic power save tracking:
* Add some new code to track the current desired powersave state; and
* Add some reference count tracking so we know when the NIC is awake; then
* Add code in all the points where we're about to touch the hardware and
push it to force-wake.
Then, how things are moved into power save:
* Only move into network-sleep during a RUN->SLEEP transition;
* Force wake the hardware up everywhere that we're about to touch
the hardware.
The net80211 stack takes care of doing RUN<->SLEEP<->(other) state
transitions so we don't have to do it in the driver.
Next, when to wake things up:
* In short - everywhere we touch the hardware.
* The hardware will take care of staying awake if things are queued
in the transmit queue(s); it'll then transit down to sleep if
there's nothing left. This way we don't have to track the
software / hardware transmit queue(s) and keep the hardware
awake for those.
Then, some transmit path fixes that aren't related but useful:
* Force EAPOL frames to go out at the lowest rate. This improves
reliability during the encryption handshake after 802.11
negotiation.
Next, some reset path fixes!
* Fix the overlap between reset and transmit pause so we don't
transmit frames during a reset.
* Some noisy environments will end up taking a lot longer to reset
than normal, so extend the reset period and drop the raise the
reset interval to be more realistic and give the hardware some
time to finish calibration.
* Skip calibration during the reset path. Tsk!
Then, beacon fixes in station mode!
* Add a _lot_ more debugging in the station beacon reset path.
This is all quite fluid right now.
* Modify the STA beacon programming code to try and take
the TU gap between desired TSF and the target TU into
account. (Lifted from QCA.)
Tested:
* AR5210
* AR5211
* AR5212
* AR5413
* AR5416
* AR9280
* AR9285
TODO:
* More AP, IBSS, mesh, TDMA testing
* Thorough AR9380 and later testing!
* AR9160 and AR9287 testing
Obtained from: QCA
2014-04-30 02:19:41 +00:00
|
|
|
|