Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 1999, 2000, 2001, 2002 Robert N. M. Watson
|
|
|
|
* Copyright (c) 2001, 2002 Networks Associates Technology, Inc.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This software was developed by Robert Watson for the TrustedBSD Project.
|
|
|
|
*
|
|
|
|
* This software was developed for the FreeBSD Project in part by NAI Labs,
|
|
|
|
* the Security Research Division of Network Associates, Inc. under
|
|
|
|
* DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
|
|
|
|
* CHATS research program.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. The names of the authors may not be used to endorse or promote
|
|
|
|
* products derived from this software without specific prior written
|
|
|
|
* permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* $FreeBSD$
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Developed by the TrustedBSD Project.
|
|
|
|
* Generic mandatory access module that does nothing.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/acl.h>
|
|
|
|
#include <sys/conf.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/mac.h>
|
|
|
|
#include <sys/mount.h>
|
|
|
|
#include <sys/proc.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/sysproto.h>
|
|
|
|
#include <sys/sysent.h>
|
|
|
|
#include <sys/vnode.h>
|
|
|
|
#include <sys/file.h>
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/socketvar.h>
|
|
|
|
#include <sys/pipe.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
|
|
|
|
#include <fs/devfs/devfs.h>
|
|
|
|
|
|
|
|
#include <net/bpfdesc.h>
|
|
|
|
#include <net/if.h>
|
|
|
|
#include <net/if_types.h>
|
|
|
|
#include <net/if_var.h>
|
|
|
|
|
|
|
|
#include <netinet/in.h>
|
|
|
|
#include <netinet/ip_var.h>
|
|
|
|
|
|
|
|
#include <vm/vm.h>
|
|
|
|
|
|
|
|
#include <sys/mac_policy.h>
|
|
|
|
|
|
|
|
SYSCTL_DECL(_security_mac);
|
|
|
|
|
|
|
|
SYSCTL_NODE(_security_mac, OID_AUTO, none, CTLFLAG_RW, 0,
|
|
|
|
"TrustedBSD mac_none policy controls");
|
|
|
|
|
|
|
|
static int mac_none_enabled = 0;
|
|
|
|
SYSCTL_INT(_security_mac_none, OID_AUTO, enabled, CTLFLAG_RW,
|
|
|
|
&mac_none_enabled, 0, "Enforce none policy");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Policy module operations.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_none_destroy(struct mac_policy_conf *conf)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_init(struct mac_policy_conf *conf)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2002-08-20 02:53:35 +00:00
|
|
|
static int
|
|
|
|
mac_none_syscall(struct thread *td, int call, void *arg)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
/*
|
|
|
|
* Label operations.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_none_init_bpfdesc(struct bpf_d *bpf_d, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_init_cred(struct ucred *ucred, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_init_devfsdirent(struct devfs_dirent *devfs_dirent,
|
|
|
|
struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_init_ifnet(struct ifnet *ifnet, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_init_ipq(struct ipq *ipq, struct label *ipqlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_init_mbuf(struct mbuf *mbuf, int how, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_init_mount(struct mount *mount, struct label *mntlabel,
|
|
|
|
struct label *fslabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_init_socket(struct socket *socket, struct label *label,
|
|
|
|
struct label *peerlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_init_pipe(struct pipe *pipe, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_init_temp(struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_init_vnode(struct vnode *vp, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_destroy_bpfdesc(struct bpf_d *bpf_d, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_destroy_cred(struct ucred *ucred, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_destroy_devfsdirent(struct devfs_dirent *devfs_dirent,
|
|
|
|
struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_destroy_ifnet(struct ifnet *ifnet, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_destroy_ipq(struct ipq *ipq, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_destroy_mbuf(struct mbuf *mbuf, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_destroy_mount(struct mount *mount, struct label *mntlabel,
|
|
|
|
struct label *fslabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_destroy_socket(struct socket *socket, struct label *label,
|
|
|
|
struct label *peerlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_destroy_pipe(struct pipe *pipe, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_destroy_temp(struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_destroy_vnode(struct vnode *vp, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_externalize(struct label *label, struct mac *extmac)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_internalize(struct label *label, struct mac *extmac)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Labeling event operations: file system objects, and things that look
|
|
|
|
* a lot like file system objects.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_none_create_devfs_device(dev_t dev, struct devfs_dirent *devfs_dirent,
|
|
|
|
struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_devfs_directory(char *dirname, int dirnamelen,
|
|
|
|
struct devfs_dirent *devfs_dirent, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_devfs_vnode(struct devfs_dirent *devfs_dirent,
|
|
|
|
struct label *direntlabel, struct vnode *vp, struct label *vnodelabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_vnode(struct ucred *cred, struct vnode *parent,
|
|
|
|
struct label *parentlabel, struct vnode *child,
|
|
|
|
struct label *childlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_mount(struct ucred *cred, struct mount *mp,
|
|
|
|
struct label *mntlabel, struct label *fslabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_root_mount(struct ucred *cred, struct mount *mp,
|
|
|
|
struct label *mntlabel, struct label *fslabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_relabel_vnode(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *vnodelabel, struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_update_devfsdirent(struct devfs_dirent *devfs_dirent,
|
|
|
|
struct label *direntlabel, struct vnode *vp, struct label *vnodelabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_update_procfsvnode(struct vnode *vp, struct label *vnodelabel,
|
|
|
|
struct ucred *cred)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_update_vnode_from_externalized(struct vnode *vp,
|
|
|
|
struct label *vnodelabel, struct mac *extmac)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_update_vnode_from_mount(struct vnode *vp, struct label *vnodelabel,
|
|
|
|
struct mount *mp, struct label *fslabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Labeling event operations: IPC object.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_none_create_mbuf_from_socket(struct socket *so, struct label *socketlabel,
|
|
|
|
struct mbuf *m, struct label *mbuflabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_socket(struct ucred *cred, struct socket *socket,
|
|
|
|
struct label *socketlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_pipe(struct ucred *cred, struct pipe *pipe,
|
|
|
|
struct label *pipelabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_socket_from_socket(struct socket *oldsocket,
|
|
|
|
struct label *oldsocketlabel, struct socket *newsocket,
|
|
|
|
struct label *newsocketlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_relabel_socket(struct ucred *cred, struct socket *socket,
|
|
|
|
struct label *socketlabel, struct label *newlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_relabel_pipe(struct ucred *cred, struct pipe *pipe,
|
|
|
|
struct label *pipelabel, struct label *newlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_set_socket_peer_from_mbuf(struct mbuf *mbuf, struct label *mbuflabel,
|
|
|
|
struct socket *socket, struct label *socketpeerlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_set_socket_peer_from_socket(struct socket *oldsocket,
|
|
|
|
struct label *oldsocketlabel, struct socket *newsocket,
|
|
|
|
struct label *newsocketpeerlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Labeling event operations: network objects.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_none_create_bpfdesc(struct ucred *cred, struct bpf_d *bpf_d,
|
|
|
|
struct label *bpflabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_datagram_from_ipq(struct ipq *ipq, struct label *ipqlabel,
|
|
|
|
struct mbuf *datagram, struct label *datagramlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_fragment(struct mbuf *datagram, struct label *datagramlabel,
|
|
|
|
struct mbuf *fragment, struct label *fragmentlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_ifnet(struct ifnet *ifnet, struct label *ifnetlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_ipq(struct mbuf *fragment, struct label *fragmentlabel,
|
|
|
|
struct ipq *ipq, struct label *ipqlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_mbuf_from_mbuf(struct mbuf *oldmbuf,
|
|
|
|
struct label *oldmbuflabel, struct mbuf *newmbuf,
|
|
|
|
struct label *newmbuflabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_mbuf_linklayer(struct ifnet *ifnet, struct label *ifnetlabel,
|
|
|
|
struct mbuf *mbuf, struct label *mbuflabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_mbuf_from_bpfdesc(struct bpf_d *bpf_d, struct label *bpflabel,
|
|
|
|
struct mbuf *mbuf, struct label *mbuflabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_mbuf_from_ifnet(struct ifnet *ifnet, struct label *ifnetlabel,
|
|
|
|
struct mbuf *m, struct label *mbuflabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_mbuf_multicast_encap(struct mbuf *oldmbuf,
|
|
|
|
struct label *oldmbuflabel, struct ifnet *ifnet, struct label *ifnetlabel,
|
|
|
|
struct mbuf *newmbuf, struct label *newmbuflabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_mbuf_netlayer(struct mbuf *oldmbuf,
|
|
|
|
struct label *oldmbuflabel, struct mbuf *newmbuf, struct label *newmbuflabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_fragment_match(struct mbuf *fragment, struct label *fragmentlabel,
|
|
|
|
struct ipq *ipq, struct label *ipqlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_relabel_ifnet(struct ucred *cred, struct ifnet *ifnet,
|
|
|
|
struct label *ifnetlabel, struct label *newlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_update_ipq(struct mbuf *fragment, struct label *fragmentlabel,
|
|
|
|
struct ipq *ipq, struct label *ipqlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Labeling event operations: processes.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
mac_none_create_cred(struct ucred *cred_parent, struct ucred *cred_child)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_execve_transition(struct ucred *old, struct ucred *new,
|
|
|
|
struct vnode *vp, struct label *vnodelabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_execve_will_transition(struct ucred *old, struct vnode *vp,
|
|
|
|
struct label *vnodelabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_proc0(struct ucred *cred)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_create_proc1(struct ucred *cred)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
mac_none_relabel_cred(struct ucred *cred, struct label *newlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Access control checks.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
mac_none_check_bpfdesc_receive(struct bpf_d *bpf_d, struct label *bpflabel,
|
|
|
|
struct ifnet *ifnet, struct label *ifnet_label)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_cred_relabel(struct ucred *cred, struct label *newlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_cred_visible(struct ucred *u1, struct ucred *u2)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_ifnet_relabel(struct ucred *cred, struct ifnet *ifnet,
|
|
|
|
struct label *newlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_ifnet_transmit(struct ifnet *ifnet, struct label *ifnetlabel,
|
|
|
|
struct mbuf *m, struct label *mbuflabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_mount_stat(struct ucred *cred, struct mount *mp,
|
|
|
|
struct label *mntlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_pipe_ioctl(struct ucred *cred, struct pipe *pipe,
|
|
|
|
struct label *pipelabel, unsigned long cmd, void /* caddr_t */ *data)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2002-08-19 16:59:37 +00:00
|
|
|
mac_none_check_pipe_poll(struct ucred *cred, struct pipe *pipe,
|
|
|
|
struct label *pipelabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_pipe_read(struct ucred *cred, struct pipe *pipe,
|
|
|
|
struct label *pipelabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_pipe_relabel(struct ucred *cred, struct pipe *pipe,
|
|
|
|
struct label *pipelabel, struct label *newlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2002-08-19 16:59:37 +00:00
|
|
|
static int
|
|
|
|
mac_none_check_pipe_stat(struct ucred *cred, struct pipe *pipe,
|
|
|
|
struct label *pipelabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_pipe_write(struct ucred *cred, struct pipe *pipe,
|
|
|
|
struct label *pipelabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static int
|
|
|
|
mac_none_check_proc_debug(struct ucred *cred, struct proc *proc)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_proc_sched(struct ucred *cred, struct proc *proc)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_proc_signal(struct ucred *cred, struct proc *proc, int signum)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_socket_bind(struct ucred *cred, struct socket *socket,
|
|
|
|
struct label *socketlabel, struct sockaddr *sockaddr)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_socket_connect(struct ucred *cred, struct socket *socket,
|
|
|
|
struct label *socketlabel, struct sockaddr *sockaddr)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2002-08-15 18:51:27 +00:00
|
|
|
mac_none_check_socket_deliver(struct socket *so, struct label *socketlabel,
|
|
|
|
struct mbuf *m, struct label *mbuflabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2002-08-15 18:51:27 +00:00
|
|
|
mac_none_check_socket_listen(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *socketlabel)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_socket_relabel(struct ucred *cred, struct socket *socket,
|
|
|
|
struct label *socketlabel, struct label *newlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_socket_visible(struct ucred *cred, struct socket *socket,
|
|
|
|
struct label *socketlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_access(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, mode_t flags)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_chdir(struct ucred *cred, struct vnode *dvp,
|
|
|
|
struct label *dlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_chroot(struct ucred *cred, struct vnode *dvp,
|
|
|
|
struct label *dlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_create(struct ucred *cred, struct vnode *dvp,
|
|
|
|
struct label *dlabel, struct componentname *cnp, struct vattr *vap)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_delete(struct ucred *cred, struct vnode *dvp,
|
|
|
|
struct label *dlabel, struct vnode *vp, struct label *label,
|
|
|
|
struct componentname *cnp)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_deleteacl(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, acl_type_t type)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_exec(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_getacl(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, acl_type_t type)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_getextattr(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, int attrnamespace, const char *name, struct uio *uio)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_lookup(struct ucred *cred, struct vnode *dvp,
|
|
|
|
struct label *dlabel, struct componentname *cnp)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_open(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *filelabel, mode_t acc_mode)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2002-08-19 16:43:25 +00:00
|
|
|
static int
|
2002-08-19 19:04:53 +00:00
|
|
|
mac_none_check_vnode_poll(struct ucred *active_cred, struct ucred *file_cred,
|
|
|
|
struct vnode *vp, struct label *label)
|
2002-08-19 16:43:25 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2002-08-19 19:04:53 +00:00
|
|
|
mac_none_check_vnode_read(struct ucred *active_cred, struct ucred *file_cred,
|
|
|
|
struct vnode *vp, struct label *label)
|
2002-08-19 16:43:25 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static int
|
|
|
|
mac_none_check_vnode_readdir(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *dlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_readlink(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *vnodelabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_relabel(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *vnodelabel, struct label *newlabel)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_rename_from(struct ucred *cred, struct vnode *dvp,
|
|
|
|
struct label *dlabel, struct vnode *vp, struct label *label,
|
|
|
|
struct componentname *cnp)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_rename_to(struct ucred *cred, struct vnode *dvp,
|
|
|
|
struct label *dlabel, struct vnode *vp, struct label *label, int samedir,
|
|
|
|
struct componentname *cnp)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_revoke(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_setacl(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, acl_type_t type, struct acl *acl)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_setextattr(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, int attrnamespace, const char *name, struct uio *uio)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_setflags(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, u_long flags)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_setmode(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, mode_t mode)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_setowner(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, uid_t uid, gid_t gid)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
mac_none_check_vnode_setutimes(struct ucred *cred, struct vnode *vp,
|
|
|
|
struct label *label, struct timespec atime, struct timespec mtime)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2002-08-19 19:04:53 +00:00
|
|
|
mac_none_check_vnode_stat(struct ucred *active_cred, struct ucred *file_cred,
|
|
|
|
struct vnode *vp, struct label *label)
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2002-08-19 16:43:25 +00:00
|
|
|
static int
|
2002-08-19 19:04:53 +00:00
|
|
|
mac_none_check_vnode_write(struct ucred *active_cred,
|
|
|
|
struct ucred *file_cred, struct vnode *vp, struct label *label)
|
2002-08-19 16:43:25 +00:00
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
static struct mac_policy_op_entry mac_none_ops[] =
|
|
|
|
{
|
|
|
|
{ MAC_DESTROY,
|
|
|
|
(macop_t)mac_none_destroy },
|
|
|
|
{ MAC_INIT,
|
|
|
|
(macop_t)mac_none_init },
|
2002-08-20 02:53:35 +00:00
|
|
|
{ MAC_SYSCALL,
|
|
|
|
(macop_t)mac_none_syscall },
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{ MAC_INIT_BPFDESC,
|
|
|
|
(macop_t)mac_none_init_bpfdesc },
|
|
|
|
{ MAC_INIT_CRED,
|
|
|
|
(macop_t)mac_none_init_cred },
|
|
|
|
{ MAC_INIT_DEVFSDIRENT,
|
|
|
|
(macop_t)mac_none_init_devfsdirent },
|
|
|
|
{ MAC_INIT_IFNET,
|
|
|
|
(macop_t)mac_none_init_ifnet },
|
|
|
|
{ MAC_INIT_IPQ,
|
|
|
|
(macop_t)mac_none_init_ipq },
|
|
|
|
{ MAC_INIT_MBUF,
|
|
|
|
(macop_t)mac_none_init_mbuf },
|
|
|
|
{ MAC_INIT_MOUNT,
|
|
|
|
(macop_t)mac_none_init_mount },
|
|
|
|
{ MAC_INIT_PIPE,
|
|
|
|
(macop_t)mac_none_init_pipe },
|
|
|
|
{ MAC_INIT_SOCKET,
|
|
|
|
(macop_t)mac_none_init_socket },
|
|
|
|
{ MAC_INIT_TEMP,
|
|
|
|
(macop_t)mac_none_init_temp },
|
|
|
|
{ MAC_INIT_VNODE,
|
|
|
|
(macop_t)mac_none_init_vnode },
|
|
|
|
{ MAC_DESTROY_BPFDESC,
|
|
|
|
(macop_t)mac_none_destroy_bpfdesc },
|
|
|
|
{ MAC_DESTROY_CRED,
|
|
|
|
(macop_t)mac_none_destroy_cred },
|
|
|
|
{ MAC_DESTROY_DEVFSDIRENT,
|
|
|
|
(macop_t)mac_none_destroy_devfsdirent },
|
|
|
|
{ MAC_DESTROY_IFNET,
|
|
|
|
(macop_t)mac_none_destroy_ifnet },
|
|
|
|
{ MAC_DESTROY_IPQ,
|
|
|
|
(macop_t)mac_none_destroy_ipq },
|
|
|
|
{ MAC_DESTROY_MBUF,
|
|
|
|
(macop_t)mac_none_destroy_mbuf },
|
|
|
|
{ MAC_DESTROY_MOUNT,
|
|
|
|
(macop_t)mac_none_destroy_mount },
|
|
|
|
{ MAC_DESTROY_PIPE,
|
|
|
|
(macop_t)mac_none_destroy_pipe },
|
|
|
|
{ MAC_DESTROY_SOCKET,
|
|
|
|
(macop_t)mac_none_destroy_socket },
|
|
|
|
{ MAC_DESTROY_TEMP,
|
|
|
|
(macop_t)mac_none_destroy_temp },
|
|
|
|
{ MAC_DESTROY_VNODE,
|
|
|
|
(macop_t)mac_none_destroy_vnode },
|
|
|
|
{ MAC_EXTERNALIZE,
|
|
|
|
(macop_t)mac_none_externalize },
|
|
|
|
{ MAC_INTERNALIZE,
|
|
|
|
(macop_t)mac_none_internalize },
|
|
|
|
{ MAC_CREATE_DEVFS_DEVICE,
|
|
|
|
(macop_t)mac_none_create_devfs_device },
|
|
|
|
{ MAC_CREATE_DEVFS_DIRECTORY,
|
|
|
|
(macop_t)mac_none_create_devfs_directory },
|
|
|
|
{ MAC_CREATE_DEVFS_VNODE,
|
|
|
|
(macop_t)mac_none_create_devfs_vnode },
|
|
|
|
{ MAC_CREATE_VNODE,
|
|
|
|
(macop_t)mac_none_create_vnode },
|
|
|
|
{ MAC_CREATE_MOUNT,
|
|
|
|
(macop_t)mac_none_create_mount },
|
|
|
|
{ MAC_CREATE_ROOT_MOUNT,
|
|
|
|
(macop_t)mac_none_create_root_mount },
|
|
|
|
{ MAC_RELABEL_VNODE,
|
|
|
|
(macop_t)mac_none_relabel_vnode },
|
|
|
|
{ MAC_UPDATE_DEVFSDIRENT,
|
|
|
|
(macop_t)mac_none_update_devfsdirent },
|
|
|
|
{ MAC_UPDATE_PROCFSVNODE,
|
|
|
|
(macop_t)mac_none_update_procfsvnode },
|
|
|
|
{ MAC_UPDATE_VNODE_FROM_EXTERNALIZED,
|
|
|
|
(macop_t)mac_none_update_vnode_from_externalized },
|
|
|
|
{ MAC_UPDATE_VNODE_FROM_MOUNT,
|
|
|
|
(macop_t)mac_none_update_vnode_from_mount },
|
|
|
|
{ MAC_CREATE_MBUF_FROM_SOCKET,
|
|
|
|
(macop_t)mac_none_create_mbuf_from_socket },
|
|
|
|
{ MAC_CREATE_PIPE,
|
|
|
|
(macop_t)mac_none_create_pipe },
|
|
|
|
{ MAC_CREATE_SOCKET,
|
|
|
|
(macop_t)mac_none_create_socket },
|
|
|
|
{ MAC_CREATE_SOCKET_FROM_SOCKET,
|
|
|
|
(macop_t)mac_none_create_socket_from_socket },
|
|
|
|
{ MAC_RELABEL_PIPE,
|
|
|
|
(macop_t)mac_none_relabel_pipe },
|
|
|
|
{ MAC_RELABEL_SOCKET,
|
|
|
|
(macop_t)mac_none_relabel_socket },
|
|
|
|
{ MAC_SET_SOCKET_PEER_FROM_MBUF,
|
|
|
|
(macop_t)mac_none_set_socket_peer_from_mbuf },
|
|
|
|
{ MAC_SET_SOCKET_PEER_FROM_SOCKET,
|
|
|
|
(macop_t)mac_none_set_socket_peer_from_socket },
|
|
|
|
{ MAC_CREATE_BPFDESC,
|
|
|
|
(macop_t)mac_none_create_bpfdesc },
|
|
|
|
{ MAC_CREATE_IFNET,
|
|
|
|
(macop_t)mac_none_create_ifnet },
|
|
|
|
{ MAC_CREATE_IPQ,
|
|
|
|
(macop_t)mac_none_create_ipq },
|
|
|
|
{ MAC_CREATE_DATAGRAM_FROM_IPQ,
|
|
|
|
(macop_t)mac_none_create_datagram_from_ipq },
|
|
|
|
{ MAC_CREATE_FRAGMENT,
|
|
|
|
(macop_t)mac_none_create_fragment },
|
|
|
|
{ MAC_CREATE_IPQ,
|
|
|
|
(macop_t)mac_none_create_ipq },
|
|
|
|
{ MAC_CREATE_MBUF_FROM_MBUF,
|
|
|
|
(macop_t)mac_none_create_mbuf_from_mbuf },
|
|
|
|
{ MAC_CREATE_MBUF_LINKLAYER,
|
|
|
|
(macop_t)mac_none_create_mbuf_linklayer },
|
|
|
|
{ MAC_CREATE_MBUF_FROM_BPFDESC,
|
|
|
|
(macop_t)mac_none_create_mbuf_from_bpfdesc },
|
|
|
|
{ MAC_CREATE_MBUF_FROM_IFNET,
|
|
|
|
(macop_t)mac_none_create_mbuf_from_ifnet },
|
|
|
|
{ MAC_CREATE_MBUF_MULTICAST_ENCAP,
|
|
|
|
(macop_t)mac_none_create_mbuf_multicast_encap },
|
|
|
|
{ MAC_CREATE_MBUF_NETLAYER,
|
|
|
|
(macop_t)mac_none_create_mbuf_netlayer },
|
|
|
|
{ MAC_FRAGMENT_MATCH,
|
|
|
|
(macop_t)mac_none_fragment_match },
|
|
|
|
{ MAC_RELABEL_IFNET,
|
|
|
|
(macop_t)mac_none_relabel_ifnet },
|
|
|
|
{ MAC_UPDATE_IPQ,
|
|
|
|
(macop_t)mac_none_update_ipq },
|
|
|
|
{ MAC_CREATE_CRED,
|
|
|
|
(macop_t)mac_none_create_cred },
|
|
|
|
{ MAC_EXECVE_TRANSITION,
|
|
|
|
(macop_t)mac_none_execve_transition },
|
|
|
|
{ MAC_EXECVE_WILL_TRANSITION,
|
|
|
|
(macop_t)mac_none_execve_will_transition },
|
|
|
|
{ MAC_CREATE_PROC0,
|
|
|
|
(macop_t)mac_none_create_proc0 },
|
|
|
|
{ MAC_CREATE_PROC1,
|
|
|
|
(macop_t)mac_none_create_proc1 },
|
|
|
|
{ MAC_RELABEL_CRED,
|
|
|
|
(macop_t)mac_none_relabel_cred },
|
|
|
|
{ MAC_CHECK_BPFDESC_RECEIVE,
|
|
|
|
(macop_t)mac_none_check_bpfdesc_receive },
|
|
|
|
{ MAC_CHECK_CRED_RELABEL,
|
|
|
|
(macop_t)mac_none_check_cred_relabel },
|
|
|
|
{ MAC_CHECK_CRED_VISIBLE,
|
|
|
|
(macop_t)mac_none_check_cred_visible },
|
|
|
|
{ MAC_CHECK_IFNET_RELABEL,
|
|
|
|
(macop_t)mac_none_check_ifnet_relabel },
|
|
|
|
{ MAC_CHECK_IFNET_TRANSMIT,
|
|
|
|
(macop_t)mac_none_check_ifnet_transmit },
|
|
|
|
{ MAC_CHECK_MOUNT_STAT,
|
|
|
|
(macop_t)mac_none_check_mount_stat },
|
|
|
|
{ MAC_CHECK_PIPE_IOCTL,
|
|
|
|
(macop_t)mac_none_check_pipe_ioctl },
|
2002-08-19 16:59:37 +00:00
|
|
|
{ MAC_CHECK_PIPE_POLL,
|
|
|
|
(macop_t)mac_none_check_pipe_poll },
|
|
|
|
{ MAC_CHECK_PIPE_READ,
|
|
|
|
(macop_t)mac_none_check_pipe_read },
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{ MAC_CHECK_PIPE_RELABEL,
|
|
|
|
(macop_t)mac_none_check_pipe_relabel },
|
2002-08-19 16:59:37 +00:00
|
|
|
{ MAC_CHECK_PIPE_STAT,
|
|
|
|
(macop_t)mac_none_check_pipe_stat },
|
|
|
|
{ MAC_CHECK_PIPE_WRITE,
|
|
|
|
(macop_t)mac_none_check_pipe_write },
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{ MAC_CHECK_PROC_DEBUG,
|
|
|
|
(macop_t)mac_none_check_proc_debug },
|
|
|
|
{ MAC_CHECK_PROC_SCHED,
|
|
|
|
(macop_t)mac_none_check_proc_sched },
|
|
|
|
{ MAC_CHECK_PROC_SIGNAL,
|
|
|
|
(macop_t)mac_none_check_proc_signal },
|
|
|
|
{ MAC_CHECK_SOCKET_BIND,
|
|
|
|
(macop_t)mac_none_check_socket_bind },
|
|
|
|
{ MAC_CHECK_SOCKET_CONNECT,
|
|
|
|
(macop_t)mac_none_check_socket_connect },
|
2002-08-15 18:51:27 +00:00
|
|
|
{ MAC_CHECK_SOCKET_DELIVER,
|
|
|
|
(macop_t)mac_none_check_socket_deliver },
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{ MAC_CHECK_SOCKET_LISTEN,
|
|
|
|
(macop_t)mac_none_check_socket_listen },
|
|
|
|
{ MAC_CHECK_SOCKET_RELABEL,
|
|
|
|
(macop_t)mac_none_check_socket_relabel },
|
|
|
|
{ MAC_CHECK_SOCKET_VISIBLE,
|
|
|
|
(macop_t)mac_none_check_socket_visible },
|
|
|
|
{ MAC_CHECK_VNODE_ACCESS,
|
|
|
|
(macop_t)mac_none_check_vnode_access },
|
|
|
|
{ MAC_CHECK_VNODE_CHDIR,
|
|
|
|
(macop_t)mac_none_check_vnode_chdir },
|
|
|
|
{ MAC_CHECK_VNODE_CHROOT,
|
|
|
|
(macop_t)mac_none_check_vnode_chroot },
|
|
|
|
{ MAC_CHECK_VNODE_CREATE,
|
|
|
|
(macop_t)mac_none_check_vnode_create },
|
|
|
|
{ MAC_CHECK_VNODE_DELETE,
|
|
|
|
(macop_t)mac_none_check_vnode_delete },
|
|
|
|
{ MAC_CHECK_VNODE_DELETEACL,
|
|
|
|
(macop_t)mac_none_check_vnode_deleteacl },
|
|
|
|
{ MAC_CHECK_VNODE_EXEC,
|
|
|
|
(macop_t)mac_none_check_vnode_exec },
|
|
|
|
{ MAC_CHECK_VNODE_GETACL,
|
|
|
|
(macop_t)mac_none_check_vnode_getacl },
|
|
|
|
{ MAC_CHECK_VNODE_GETEXTATTR,
|
|
|
|
(macop_t)mac_none_check_vnode_getextattr },
|
|
|
|
{ MAC_CHECK_VNODE_LOOKUP,
|
|
|
|
(macop_t)mac_none_check_vnode_lookup },
|
|
|
|
{ MAC_CHECK_VNODE_OPEN,
|
|
|
|
(macop_t)mac_none_check_vnode_open },
|
2002-08-19 16:43:25 +00:00
|
|
|
{ MAC_CHECK_VNODE_POLL,
|
|
|
|
(macop_t)mac_none_check_vnode_poll },
|
|
|
|
{ MAC_CHECK_VNODE_READ,
|
|
|
|
(macop_t)mac_none_check_vnode_read },
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{ MAC_CHECK_VNODE_READDIR,
|
|
|
|
(macop_t)mac_none_check_vnode_readdir },
|
|
|
|
{ MAC_CHECK_VNODE_READLINK,
|
|
|
|
(macop_t)mac_none_check_vnode_readlink },
|
|
|
|
{ MAC_CHECK_VNODE_RELABEL,
|
|
|
|
(macop_t)mac_none_check_vnode_relabel },
|
|
|
|
{ MAC_CHECK_VNODE_RENAME_FROM,
|
|
|
|
(macop_t)mac_none_check_vnode_rename_from },
|
|
|
|
{ MAC_CHECK_VNODE_RENAME_TO,
|
|
|
|
(macop_t)mac_none_check_vnode_rename_to },
|
|
|
|
{ MAC_CHECK_VNODE_REVOKE,
|
|
|
|
(macop_t)mac_none_check_vnode_revoke },
|
|
|
|
{ MAC_CHECK_VNODE_SETACL,
|
|
|
|
(macop_t)mac_none_check_vnode_setacl },
|
|
|
|
{ MAC_CHECK_VNODE_SETEXTATTR,
|
|
|
|
(macop_t)mac_none_check_vnode_setextattr },
|
|
|
|
{ MAC_CHECK_VNODE_SETFLAGS,
|
|
|
|
(macop_t)mac_none_check_vnode_setflags },
|
|
|
|
{ MAC_CHECK_VNODE_SETMODE,
|
|
|
|
(macop_t)mac_none_check_vnode_setmode },
|
|
|
|
{ MAC_CHECK_VNODE_SETOWNER,
|
|
|
|
(macop_t)mac_none_check_vnode_setowner },
|
|
|
|
{ MAC_CHECK_VNODE_SETUTIMES,
|
|
|
|
(macop_t)mac_none_check_vnode_setutimes },
|
|
|
|
{ MAC_CHECK_VNODE_STAT,
|
|
|
|
(macop_t)mac_none_check_vnode_stat },
|
2002-08-19 16:43:25 +00:00
|
|
|
{ MAC_CHECK_VNODE_WRITE,
|
|
|
|
(macop_t)mac_none_check_vnode_write },
|
Introduce support for Mandatory Access Control and extensible
kernel access control.
Provide implementations of some sample operating system security
policy extensions. These are not yet hooked up to the build as
other infrastructure is still being committed. Most of these
work fairly well and are in daily use in our development and (limited)
production environments. Some are not yet in their final form,
and a number of the labeled policies waste a lot of kernel memory
and will be fixed over the next month or so to be more conservative.
They do give good examples of the flexibility of the MAC framework
for implementing a variety of security policies.
mac_biba: Implementation of fixed-label Biba integrity policy,
similar to those found in a number of commercial
trusted operating systems. All subjects and objects
are assigned integrity levels, and information flow
is controlled based on a read-up, write-down
policy. Currently, purely hierarchal.
mac_bsdextended: Implementation of a "file system firewall",
which allows the administrator to specify a series
of rules limiting access by users and groups to
objects owned by other users and groups. This
policy is unlabeled, relying on existing system
security labeling (file permissions/ownership,
process credentials).
mac_ifoff: Secure interface silencing. Special-purpose module
to limit inappropriate out-going network traffic
for silent monitoring scenarios. Prevents the
various network stacks from generating any output
despite an interface being live for reception.
mac_mls: Implementation of fixed-label Multi-Level Security
confidentiality policy, similar to those found in
a number of commercial trusted operating systems.
All subjects and objects are assigned confidentiality
levels, and information flow is controlled based on
a write-up, read-down policy. Currently, purely
hiearchal, although non-hierarchal support is in the
works.
mac_none: Policy module implementing all MAC policy entry
points with empty stubs. A good place to start if
you want all the prototypes types in for you, and
don't mind a bit of pruning. Can be loaded, but
has no access control impact. Useful also for
performance measurements.
mac_seeotheruids: Policy module implementing a security service
similar to security.bsd.seeotheruids, only a slightly
more detailed policy involving exceptions for members
of specific groups, etc. This policy is unlabeled,
relying on existing system security labeling
(process credentials).
mac_test: Policy module implementing basic sanity tests for
label handling. Attempts to ensure that labels are
not freed multiple times, etc, etc.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
|
|
|
{ MAC_OP_LAST, NULL }
|
|
|
|
};
|
|
|
|
|
|
|
|
MAC_POLICY_SET(mac_none_ops, trustedbsd_mac_none, "TrustedBSD MAC/None",
|
|
|
|
MPC_LOADTIME_FLAG_UNLOADOK, 0);
|