2017-11-27 15:23:17 +00:00
|
|
|
/*-
|
|
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
|
|
*
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
* Copyright (C) 2011-2016 Universita` di Pisa
|
|
|
|
* All rights reserved.
|
2013-12-15 08:37:24 +00:00
|
|
|
*
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
* Redistribution and use in source and binary forms, with or without
|
2013-12-15 08:37:24 +00:00
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
2013-12-15 08:37:24 +00:00
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
2013-12-15 08:37:24 +00:00
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* $FreeBSD$
|
|
|
|
*
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
* Functions and macros to manipulate netmap structures and packets
|
|
|
|
* in userspace. See netmap(4) for more information.
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
*
|
2012-02-27 19:05:01 +00:00
|
|
|
* The address of the struct netmap_if, say nifp, is computed from the
|
|
|
|
* value returned from ioctl(.., NIOCREG, ...) and the mmap region:
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
* ioctl(fd, NIOCREG, &req);
|
|
|
|
* mem = mmap(0, ... );
|
|
|
|
* nifp = NETMAP_IF(mem, req.nr_nifp);
|
|
|
|
* (so simple, we could just do it manually)
|
|
|
|
*
|
|
|
|
* From there:
|
|
|
|
* struct netmap_ring *NETMAP_TXRING(nifp, index)
|
|
|
|
* struct netmap_ring *NETMAP_RXRING(nifp, index)
|
2014-11-10 08:31:56 +00:00
|
|
|
* we can access ring->cur, ring->head, ring->tail, etc.
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
*
|
|
|
|
* ring->slot[i] gives us the i-th slot (we can access
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
* directly len, flags, buf_idx)
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
*
|
2013-05-30 13:41:19 +00:00
|
|
|
* char *buf = NETMAP_BUF(ring, x) returns a pointer to
|
|
|
|
* the buffer numbered x
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
*
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
* All ring indexes (head, cur, tail) should always move forward.
|
|
|
|
* To compute the next index in a circular ring you can use
|
|
|
|
* i = nm_ring_next(ring, i);
|
2013-12-15 08:37:24 +00:00
|
|
|
*
|
2021-04-02 07:01:20 +00:00
|
|
|
* To ease porting apps from pcap to netmap we supply a few functions
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
* that can be called to open, close, read and write on netmap in a way
|
|
|
|
* similar to libpcap. Note that the read/write function depend on
|
|
|
|
* an ioctl()/select()/poll() being issued to refill rings or push
|
|
|
|
* packets out.
|
2013-12-15 08:37:24 +00:00
|
|
|
*
|
|
|
|
* In order to use these, include #define NETMAP_WITH_LIBS
|
|
|
|
* in the source file that invokes these functions.
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _NET_NETMAP_USER_H_
|
|
|
|
#define _NET_NETMAP_USER_H_
|
|
|
|
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
#define NETMAP_DEVICE_NAME "/dev/netmap"
|
|
|
|
|
|
|
|
#ifdef __CYGWIN__
|
|
|
|
/*
|
|
|
|
* we can compile userspace apps with either cygwin or msvc,
|
|
|
|
* and we use _WIN32 to identify windows specific code
|
|
|
|
*/
|
|
|
|
#ifndef _WIN32
|
|
|
|
#define _WIN32
|
|
|
|
#endif /* _WIN32 */
|
|
|
|
|
|
|
|
#endif /* __CYGWIN__ */
|
|
|
|
|
|
|
|
#ifdef _WIN32
|
|
|
|
#undef NETMAP_DEVICE_NAME
|
|
|
|
#define NETMAP_DEVICE_NAME "/proc/sys/DosDevices/Global/netmap"
|
|
|
|
#include <windows.h>
|
|
|
|
#include <WinDef.h>
|
|
|
|
#include <sys/cygwin.h>
|
|
|
|
#endif /* _WIN32 */
|
|
|
|
|
2013-12-15 08:37:24 +00:00
|
|
|
#include <stdint.h>
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
#include <sys/socket.h> /* apple needs sockaddr */
|
2013-12-15 08:37:24 +00:00
|
|
|
#include <net/if.h> /* IFNAMSIZ */
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
#include <ctype.h>
|
2019-03-18 12:22:23 +00:00
|
|
|
#include <string.h> /* memset */
|
|
|
|
#include <sys/time.h> /* gettimeofday */
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
|
|
|
|
#ifndef likely
|
|
|
|
#define likely(x) __builtin_expect(!!(x), 1)
|
|
|
|
#define unlikely(x) __builtin_expect(!!(x), 0)
|
|
|
|
#endif /* likely and unlikely */
|
|
|
|
|
2013-12-15 08:37:24 +00:00
|
|
|
#include <net/netmap.h>
|
|
|
|
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
/* helper macro */
|
2012-10-03 21:41:20 +00:00
|
|
|
#define _NETMAP_OFFSET(type, ptr, offset) \
|
|
|
|
((type)(void *)((char *)(ptr) + (offset)))
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
#define NETMAP_IF(_base, _ofs) _NETMAP_OFFSET(struct netmap_if *, _base, _ofs)
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
|
2012-10-03 21:41:20 +00:00
|
|
|
#define NETMAP_TXRING(nifp, index) _NETMAP_OFFSET(struct netmap_ring *, \
|
|
|
|
nifp, (nifp)->ring_ofs[index] )
|
|
|
|
|
|
|
|
#define NETMAP_RXRING(nifp, index) _NETMAP_OFFSET(struct netmap_ring *, \
|
2019-03-18 12:22:23 +00:00
|
|
|
nifp, (nifp)->ring_ofs[index + (nifp)->ni_tx_rings + \
|
|
|
|
(nifp)->ni_host_tx_rings] )
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
|
|
|
|
#define NETMAP_BUF(ring, index) \
|
2019-09-01 14:47:41 +00:00
|
|
|
((char *)(ring) + (ring)->buf_ofs + ((size_t)(index)*(ring)->nr_buf_size))
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
|
2012-02-27 19:05:01 +00:00
|
|
|
#define NETMAP_BUF_IDX(ring, buf) \
|
|
|
|
( ((char *)(buf) - ((char *)(ring) + (ring)->buf_ofs) ) / \
|
2013-12-15 08:37:24 +00:00
|
|
|
(ring)->nr_buf_size )
|
2012-02-27 19:05:01 +00:00
|
|
|
|
2021-03-29 16:22:48 +00:00
|
|
|
/* read the offset field in a ring's slot */
|
|
|
|
#define NETMAP_ROFFSET(ring, slot) \
|
|
|
|
((slot)->ptr & (ring)->offset_mask)
|
|
|
|
|
|
|
|
/* update the offset field in a ring's slot */
|
|
|
|
#define NETMAP_WOFFSET(ring, slot, offset) \
|
|
|
|
do { (slot)->ptr = ((slot)->ptr & ~(ring)->offset_mask) | \
|
|
|
|
((offset) & (ring)->offset_mask); } while (0)
|
|
|
|
|
|
|
|
/* obtain the start of the buffer pointed to by a ring's slot, taking the
|
2021-04-02 07:01:20 +00:00
|
|
|
* offset field into account
|
2021-03-29 16:22:48 +00:00
|
|
|
*/
|
|
|
|
#define NETMAP_BUF_OFFSET(ring, slot) \
|
|
|
|
(NETMAP_BUF(ring, (slot)->buf_idx) + NETMAP_ROFFSET(ring, slot))
|
|
|
|
|
|
|
|
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
static inline uint32_t
|
|
|
|
nm_ring_next(struct netmap_ring *r, uint32_t i)
|
|
|
|
{
|
|
|
|
return ( unlikely(i + 1 == r->num_slots) ? 0 : i + 1);
|
|
|
|
}
|
|
|
|
|
2021-03-29 16:22:48 +00:00
|
|
|
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
/*
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
* Return 1 if we have pending transmissions in the tx ring.
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
* When everything is complete ring->head = ring->tail + 1 (modulo ring size)
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
*/
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
static inline int
|
|
|
|
nm_tx_pending(struct netmap_ring *r)
|
|
|
|
{
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
return nm_ring_next(r, r->tail) != r->head;
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
}
|
|
|
|
|
2018-12-05 11:57:16 +00:00
|
|
|
/* Compute the number of slots available in the netmap ring. We use
|
|
|
|
* ring->head as explained in the comment above nm_ring_empty(). */
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
static inline uint32_t
|
|
|
|
nm_ring_space(struct netmap_ring *ring)
|
|
|
|
{
|
2018-12-05 11:57:16 +00:00
|
|
|
int ret = ring->tail - ring->head;
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
if (ret < 0)
|
|
|
|
ret += ring->num_slots;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
#ifndef ND /* debug macros */
|
|
|
|
/* debug support */
|
|
|
|
#define ND(_fmt, ...) do {} while(0)
|
|
|
|
#define D(_fmt, ...) \
|
|
|
|
do { \
|
Update to the current version of netmap.
Mostly bugfixes or features developed in the past 6 months,
so this is a 10.1 candidate.
Basically no user API changes (some bugfixes in sys/net/netmap_user.h).
In detail:
1. netmap support for virtio-net, including in netmap mode.
Under bhyve and with a netmap backend [2] we reach over 1Mpps
with standard APIs (e.g. libpcap), and 5-8 Mpps in netmap mode.
2. (kernel) add support for multiple memory allocators, so we can
better partition physical and virtual interfaces giving access
to separate users. The most visible effect is one additional
argument to the various kernel functions to compute buffer
addresses. All netmap-supported drivers are affected, but changes
are mechanical and trivial
3. (kernel) simplify the prototype for *txsync() and *rxsync()
driver methods. All netmap drivers affected, changes mostly mechanical.
4. add support for netmap-monitor ports. Think of it as a mirroring
port on a physical switch: a netmap monitor port replicates traffic
present on the main port. Restrictions apply. Drive carefully.
5. if_lem.c: support for various paravirtualization features,
experimental and disabled by default.
Most of these are described in our ANCS'13 paper [1].
Paravirtualized support in netmap mode is new, and beats the
numbers in the paper by a large factor (under qemu-kvm,
we measured gues-host throughput up to 10-12 Mpps).
A lot of refactoring and additional documentation in the files
in sys/dev/netmap, but apart from #2 and #3 above, almost nothing
of this stuff is visible to other kernel parts.
Example programs in tools/tools/netmap have been updated with bugfixes
and to support more of the existing features.
This is meant to go into 10.1 so we plan an MFC before the Aug.22 deadline.
A lot of this code has been contributed by my colleagues at UNIPI,
including Giuseppe Lettieri, Vincenzo Maffione, Stefano Garzarella.
MFC after: 3 days.
2014-08-16 15:00:01 +00:00
|
|
|
struct timeval _t0; \
|
|
|
|
gettimeofday(&_t0, NULL); \
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
fprintf(stderr, "%03d.%06d %s [%d] " _fmt "\n", \
|
Update to the current version of netmap.
Mostly bugfixes or features developed in the past 6 months,
so this is a 10.1 candidate.
Basically no user API changes (some bugfixes in sys/net/netmap_user.h).
In detail:
1. netmap support for virtio-net, including in netmap mode.
Under bhyve and with a netmap backend [2] we reach over 1Mpps
with standard APIs (e.g. libpcap), and 5-8 Mpps in netmap mode.
2. (kernel) add support for multiple memory allocators, so we can
better partition physical and virtual interfaces giving access
to separate users. The most visible effect is one additional
argument to the various kernel functions to compute buffer
addresses. All netmap-supported drivers are affected, but changes
are mechanical and trivial
3. (kernel) simplify the prototype for *txsync() and *rxsync()
driver methods. All netmap drivers affected, changes mostly mechanical.
4. add support for netmap-monitor ports. Think of it as a mirroring
port on a physical switch: a netmap monitor port replicates traffic
present on the main port. Restrictions apply. Drive carefully.
5. if_lem.c: support for various paravirtualization features,
experimental and disabled by default.
Most of these are described in our ANCS'13 paper [1].
Paravirtualized support in netmap mode is new, and beats the
numbers in the paper by a large factor (under qemu-kvm,
we measured gues-host throughput up to 10-12 Mpps).
A lot of refactoring and additional documentation in the files
in sys/dev/netmap, but apart from #2 and #3 above, almost nothing
of this stuff is visible to other kernel parts.
Example programs in tools/tools/netmap have been updated with bugfixes
and to support more of the existing features.
This is meant to go into 10.1 so we plan an MFC before the Aug.22 deadline.
A lot of this code has been contributed by my colleagues at UNIPI,
including Giuseppe Lettieri, Vincenzo Maffione, Stefano Garzarella.
MFC after: 3 days.
2014-08-16 15:00:01 +00:00
|
|
|
(int)(_t0.tv_sec % 1000), (int)_t0.tv_usec, \
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
__FUNCTION__, __LINE__, ##__VA_ARGS__); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
/* Rate limited version of "D", lps indicates how many per second */
|
|
|
|
#define RD(lps, format, ...) \
|
|
|
|
do { \
|
Update to the current version of netmap.
Mostly bugfixes or features developed in the past 6 months,
so this is a 10.1 candidate.
Basically no user API changes (some bugfixes in sys/net/netmap_user.h).
In detail:
1. netmap support for virtio-net, including in netmap mode.
Under bhyve and with a netmap backend [2] we reach over 1Mpps
with standard APIs (e.g. libpcap), and 5-8 Mpps in netmap mode.
2. (kernel) add support for multiple memory allocators, so we can
better partition physical and virtual interfaces giving access
to separate users. The most visible effect is one additional
argument to the various kernel functions to compute buffer
addresses. All netmap-supported drivers are affected, but changes
are mechanical and trivial
3. (kernel) simplify the prototype for *txsync() and *rxsync()
driver methods. All netmap drivers affected, changes mostly mechanical.
4. add support for netmap-monitor ports. Think of it as a mirroring
port on a physical switch: a netmap monitor port replicates traffic
present on the main port. Restrictions apply. Drive carefully.
5. if_lem.c: support for various paravirtualization features,
experimental and disabled by default.
Most of these are described in our ANCS'13 paper [1].
Paravirtualized support in netmap mode is new, and beats the
numbers in the paper by a large factor (under qemu-kvm,
we measured gues-host throughput up to 10-12 Mpps).
A lot of refactoring and additional documentation in the files
in sys/dev/netmap, but apart from #2 and #3 above, almost nothing
of this stuff is visible to other kernel parts.
Example programs in tools/tools/netmap have been updated with bugfixes
and to support more of the existing features.
This is meant to go into 10.1 so we plan an MFC before the Aug.22 deadline.
A lot of this code has been contributed by my colleagues at UNIPI,
including Giuseppe Lettieri, Vincenzo Maffione, Stefano Garzarella.
MFC after: 3 days.
2014-08-16 15:00:01 +00:00
|
|
|
static int __t0, __cnt; \
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
struct timeval __xxts; \
|
|
|
|
gettimeofday(&__xxts, NULL); \
|
Update to the current version of netmap.
Mostly bugfixes or features developed in the past 6 months,
so this is a 10.1 candidate.
Basically no user API changes (some bugfixes in sys/net/netmap_user.h).
In detail:
1. netmap support for virtio-net, including in netmap mode.
Under bhyve and with a netmap backend [2] we reach over 1Mpps
with standard APIs (e.g. libpcap), and 5-8 Mpps in netmap mode.
2. (kernel) add support for multiple memory allocators, so we can
better partition physical and virtual interfaces giving access
to separate users. The most visible effect is one additional
argument to the various kernel functions to compute buffer
addresses. All netmap-supported drivers are affected, but changes
are mechanical and trivial
3. (kernel) simplify the prototype for *txsync() and *rxsync()
driver methods. All netmap drivers affected, changes mostly mechanical.
4. add support for netmap-monitor ports. Think of it as a mirroring
port on a physical switch: a netmap monitor port replicates traffic
present on the main port. Restrictions apply. Drive carefully.
5. if_lem.c: support for various paravirtualization features,
experimental and disabled by default.
Most of these are described in our ANCS'13 paper [1].
Paravirtualized support in netmap mode is new, and beats the
numbers in the paper by a large factor (under qemu-kvm,
we measured gues-host throughput up to 10-12 Mpps).
A lot of refactoring and additional documentation in the files
in sys/dev/netmap, but apart from #2 and #3 above, almost nothing
of this stuff is visible to other kernel parts.
Example programs in tools/tools/netmap have been updated with bugfixes
and to support more of the existing features.
This is meant to go into 10.1 so we plan an MFC before the Aug.22 deadline.
A lot of this code has been contributed by my colleagues at UNIPI,
including Giuseppe Lettieri, Vincenzo Maffione, Stefano Garzarella.
MFC after: 3 days.
2014-08-16 15:00:01 +00:00
|
|
|
if (__t0 != __xxts.tv_sec) { \
|
|
|
|
__t0 = __xxts.tv_sec; \
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
__cnt = 0; \
|
|
|
|
} \
|
|
|
|
if (__cnt++ < lps) { \
|
|
|
|
D(format, ##__VA_ARGS__); \
|
|
|
|
} \
|
|
|
|
} while (0)
|
|
|
|
#endif
|
|
|
|
|
2019-03-18 12:22:23 +00:00
|
|
|
/*
|
|
|
|
* this is a slightly optimized copy routine which rounds
|
|
|
|
* to multiple of 64 bytes and is often faster than dealing
|
|
|
|
* with other odd sizes. We assume there is enough room
|
|
|
|
* in the source and destination buffers.
|
|
|
|
*/
|
|
|
|
static inline void
|
|
|
|
nm_pkt_copy(const void *_src, void *_dst, int l)
|
|
|
|
{
|
|
|
|
const uint64_t *src = (const uint64_t *)_src;
|
|
|
|
uint64_t *dst = (uint64_t *)_dst;
|
|
|
|
|
|
|
|
if (unlikely(l >= 1024 || l % 64)) {
|
|
|
|
memcpy(dst, src, l);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
for (; likely(l > 0); l-=64) {
|
|
|
|
*dst++ = *src++;
|
|
|
|
*dst++ = *src++;
|
|
|
|
*dst++ = *src++;
|
|
|
|
*dst++ = *src++;
|
|
|
|
*dst++ = *src++;
|
|
|
|
*dst++ = *src++;
|
|
|
|
*dst++ = *src++;
|
|
|
|
*dst++ = *src++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef NETMAP_WITH_LIBS
|
|
|
|
/*
|
|
|
|
* Support for simple I/O libraries.
|
|
|
|
* Include other system headers required for compiling this.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef HAVE_NETMAP_WITH_LIBS
|
|
|
|
#define HAVE_NETMAP_WITH_LIBS
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <sys/time.h>
|
|
|
|
#include <sys/mman.h>
|
|
|
|
#include <sys/ioctl.h>
|
|
|
|
#include <sys/errno.h> /* EINVAL */
|
|
|
|
#include <fcntl.h> /* O_RDWR */
|
|
|
|
#include <unistd.h> /* close() */
|
|
|
|
#include <signal.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
struct nm_pkthdr { /* first part is the same as pcap_pkthdr */
|
2013-12-15 08:37:24 +00:00
|
|
|
struct timeval ts;
|
|
|
|
uint32_t caplen;
|
|
|
|
uint32_t len;
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
|
|
|
|
uint64_t flags; /* NM_MORE_PKTS etc */
|
|
|
|
#define NM_MORE_PKTS 1
|
|
|
|
struct nm_desc *d;
|
|
|
|
struct netmap_slot *slot;
|
|
|
|
uint8_t *buf;
|
2013-12-15 08:37:24 +00:00
|
|
|
};
|
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
struct nm_stat { /* same as pcap_stat */
|
2014-01-17 04:38:58 +00:00
|
|
|
u_int ps_recv;
|
|
|
|
u_int ps_drop;
|
|
|
|
u_int ps_ifdrop;
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
#ifdef WIN32 /* XXX or _WIN32 ? */
|
2014-01-17 04:38:58 +00:00
|
|
|
u_int bs_capt;
|
|
|
|
#endif /* WIN32 */
|
|
|
|
};
|
|
|
|
|
|
|
|
#define NM_ERRBUF_SIZE 512
|
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
struct nm_desc {
|
|
|
|
struct nm_desc *self; /* point to self if netmap. */
|
2013-12-15 08:37:24 +00:00
|
|
|
int fd;
|
|
|
|
void *mem;
|
2019-09-01 14:47:41 +00:00
|
|
|
size_t memsize;
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
int done_mmap; /* set if mem is the result of mmap */
|
|
|
|
struct netmap_if * const nifp;
|
2014-01-17 04:38:58 +00:00
|
|
|
uint16_t first_tx_ring, last_tx_ring, cur_tx_ring;
|
|
|
|
uint16_t first_rx_ring, last_rx_ring, cur_rx_ring;
|
|
|
|
struct nmreq req; /* also contains the nr_name = ifname */
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
struct nm_pkthdr hdr;
|
2014-01-17 04:38:58 +00:00
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
/*
|
|
|
|
* The memory contains netmap_if, rings and then buffers.
|
|
|
|
* Given a pointer (e.g. to nm_inject) we can compare with
|
|
|
|
* mem/buf_start/buf_end to tell if it is a buffer or
|
|
|
|
* some other descriptor in our region.
|
|
|
|
* We also store a pointer to some ring as it helps in the
|
|
|
|
* translation from buffer indexes to addresses.
|
|
|
|
*/
|
|
|
|
struct netmap_ring * const some_ring;
|
|
|
|
void * const buf_start;
|
|
|
|
void * const buf_end;
|
2014-01-17 04:38:58 +00:00
|
|
|
/* parameters from pcap_open_live */
|
|
|
|
int snaplen;
|
|
|
|
int promisc;
|
|
|
|
int to_ms;
|
|
|
|
char *errbuf;
|
|
|
|
|
|
|
|
/* save flags so we can restore them on close */
|
|
|
|
uint32_t if_flags;
|
|
|
|
uint32_t if_reqcap;
|
|
|
|
uint32_t if_curcap;
|
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
struct nm_stat st;
|
2014-01-17 04:38:58 +00:00
|
|
|
char msg[NM_ERRBUF_SIZE];
|
2013-12-15 08:37:24 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* when the descriptor is open correctly, d->self == d
|
2014-01-11 00:00:11 +00:00
|
|
|
* Eventually we should also use some magic number.
|
2013-12-15 08:37:24 +00:00
|
|
|
*/
|
2020-10-03 09:33:29 +00:00
|
|
|
#define P2NMD(p) ((const struct nm_desc *)(p))
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
#define IS_NETMAP_DESC(d) ((d) && P2NMD(d)->self == P2NMD(d))
|
2013-12-15 08:37:24 +00:00
|
|
|
#define NETMAP_FD(d) (P2NMD(d)->fd)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The callback, invoked on each received packet. Same as libpcap
|
|
|
|
*/
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
typedef void (*nm_cb_t)(u_char *, const struct nm_pkthdr *, const u_char *d);
|
2013-12-15 08:37:24 +00:00
|
|
|
|
|
|
|
/*
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
*--- the pcap-like API ---
|
|
|
|
*
|
|
|
|
* nm_open() opens a file descriptor, binds to a port and maps memory.
|
|
|
|
*
|
|
|
|
* ifname (netmap:foo or vale:foo) is the port name
|
2021-04-02 07:01:20 +00:00
|
|
|
* a suffix can indicate the following:
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
* ^ bind the host (sw) ring pair
|
2017-07-21 03:42:09 +00:00
|
|
|
* * bind host and NIC ring pairs
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
* -NN bind individual NIC ring pair
|
|
|
|
* {NN bind master side of pipe NN
|
|
|
|
* }NN bind slave side of pipe NN
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
* a suffix starting with / and the following flags,
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
* in any order:
|
|
|
|
* x exclusive access
|
2017-07-21 03:42:09 +00:00
|
|
|
* z zero copy monitor (both tx and rx)
|
|
|
|
* t monitor tx side (copy monitor)
|
|
|
|
* r monitor rx side (copy monitor)
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
* R bind only RX ring(s)
|
|
|
|
* T bind only TX ring(s)
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
*
|
|
|
|
* req provides the initial values of nmreq before parsing ifname.
|
|
|
|
* Remember that the ifname parsing will override the ring
|
|
|
|
* number in nm_ringid, and part of nm_flags;
|
|
|
|
* flags special functions, normally 0
|
|
|
|
* indicates which fields of *arg are significant
|
|
|
|
* arg special functions, normally NULL
|
|
|
|
* if passed a netmap_desc with mem != NULL,
|
|
|
|
* use that memory instead of mmap.
|
2013-12-15 08:37:24 +00:00
|
|
|
*/
|
2014-06-05 21:12:41 +00:00
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
static struct nm_desc *nm_open(const char *ifname, const struct nmreq *req,
|
|
|
|
uint64_t flags, const struct nm_desc *arg);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* nm_open can import some fields from the parent descriptor.
|
|
|
|
* These flags control which ones.
|
|
|
|
* Also in flags you can specify NETMAP_NO_TX_POLL and NETMAP_DO_RX_POLL,
|
|
|
|
* which set the initial value for these flags.
|
|
|
|
* Note that the 16 low bits of the flags are reserved for data
|
|
|
|
* that may go into the nmreq.
|
|
|
|
*/
|
|
|
|
enum {
|
|
|
|
NM_OPEN_NO_MMAP = 0x040000, /* reuse mmap from parent */
|
|
|
|
NM_OPEN_IFNAME = 0x080000, /* nr_name, nr_ringid, nr_flags */
|
|
|
|
NM_OPEN_ARG1 = 0x100000,
|
|
|
|
NM_OPEN_ARG2 = 0x200000,
|
|
|
|
NM_OPEN_ARG3 = 0x400000,
|
|
|
|
NM_OPEN_RING_CFG = 0x800000, /* tx|rx rings|slots */
|
|
|
|
};
|
|
|
|
|
2021-03-29 16:22:48 +00:00
|
|
|
|
2013-12-15 08:37:24 +00:00
|
|
|
/*
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
* nm_close() closes and restores the port to its previous state
|
2013-12-15 08:37:24 +00:00
|
|
|
*/
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
static int nm_close(struct nm_desc *);
|
2013-12-15 08:37:24 +00:00
|
|
|
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
/*
|
|
|
|
* nm_mmap() do mmap or inherit from parent if the nr_arg2
|
|
|
|
* (memory block) matches.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int nm_mmap(struct nm_desc *, const struct nm_desc *);
|
|
|
|
|
2013-12-15 08:37:24 +00:00
|
|
|
/*
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
* nm_inject() is the same as pcap_inject()
|
|
|
|
* nm_dispatch() is the same as pcap_dispatch()
|
|
|
|
* nm_nextpkt() is the same as pcap_next()
|
2013-12-15 08:37:24 +00:00
|
|
|
*/
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
static int nm_inject(struct nm_desc *, const void *, size_t);
|
|
|
|
static int nm_dispatch(struct nm_desc *, int, nm_cb_t, u_char *);
|
|
|
|
static u_char *nm_nextpkt(struct nm_desc *, struct nm_pkthdr *);
|
2013-12-15 08:37:24 +00:00
|
|
|
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
#ifdef _WIN32
|
|
|
|
|
|
|
|
intptr_t _get_osfhandle(int); /* defined in io.h in windows */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In windows we do not have yet native poll support, so we keep track
|
|
|
|
* of file descriptors associated to netmap ports to emulate poll on
|
|
|
|
* them and fall back on regular poll on other file descriptors.
|
|
|
|
*/
|
|
|
|
struct win_netmap_fd_list {
|
|
|
|
struct win_netmap_fd_list *next;
|
|
|
|
int win_netmap_fd;
|
|
|
|
HANDLE win_netmap_handle;
|
|
|
|
};
|
|
|
|
|
2016-10-18 15:41:57 +00:00
|
|
|
/*
|
|
|
|
* list head containing all the netmap opened fd and their
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
* windows HANDLE counterparts
|
|
|
|
*/
|
|
|
|
static struct win_netmap_fd_list *win_netmap_fd_list_head;
|
|
|
|
|
|
|
|
static void
|
|
|
|
win_insert_fd_record(int fd)
|
|
|
|
{
|
|
|
|
struct win_netmap_fd_list *curr;
|
|
|
|
|
|
|
|
for (curr = win_netmap_fd_list_head; curr; curr = curr->next) {
|
|
|
|
if (fd == curr->win_netmap_fd) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
curr = calloc(1, sizeof(*curr));
|
|
|
|
curr->next = win_netmap_fd_list_head;
|
|
|
|
curr->win_netmap_fd = fd;
|
|
|
|
curr->win_netmap_handle = IntToPtr(_get_osfhandle(fd));
|
|
|
|
win_netmap_fd_list_head = curr;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
win_remove_fd_record(int fd)
|
|
|
|
{
|
|
|
|
struct win_netmap_fd_list *curr = win_netmap_fd_list_head;
|
|
|
|
struct win_netmap_fd_list *prev = NULL;
|
|
|
|
for (; curr ; prev = curr, curr = curr->next) {
|
|
|
|
if (fd != curr->win_netmap_fd)
|
|
|
|
continue;
|
|
|
|
/* found the entry */
|
|
|
|
if (prev == NULL) { /* we are freeing the first entry */
|
|
|
|
win_netmap_fd_list_head = curr->next;
|
|
|
|
} else {
|
|
|
|
prev->next = curr->next;
|
|
|
|
}
|
|
|
|
free(curr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-03-29 16:22:48 +00:00
|
|
|
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
HANDLE
|
|
|
|
win_get_netmap_handle(int fd)
|
|
|
|
{
|
|
|
|
struct win_netmap_fd_list *curr;
|
|
|
|
|
|
|
|
for (curr = win_netmap_fd_list_head; curr; curr = curr->next) {
|
|
|
|
if (fd == curr->win_netmap_fd) {
|
|
|
|
return curr->win_netmap_handle;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* we need to wrap ioctl and mmap, at least for the netmap file descriptors
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* use this function only from netmap_user.h internal functions
|
2016-10-18 15:41:57 +00:00
|
|
|
* same as ioctl, returns 0 on success and -1 on error
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
*/
|
|
|
|
static int
|
|
|
|
win_nm_ioctl_internal(HANDLE h, int32_t ctlCode, void *arg)
|
|
|
|
{
|
|
|
|
DWORD bReturn = 0, szIn, szOut;
|
|
|
|
BOOL ioctlReturnStatus;
|
|
|
|
void *inParam = arg, *outParam = arg;
|
|
|
|
|
|
|
|
switch (ctlCode) {
|
|
|
|
case NETMAP_POLL:
|
|
|
|
szIn = sizeof(POLL_REQUEST_DATA);
|
|
|
|
szOut = sizeof(POLL_REQUEST_DATA);
|
|
|
|
break;
|
|
|
|
case NETMAP_MMAP:
|
|
|
|
szIn = 0;
|
|
|
|
szOut = sizeof(void*);
|
|
|
|
inParam = NULL; /* nothing on input */
|
|
|
|
break;
|
|
|
|
case NIOCTXSYNC:
|
|
|
|
case NIOCRXSYNC:
|
|
|
|
szIn = 0;
|
|
|
|
szOut = 0;
|
|
|
|
break;
|
|
|
|
case NIOCREGIF:
|
|
|
|
szIn = sizeof(struct nmreq);
|
|
|
|
szOut = sizeof(struct nmreq);
|
|
|
|
break;
|
|
|
|
case NIOCCONFIG:
|
|
|
|
D("unsupported NIOCCONFIG!");
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
default: /* a regular ioctl */
|
|
|
|
D("invalid ioctl %x on netmap fd", ctlCode);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
ioctlReturnStatus = DeviceIoControl(h,
|
|
|
|
ctlCode, inParam, szIn,
|
|
|
|
outParam, szOut,
|
|
|
|
&bReturn, NULL);
|
|
|
|
// XXX note windows returns 0 on error or async call, 1 on success
|
|
|
|
// we could call GetLastError() to figure out what happened
|
|
|
|
return ioctlReturnStatus ? 0 : -1;
|
|
|
|
}
|
|
|
|
|
2016-10-18 15:41:57 +00:00
|
|
|
/*
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
* this function is what must be called from user-space programs
|
2016-10-18 15:41:57 +00:00
|
|
|
* same as ioctl, returns 0 on success and -1 on error
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
*/
|
|
|
|
static int
|
|
|
|
win_nm_ioctl(int fd, int32_t ctlCode, void *arg)
|
|
|
|
{
|
|
|
|
HANDLE h = win_get_netmap_handle(fd);
|
|
|
|
|
|
|
|
if (h == NULL) {
|
|
|
|
return ioctl(fd, ctlCode, arg);
|
|
|
|
} else {
|
|
|
|
return win_nm_ioctl_internal(h, ctlCode, arg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define ioctl win_nm_ioctl /* from now on, within this file ... */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We cannot use the native mmap on windows
|
|
|
|
* The only parameter used is "fd", the other ones are just declared to
|
|
|
|
* make this signature comparable to the FreeBSD/Linux one
|
|
|
|
*/
|
|
|
|
static void *
|
|
|
|
win32_mmap_emulated(void *addr, size_t length, int prot, int flags, int fd, int32_t offset)
|
|
|
|
{
|
|
|
|
HANDLE h = win_get_netmap_handle(fd);
|
|
|
|
|
|
|
|
if (h == NULL) {
|
|
|
|
return mmap(addr, length, prot, flags, fd, offset);
|
|
|
|
} else {
|
|
|
|
MEMORY_ENTRY ret;
|
|
|
|
|
|
|
|
return win_nm_ioctl_internal(h, NETMAP_MMAP, &ret) ?
|
|
|
|
NULL : ret.pUsermodeVirtualAddress;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define mmap win32_mmap_emulated
|
|
|
|
|
|
|
|
#include <sys/poll.h> /* XXX needed to use the structure pollfd */
|
|
|
|
|
2016-10-18 15:41:57 +00:00
|
|
|
static int
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
win_nm_poll(struct pollfd *fds, int nfds, int timeout)
|
|
|
|
{
|
|
|
|
HANDLE h;
|
|
|
|
|
|
|
|
if (nfds != 1 || fds == NULL || (h = win_get_netmap_handle(fds->fd)) == NULL) {;
|
|
|
|
return poll(fds, nfds, timeout);
|
|
|
|
} else {
|
|
|
|
POLL_REQUEST_DATA prd;
|
|
|
|
|
|
|
|
prd.timeout = timeout;
|
|
|
|
prd.events = fds->events;
|
|
|
|
|
|
|
|
win_nm_ioctl_internal(h, NETMAP_POLL, &prd);
|
|
|
|
if ((prd.revents == POLLERR) || (prd.revents == STATUS_TIMEOUT)) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define poll win_nm_poll
|
|
|
|
|
2016-10-18 15:41:57 +00:00
|
|
|
static int
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
win_nm_open(char* pathname, int flags)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (strcmp(pathname, NETMAP_DEVICE_NAME) == 0) {
|
|
|
|
int fd = open(NETMAP_DEVICE_NAME, O_RDWR);
|
|
|
|
if (fd < 0) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
win_insert_fd_record(fd);
|
|
|
|
return fd;
|
|
|
|
} else {
|
|
|
|
return open(pathname, flags);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define open win_nm_open
|
|
|
|
|
2016-10-18 15:41:57 +00:00
|
|
|
static int
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
win_nm_close(int fd)
|
|
|
|
{
|
|
|
|
if (fd != -1) {
|
|
|
|
close(fd);
|
|
|
|
if (win_get_netmap_handle(fd) != NULL) {
|
|
|
|
win_remove_fd_record(fd);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define close win_nm_close
|
|
|
|
|
|
|
|
#endif /* _WIN32 */
|
|
|
|
|
|
|
|
static int
|
|
|
|
nm_is_identifier(const char *s, const char *e)
|
|
|
|
{
|
|
|
|
for (; s != e; s++) {
|
|
|
|
if (!isalnum(*s) && *s != '_') {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
2013-12-15 08:37:24 +00:00
|
|
|
|
2018-04-09 09:24:26 +00:00
|
|
|
#define MAXERRMSG 80
|
|
|
|
static int
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
nm_parse(const char *ifname, struct nm_desc *d, char *err)
|
2018-04-09 09:24:26 +00:00
|
|
|
{
|
|
|
|
int is_vale;
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
const char *port = NULL;
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
const char *vpname = NULL;
|
2018-04-09 09:24:26 +00:00
|
|
|
u_int namelen;
|
|
|
|
uint32_t nr_ringid = 0, nr_flags;
|
2020-10-03 09:33:29 +00:00
|
|
|
char errmsg[MAXERRMSG] = "", *tmp;
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
long num;
|
2017-07-21 03:42:09 +00:00
|
|
|
uint16_t nr_arg2 = 0;
|
2018-04-09 09:24:26 +00:00
|
|
|
enum { P_START, P_RNGSFXOK, P_GETNUM, P_FLAGS, P_FLAGSOK, P_MEMID } p_state;
|
|
|
|
|
|
|
|
errno = 0;
|
2013-12-15 08:37:24 +00:00
|
|
|
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
is_vale = (ifname[0] == 'v');
|
|
|
|
if (is_vale) {
|
|
|
|
port = index(ifname, ':');
|
|
|
|
if (port == NULL) {
|
|
|
|
snprintf(errmsg, MAXERRMSG,
|
|
|
|
"missing ':' in vale name");
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!nm_is_identifier(ifname + 4, port)) {
|
|
|
|
snprintf(errmsg, MAXERRMSG, "invalid bridge name");
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
vpname = ++port;
|
|
|
|
} else {
|
2013-12-15 08:37:24 +00:00
|
|
|
ifname += 7;
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
port = ifname;
|
|
|
|
}
|
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
/* scan for a separator */
|
2017-07-21 03:42:09 +00:00
|
|
|
for (; *port && !index("-*^{}/@", *port); port++)
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
;
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
|
|
|
|
if (is_vale && !nm_is_identifier(vpname, port)) {
|
|
|
|
snprintf(errmsg, MAXERRMSG, "invalid bridge port name");
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
namelen = port - ifname;
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
if (namelen >= sizeof(d->req.nr_name)) {
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
snprintf(errmsg, MAXERRMSG, "name too long");
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
goto fail;
|
2014-01-17 04:38:58 +00:00
|
|
|
}
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
memcpy(d->req.nr_name, ifname, namelen);
|
|
|
|
d->req.nr_name[namelen] = '\0';
|
2018-04-09 09:24:26 +00:00
|
|
|
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
p_state = P_START;
|
|
|
|
nr_flags = NR_REG_ALL_NIC; /* default for no suffix */
|
|
|
|
while (*port) {
|
|
|
|
switch (p_state) {
|
|
|
|
case P_START:
|
|
|
|
switch (*port) {
|
|
|
|
case '^': /* only SW ring */
|
|
|
|
nr_flags = NR_REG_SW;
|
|
|
|
p_state = P_RNGSFXOK;
|
|
|
|
break;
|
|
|
|
case '*': /* NIC and SW */
|
|
|
|
nr_flags = NR_REG_NIC_SW;
|
|
|
|
p_state = P_RNGSFXOK;
|
|
|
|
break;
|
|
|
|
case '-': /* one NIC ring pair */
|
|
|
|
nr_flags = NR_REG_ONE_NIC;
|
|
|
|
p_state = P_GETNUM;
|
|
|
|
break;
|
|
|
|
case '{': /* pipe (master endpoint) */
|
|
|
|
nr_flags = NR_REG_PIPE_MASTER;
|
|
|
|
p_state = P_GETNUM;
|
|
|
|
break;
|
2021-04-02 07:01:20 +00:00
|
|
|
case '}': /* pipe (slave endpoint) */
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
nr_flags = NR_REG_PIPE_SLAVE;
|
|
|
|
p_state = P_GETNUM;
|
|
|
|
break;
|
|
|
|
case '/': /* start of flags */
|
|
|
|
p_state = P_FLAGS;
|
|
|
|
break;
|
2017-07-21 03:42:09 +00:00
|
|
|
case '@': /* start of memid */
|
|
|
|
p_state = P_MEMID;
|
|
|
|
break;
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
default:
|
|
|
|
snprintf(errmsg, MAXERRMSG, "unknown modifier: '%c'", *port);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
port++;
|
|
|
|
break;
|
|
|
|
case P_RNGSFXOK:
|
|
|
|
switch (*port) {
|
|
|
|
case '/':
|
|
|
|
p_state = P_FLAGS;
|
|
|
|
break;
|
2017-07-21 03:42:09 +00:00
|
|
|
case '@':
|
|
|
|
p_state = P_MEMID;
|
|
|
|
break;
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
default:
|
|
|
|
snprintf(errmsg, MAXERRMSG, "unexpected character: '%c'", *port);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
port++;
|
|
|
|
break;
|
|
|
|
case P_GETNUM:
|
2020-10-03 09:33:29 +00:00
|
|
|
num = strtol(port, &tmp, 10);
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
if (num < 0 || num >= NETMAP_RING_MASK) {
|
|
|
|
snprintf(errmsg, MAXERRMSG, "'%ld' out of range [0, %d)",
|
|
|
|
num, NETMAP_RING_MASK);
|
|
|
|
goto fail;
|
|
|
|
}
|
2020-10-03 09:33:29 +00:00
|
|
|
port = tmp;
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
nr_ringid = num & NETMAP_RING_MASK;
|
|
|
|
p_state = P_RNGSFXOK;
|
|
|
|
break;
|
|
|
|
case P_FLAGS:
|
|
|
|
case P_FLAGSOK:
|
2017-07-21 03:42:09 +00:00
|
|
|
if (*port == '@') {
|
|
|
|
port++;
|
|
|
|
p_state = P_MEMID;
|
|
|
|
break;
|
|
|
|
}
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
switch (*port) {
|
|
|
|
case 'x':
|
|
|
|
nr_flags |= NR_EXCLUSIVE;
|
|
|
|
break;
|
|
|
|
case 'z':
|
|
|
|
nr_flags |= NR_ZCOPY_MON;
|
|
|
|
break;
|
|
|
|
case 't':
|
|
|
|
nr_flags |= NR_MONITOR_TX;
|
|
|
|
break;
|
|
|
|
case 'r':
|
|
|
|
nr_flags |= NR_MONITOR_RX;
|
|
|
|
break;
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
case 'R':
|
|
|
|
nr_flags |= NR_RX_RINGS_ONLY;
|
|
|
|
break;
|
|
|
|
case 'T':
|
|
|
|
nr_flags |= NR_TX_RINGS_ONLY;
|
|
|
|
break;
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
default:
|
|
|
|
snprintf(errmsg, MAXERRMSG, "unrecognized flag: '%c'", *port);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
port++;
|
|
|
|
p_state = P_FLAGSOK;
|
|
|
|
break;
|
2017-07-21 03:42:09 +00:00
|
|
|
case P_MEMID:
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
if (nr_arg2 != 0) {
|
2017-07-21 03:42:09 +00:00
|
|
|
snprintf(errmsg, MAXERRMSG, "double setting of memid");
|
|
|
|
goto fail;
|
|
|
|
}
|
2020-10-03 09:33:29 +00:00
|
|
|
num = strtol(port, &tmp, 10);
|
2017-07-21 03:42:09 +00:00
|
|
|
if (num <= 0) {
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
snprintf(errmsg, MAXERRMSG, "invalid memid %ld, must be >0", num);
|
|
|
|
goto fail;
|
2017-07-21 03:42:09 +00:00
|
|
|
}
|
2020-10-03 09:33:29 +00:00
|
|
|
port = tmp;
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
nr_arg2 = num;
|
|
|
|
p_state = P_RNGSFXOK;
|
2017-07-21 03:42:09 +00:00
|
|
|
break;
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
}
|
|
|
|
}
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
if (p_state != P_START && p_state != P_RNGSFXOK && p_state != P_FLAGSOK) {
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
snprintf(errmsg, MAXERRMSG, "unexpected end of port name");
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
goto fail;
|
|
|
|
}
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
ND("flags: %s %s %s %s",
|
|
|
|
(nr_flags & NR_EXCLUSIVE) ? "EXCLUSIVE" : "",
|
|
|
|
(nr_flags & NR_ZCOPY_MON) ? "ZCOPY_MON" : "",
|
|
|
|
(nr_flags & NR_MONITOR_TX) ? "MONITOR_TX" : "",
|
|
|
|
(nr_flags & NR_MONITOR_RX) ? "MONITOR_RX" : "");
|
2018-04-09 09:24:26 +00:00
|
|
|
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
d->req.nr_flags |= nr_flags;
|
|
|
|
d->req.nr_ringid |= nr_ringid;
|
|
|
|
d->req.nr_arg2 = nr_arg2;
|
|
|
|
|
|
|
|
d->self = d;
|
2018-04-09 09:24:26 +00:00
|
|
|
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
return 0;
|
2018-04-09 09:24:26 +00:00
|
|
|
fail:
|
|
|
|
if (!errno)
|
|
|
|
errno = EINVAL;
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
if (err)
|
|
|
|
strncpy(err, errmsg, MAXERRMSG);
|
2018-04-09 09:24:26 +00:00
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Try to open, return descriptor if successful, NULL otherwise.
|
|
|
|
* An invalid netmap name will return errno = 0;
|
|
|
|
* You can pass a pointer to a pre-filled nm_desc to add special
|
|
|
|
* parameters. Flags is used as follows
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
* NM_OPEN_NO_MMAP use the memory from arg, only XXX avoid mmap
|
2018-04-09 09:24:26 +00:00
|
|
|
* if the nr_arg2 (memory block) matches.
|
|
|
|
* NM_OPEN_ARG1 use req.nr_arg1 from arg
|
|
|
|
* NM_OPEN_ARG2 use req.nr_arg2 from arg
|
|
|
|
* NM_OPEN_RING_CFG user ring config from arg
|
|
|
|
*/
|
|
|
|
static struct nm_desc *
|
|
|
|
nm_open(const char *ifname, const struct nmreq *req,
|
|
|
|
uint64_t new_flags, const struct nm_desc *arg)
|
|
|
|
{
|
|
|
|
struct nm_desc *d = NULL;
|
|
|
|
const struct nm_desc *parent = arg;
|
|
|
|
char errmsg[MAXERRMSG] = "";
|
|
|
|
uint32_t nr_reg;
|
|
|
|
|
|
|
|
if (strncmp(ifname, "netmap:", 7) &&
|
|
|
|
strncmp(ifname, NM_BDG_NAME, strlen(NM_BDG_NAME))) {
|
|
|
|
errno = 0; /* name not recognised, not an error */
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
d = (struct nm_desc *)calloc(1, sizeof(*d));
|
2013-12-15 08:37:24 +00:00
|
|
|
if (d == NULL) {
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
snprintf(errmsg, MAXERRMSG, "nm_desc alloc failure");
|
2013-12-15 08:37:24 +00:00
|
|
|
errno = ENOMEM;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
d->self = d; /* set this early so nm_close() works */
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
d->fd = open(NETMAP_DEVICE_NAME, O_RDWR);
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
if (d->fd < 0) {
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
snprintf(errmsg, MAXERRMSG, "cannot open /dev/netmap: %s", strerror(errno));
|
2013-12-15 08:37:24 +00:00
|
|
|
goto fail;
|
|
|
|
}
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
if (req)
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
d->req = *req;
|
2018-04-09 09:24:26 +00:00
|
|
|
|
|
|
|
if (!(new_flags & NM_OPEN_IFNAME)) {
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
if (nm_parse(ifname, d, errmsg) < 0)
|
2018-04-09 09:24:26 +00:00
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
2013-12-15 08:37:24 +00:00
|
|
|
d->req.nr_version = NETMAP_API;
|
2018-04-09 09:24:26 +00:00
|
|
|
d->req.nr_ringid &= NETMAP_RING_MASK;
|
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
/* optionally import info from parent */
|
|
|
|
if (IS_NETMAP_DESC(parent) && new_flags) {
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
if (new_flags & NM_OPEN_ARG1)
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
D("overriding ARG1 %d", parent->req.nr_arg1);
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
d->req.nr_arg1 = new_flags & NM_OPEN_ARG1 ?
|
|
|
|
parent->req.nr_arg1 : 4;
|
|
|
|
if (new_flags & NM_OPEN_ARG2) {
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
D("overriding ARG2 %d", parent->req.nr_arg2);
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
d->req.nr_arg2 = parent->req.nr_arg2;
|
2018-04-09 09:24:26 +00:00
|
|
|
}
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
if (new_flags & NM_OPEN_ARG3)
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
D("overriding ARG3 %d", parent->req.nr_arg3);
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
d->req.nr_arg3 = new_flags & NM_OPEN_ARG3 ?
|
|
|
|
parent->req.nr_arg3 : 0;
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
if (new_flags & NM_OPEN_RING_CFG) {
|
|
|
|
D("overriding RING_CFG");
|
|
|
|
d->req.nr_tx_slots = parent->req.nr_tx_slots;
|
|
|
|
d->req.nr_rx_slots = parent->req.nr_rx_slots;
|
|
|
|
d->req.nr_tx_rings = parent->req.nr_tx_rings;
|
|
|
|
d->req.nr_rx_rings = parent->req.nr_rx_rings;
|
|
|
|
}
|
|
|
|
if (new_flags & NM_OPEN_IFNAME) {
|
|
|
|
D("overriding ifname %s ringid 0x%x flags 0x%x",
|
|
|
|
parent->req.nr_name, parent->req.nr_ringid,
|
|
|
|
parent->req.nr_flags);
|
|
|
|
memcpy(d->req.nr_name, parent->req.nr_name,
|
|
|
|
sizeof(d->req.nr_name));
|
|
|
|
d->req.nr_ringid = parent->req.nr_ringid;
|
|
|
|
d->req.nr_flags = parent->req.nr_flags;
|
|
|
|
}
|
|
|
|
}
|
2014-06-06 15:17:19 +00:00
|
|
|
/* add the *XPOLL flags */
|
|
|
|
d->req.nr_ringid |= new_flags & (NETMAP_NO_TX_POLL | NETMAP_DO_RX_POLL);
|
|
|
|
|
2014-01-17 04:38:58 +00:00
|
|
|
if (ioctl(d->fd, NIOCREGIF, &d->req)) {
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
snprintf(errmsg, MAXERRMSG, "NIOCREGIF failed: %s", strerror(errno));
|
2013-12-15 08:37:24 +00:00
|
|
|
goto fail;
|
2014-01-17 04:38:58 +00:00
|
|
|
}
|
2013-12-15 08:37:24 +00:00
|
|
|
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
nr_reg = d->req.nr_flags & NR_REG_MASK;
|
|
|
|
|
2017-07-21 03:42:09 +00:00
|
|
|
if (nr_reg == NR_REG_SW) { /* host stack */
|
2014-01-17 04:38:58 +00:00
|
|
|
d->first_tx_ring = d->last_tx_ring = d->req.nr_tx_rings;
|
|
|
|
d->first_rx_ring = d->last_rx_ring = d->req.nr_rx_rings;
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
} else if (nr_reg == NR_REG_ALL_NIC) { /* only nic */
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
d->first_tx_ring = 0;
|
|
|
|
d->first_rx_ring = 0;
|
2014-01-17 04:38:58 +00:00
|
|
|
d->last_tx_ring = d->req.nr_tx_rings - 1;
|
|
|
|
d->last_rx_ring = d->req.nr_rx_rings - 1;
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
} else if (nr_reg == NR_REG_NIC_SW) {
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
d->first_tx_ring = 0;
|
|
|
|
d->first_rx_ring = 0;
|
|
|
|
d->last_tx_ring = d->req.nr_tx_rings;
|
|
|
|
d->last_rx_ring = d->req.nr_rx_rings;
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
} else if (nr_reg == NR_REG_ONE_NIC) {
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
/* XXX check validity */
|
|
|
|
d->first_tx_ring = d->last_tx_ring =
|
Update to the current version of netmap.
Mostly bugfixes or features developed in the past 6 months,
so this is a 10.1 candidate.
Basically no user API changes (some bugfixes in sys/net/netmap_user.h).
In detail:
1. netmap support for virtio-net, including in netmap mode.
Under bhyve and with a netmap backend [2] we reach over 1Mpps
with standard APIs (e.g. libpcap), and 5-8 Mpps in netmap mode.
2. (kernel) add support for multiple memory allocators, so we can
better partition physical and virtual interfaces giving access
to separate users. The most visible effect is one additional
argument to the various kernel functions to compute buffer
addresses. All netmap-supported drivers are affected, but changes
are mechanical and trivial
3. (kernel) simplify the prototype for *txsync() and *rxsync()
driver methods. All netmap drivers affected, changes mostly mechanical.
4. add support for netmap-monitor ports. Think of it as a mirroring
port on a physical switch: a netmap monitor port replicates traffic
present on the main port. Restrictions apply. Drive carefully.
5. if_lem.c: support for various paravirtualization features,
experimental and disabled by default.
Most of these are described in our ANCS'13 paper [1].
Paravirtualized support in netmap mode is new, and beats the
numbers in the paper by a large factor (under qemu-kvm,
we measured gues-host throughput up to 10-12 Mpps).
A lot of refactoring and additional documentation in the files
in sys/dev/netmap, but apart from #2 and #3 above, almost nothing
of this stuff is visible to other kernel parts.
Example programs in tools/tools/netmap have been updated with bugfixes
and to support more of the existing features.
This is meant to go into 10.1 so we plan an MFC before the Aug.22 deadline.
A lot of this code has been contributed by my colleagues at UNIPI,
including Giuseppe Lettieri, Vincenzo Maffione, Stefano Garzarella.
MFC after: 3 days.
2014-08-16 15:00:01 +00:00
|
|
|
d->first_rx_ring = d->last_rx_ring = d->req.nr_ringid & NETMAP_RING_MASK;
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
} else { /* pipes */
|
|
|
|
d->first_tx_ring = d->last_tx_ring = 0;
|
|
|
|
d->first_rx_ring = d->last_rx_ring = 0;
|
2013-12-15 08:37:24 +00:00
|
|
|
}
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
/* if parent is defined, do nm_mmap() even if NM_OPEN_NO_MMAP is set */
|
|
|
|
if ((!(new_flags & NM_OPEN_NO_MMAP) || parent) && nm_mmap(d, parent)) {
|
|
|
|
snprintf(errmsg, MAXERRMSG, "mmap failed: %s", strerror(errno));
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
2021-03-29 16:22:48 +00:00
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
#ifdef DEBUG_NETMAP_USER
|
|
|
|
{ /* debugging code */
|
|
|
|
int i;
|
|
|
|
|
|
|
|
D("%s tx %d .. %d %d rx %d .. %d %d", ifname,
|
|
|
|
d->first_tx_ring, d->last_tx_ring, d->req.nr_tx_rings,
|
|
|
|
d->first_rx_ring, d->last_rx_ring, d->req.nr_rx_rings);
|
|
|
|
for (i = 0; i <= d->req.nr_tx_rings; i++) {
|
|
|
|
struct netmap_ring *r = NETMAP_TXRING(d->nifp, i);
|
|
|
|
D("TX%d %p h %d c %d t %d", i, r, r->head, r->cur, r->tail);
|
2014-01-17 04:38:58 +00:00
|
|
|
}
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
for (i = 0; i <= d->req.nr_rx_rings; i++) {
|
|
|
|
struct netmap_ring *r = NETMAP_RXRING(d->nifp, i);
|
|
|
|
D("RX%d %p h %d c %d t %d", i, r, r->head, r->cur, r->tail);
|
2013-12-15 08:37:24 +00:00
|
|
|
}
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
}
|
|
|
|
#endif /* debugging */
|
2014-06-05 21:12:41 +00:00
|
|
|
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
d->cur_tx_ring = d->first_tx_ring;
|
|
|
|
d->cur_rx_ring = d->first_rx_ring;
|
2013-12-15 08:37:24 +00:00
|
|
|
return d;
|
|
|
|
|
|
|
|
fail:
|
|
|
|
nm_close(d);
|
Sync netmap sources with the version in our private tree.
This commit contains large contributions from Giuseppe Lettieri and
Stefano Garzarella, is partly supported by grants from Verisign and Cisco,
and brings in the following:
- fix zerocopy monitor ports and introduce copying monitor ports
(the latter are lower performance but give access to all traffic
in parallel with the application)
- exclusive open mode, useful to implement solutions that recover
from crashes of the main netmap client (suggested by Patrick Kelsey)
- revised memory allocator in preparation for the 'passthrough mode'
(ptnetmap) recently presented at bsdcan. ptnetmap is described in
S. Garzarella, G. Lettieri, L. Rizzo;
Virtual device passthrough for high speed VM networking,
ACM/IEEE ANCS 2015, Oakland (CA) May 2015
http://info.iet.unipi.it/~luigi/research.html
- fix rx CRC handing on ixl
- add module dependencies for netmap when building drivers as modules
- minor simplifications to device-specific routines (*txsync, *rxsync)
- general code cleanup (remove unused variables, introduce macros
to access rings and remove duplicate code,
Applications do not need to be recompiled, unless of course
they want to use the new features (monitors and exclusive open).
Those willing to try this code on stable/10 can just update the
sys/dev/netmap/*, sys/net/netmap* with the version in HEAD
and apply the small patches to individual device drivers.
MFC after: 1 month
Sponsored by: (partly) Verisign, Cisco
2015-07-10 05:51:36 +00:00
|
|
|
if (errmsg[0])
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
D("%s %s", errmsg, ifname);
|
2014-11-10 08:31:56 +00:00
|
|
|
if (errno == 0)
|
|
|
|
errno = EINVAL;
|
2013-12-15 08:37:24 +00:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2021-03-29 16:22:48 +00:00
|
|
|
|
2013-12-15 08:37:24 +00:00
|
|
|
static int
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
nm_close(struct nm_desc *d)
|
2013-12-15 08:37:24 +00:00
|
|
|
{
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
/*
|
|
|
|
* ugly trick to avoid unused warnings
|
|
|
|
*/
|
|
|
|
static void *__xxzt[] __attribute__ ((unused)) =
|
2014-01-11 00:00:11 +00:00
|
|
|
{ (void *)nm_open, (void *)nm_inject,
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
(void *)nm_dispatch, (void *)nm_nextpkt } ;
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
|
2013-12-15 08:37:24 +00:00
|
|
|
if (d == NULL || d->self != d)
|
|
|
|
return EINVAL;
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
if (d->done_mmap && d->mem)
|
2013-12-15 08:37:24 +00:00
|
|
|
munmap(d->mem, d->memsize);
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
if (d->fd != -1) {
|
2013-12-15 08:37:24 +00:00
|
|
|
close(d->fd);
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
}
|
2016-10-18 15:41:57 +00:00
|
|
|
|
2013-12-15 08:37:24 +00:00
|
|
|
bzero(d, sizeof(*d));
|
|
|
|
free(d);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-04-02 07:01:20 +00:00
|
|
|
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
static int
|
|
|
|
nm_mmap(struct nm_desc *d, const struct nm_desc *parent)
|
|
|
|
{
|
2021-04-02 10:43:19 +00:00
|
|
|
if (d->done_mmap)
|
|
|
|
return 0;
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
|
|
|
|
if (IS_NETMAP_DESC(parent) && parent->mem &&
|
|
|
|
parent->req.nr_arg2 == d->req.nr_arg2) {
|
|
|
|
/* do not mmap, inherit from parent */
|
|
|
|
D("do not mmap, inherit from parent");
|
|
|
|
d->memsize = parent->memsize;
|
|
|
|
d->mem = parent->mem;
|
|
|
|
} else {
|
|
|
|
/* XXX TODO: check if memsize is too large (or there is overflow) */
|
|
|
|
d->memsize = d->req.nr_memsize;
|
|
|
|
d->mem = mmap(0, d->memsize, PROT_WRITE | PROT_READ, MAP_SHARED,
|
|
|
|
d->fd, 0);
|
|
|
|
if (d->mem == MAP_FAILED) {
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
d->done_mmap = 1;
|
|
|
|
}
|
netmap: align codebase to the current upstream (commit id 3fb001303718146)
Changelist:
- Turn tx_rings and rx_rings arrays into arrays of pointers to kring
structs. This patch includes fixes for ixv, ixl, ix, re, cxgbe, iflib,
vtnet and ptnet drivers to cope with the change.
- Generalize the nm_config() callback to accept a struct containing many
parameters.
- Introduce NKR_FAKERING to support buffers sharing (used for netmap
pipes)
- Improved API for external VALE modules.
- Various bug fixes and improvements to the netmap memory allocator,
including support for externally (userspace) allocated memory.
- Refactoring of netmap pipes: now linked rings share the same netmap
buffers, with a separate set of kring pointers (rhead, rcur, rtail).
Buffer swapping does not need to happen anymore.
- Large refactoring of the control API towards an extensible solution;
the goal is to allow the addition of more commands and extension of
existing ones (with new options) without the need of hacks or the
risk of running out of configuration space.
A new NIOCCTRL ioctl has been added to handle all the requests of the
new control API, which cover all the functionalities so far supported.
The netmap API bumps from 11 to 12 with this patch. Full backward
compatibility is provided for the old control command (NIOCREGIF), by
means of a new netmap_legacy module. Many parts of the old netmap.h
header has now been moved to netmap_legacy.h (included by netmap.h).
Approved by: hrs (mentor)
2018-04-12 07:20:50 +00:00
|
|
|
{
|
|
|
|
struct netmap_if *nifp = NETMAP_IF(d->mem, d->req.nr_offset);
|
|
|
|
struct netmap_ring *r = NETMAP_RXRING(nifp, d->first_rx_ring);
|
|
|
|
if ((void *)r == (void *)nifp) {
|
|
|
|
/* the descriptor is open for TX only */
|
|
|
|
r = NETMAP_TXRING(nifp, d->first_tx_ring);
|
|
|
|
}
|
|
|
|
|
|
|
|
*(struct netmap_if **)(uintptr_t)&(d->nifp) = nifp;
|
|
|
|
*(struct netmap_ring **)(uintptr_t)&d->some_ring = r;
|
|
|
|
*(void **)(uintptr_t)&d->buf_start = NETMAP_BUF(r, 0);
|
|
|
|
*(void **)(uintptr_t)&d->buf_end =
|
|
|
|
(char *)d->mem + d->memsize;
|
|
|
|
}
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
fail:
|
|
|
|
return EINVAL;
|
|
|
|
}
|
|
|
|
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
/*
|
|
|
|
* Same prototype as pcap_inject(), only need to cast.
|
|
|
|
*/
|
|
|
|
static int
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
nm_inject(struct nm_desc *d, const void *buf, size_t size)
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
{
|
2018-04-09 09:24:26 +00:00
|
|
|
u_int c, n = d->last_tx_ring - d->first_tx_ring + 1,
|
|
|
|
ri = d->cur_tx_ring;
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
|
2018-04-09 09:24:26 +00:00
|
|
|
for (c = 0; c < n ; c++, ri++) {
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
/* compute current ring to use */
|
|
|
|
struct netmap_ring *ring;
|
2018-10-23 08:55:16 +00:00
|
|
|
uint32_t i, j, idx;
|
|
|
|
size_t rem;
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
|
2014-01-17 04:38:58 +00:00
|
|
|
if (ri > d->last_tx_ring)
|
|
|
|
ri = d->first_tx_ring;
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
ring = NETMAP_TXRING(d->nifp, ri);
|
2018-10-23 08:55:16 +00:00
|
|
|
rem = size;
|
|
|
|
j = ring->cur;
|
|
|
|
while (rem > ring->nr_buf_size && j != ring->tail) {
|
|
|
|
rem -= ring->nr_buf_size;
|
|
|
|
j = nm_ring_next(ring, j);
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
}
|
2018-10-23 08:55:16 +00:00
|
|
|
if (j == ring->tail && rem > 0)
|
|
|
|
continue;
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
i = ring->cur;
|
2018-10-23 08:55:16 +00:00
|
|
|
while (i != j) {
|
|
|
|
idx = ring->slot[i].buf_idx;
|
|
|
|
ring->slot[i].len = ring->nr_buf_size;
|
|
|
|
ring->slot[i].flags = NS_MOREFRAG;
|
|
|
|
nm_pkt_copy(buf, NETMAP_BUF(ring, idx), ring->nr_buf_size);
|
|
|
|
i = nm_ring_next(ring, i);
|
2020-10-03 09:33:29 +00:00
|
|
|
buf = (const char *)buf + ring->nr_buf_size;
|
2018-10-23 08:55:16 +00:00
|
|
|
}
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
idx = ring->slot[i].buf_idx;
|
2018-10-23 08:55:16 +00:00
|
|
|
ring->slot[i].len = rem;
|
|
|
|
ring->slot[i].flags = 0;
|
|
|
|
nm_pkt_copy(buf, NETMAP_BUF(ring, idx), rem);
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
ring->head = ring->cur = nm_ring_next(ring, i);
|
2018-10-23 08:55:16 +00:00
|
|
|
d->cur_tx_ring = ri;
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
return size;
|
|
|
|
}
|
|
|
|
return 0; /* fail */
|
|
|
|
}
|
|
|
|
|
2021-03-29 16:22:48 +00:00
|
|
|
|
2013-12-15 08:37:24 +00:00
|
|
|
/*
|
|
|
|
* Same prototype as pcap_dispatch(), only need to cast.
|
|
|
|
*/
|
|
|
|
static int
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
nm_dispatch(struct nm_desc *d, int cnt, nm_cb_t cb, u_char *arg)
|
2013-12-15 08:37:24 +00:00
|
|
|
{
|
2014-01-17 04:38:58 +00:00
|
|
|
int n = d->last_rx_ring - d->first_rx_ring + 1;
|
|
|
|
int c, got = 0, ri = d->cur_rx_ring;
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
d->hdr.buf = NULL;
|
|
|
|
d->hdr.flags = NM_MORE_PKTS;
|
|
|
|
d->hdr.d = d;
|
2013-12-15 08:37:24 +00:00
|
|
|
|
|
|
|
if (cnt == 0)
|
|
|
|
cnt = -1;
|
|
|
|
/* cnt == -1 means infinite, but rings have a finite amount
|
|
|
|
* of buffers and the int is large enough that we never wrap,
|
|
|
|
* so we can omit checking for -1
|
|
|
|
*/
|
2018-04-09 09:24:26 +00:00
|
|
|
for (c=0; c < n && cnt != got; c++, ri++) {
|
2013-12-15 08:37:24 +00:00
|
|
|
/* compute current ring to use */
|
|
|
|
struct netmap_ring *ring;
|
|
|
|
|
2014-01-17 04:38:58 +00:00
|
|
|
if (ri > d->last_rx_ring)
|
|
|
|
ri = d->first_rx_ring;
|
2013-12-15 08:37:24 +00:00
|
|
|
ring = NETMAP_RXRING(d->nifp, ri);
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
for ( ; !nm_ring_empty(ring) && cnt != got; got++) {
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
u_int idx, i;
|
2018-12-05 11:57:16 +00:00
|
|
|
u_char *oldbuf;
|
|
|
|
struct netmap_slot *slot;
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
if (d->hdr.buf) { /* from previous round */
|
|
|
|
cb(arg, &d->hdr, d->hdr.buf);
|
|
|
|
}
|
|
|
|
i = ring->cur;
|
2018-12-05 11:57:16 +00:00
|
|
|
slot = &ring->slot[i];
|
|
|
|
idx = slot->buf_idx;
|
2018-04-09 09:24:26 +00:00
|
|
|
/* d->cur_rx_ring doesn't change inside this loop, but
|
|
|
|
* set it here, so it reflects d->hdr.buf's ring */
|
|
|
|
d->cur_rx_ring = ri;
|
2018-12-05 11:57:16 +00:00
|
|
|
d->hdr.slot = slot;
|
|
|
|
oldbuf = d->hdr.buf = (u_char *)NETMAP_BUF(ring, idx);
|
2014-01-17 04:38:58 +00:00
|
|
|
// __builtin_prefetch(buf);
|
2018-12-05 11:57:16 +00:00
|
|
|
d->hdr.len = d->hdr.caplen = slot->len;
|
|
|
|
while (slot->flags & NS_MOREFRAG) {
|
|
|
|
u_char *nbuf;
|
|
|
|
u_int oldlen = slot->len;
|
|
|
|
i = nm_ring_next(ring, i);
|
|
|
|
slot = &ring->slot[i];
|
|
|
|
d->hdr.len += slot->len;
|
|
|
|
nbuf = (u_char *)NETMAP_BUF(ring, slot->buf_idx);
|
2021-03-29 16:22:48 +00:00
|
|
|
if (oldbuf != NULL && nbuf - oldbuf == ring->nr_buf_size &&
|
2018-12-05 11:57:16 +00:00
|
|
|
oldlen == ring->nr_buf_size) {
|
|
|
|
d->hdr.caplen += slot->len;
|
|
|
|
oldbuf = nbuf;
|
|
|
|
} else {
|
|
|
|
oldbuf = NULL;
|
|
|
|
}
|
|
|
|
}
|
2013-12-15 08:37:24 +00:00
|
|
|
d->hdr.ts = ring->ts;
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
ring->head = ring->cur = nm_ring_next(ring, i);
|
2013-12-15 08:37:24 +00:00
|
|
|
}
|
|
|
|
}
|
Import the current version of netmap, aligned with the one on github.
This commit, long overdue, contains contributions in the last 2 years
from Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione, including:
+ fixes on monitor ports
+ the 'ptnet' virtual device driver, and ptnetmap backend, for
high speed virtual passthrough on VMs (bhyve fixes in an upcoming commit)
+ improved emulated netmap mode
+ more robust error handling
+ removal of stale code
+ various fixes to code and documentation (some mixup between RX and TX
parameters, and private and public variables)
We also include an additional tool, nmreplay, which is functionally
equivalent to tcpreplay but operating on netmap ports.
2016-10-16 14:13:32 +00:00
|
|
|
if (d->hdr.buf) { /* from previous round */
|
|
|
|
d->hdr.flags = 0;
|
|
|
|
cb(arg, &d->hdr, d->hdr.buf);
|
|
|
|
}
|
2013-12-15 08:37:24 +00:00
|
|
|
return got;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u_char *
|
This new version of netmap brings you the following:
- netmap pipes, providing bidirectional blocking I/O while moving
100+ Mpps between processes using shared memory channels
(no mistake: over one hundred million. But mind you, i said
*moving* not *processing*);
- kqueue support (BHyVe needs it);
- improved user library. Just the interface name lets you select a NIC,
host port, VALE switch port, netmap pipe, and individual queues.
The upcoming netmap-enabled libpcap will use this feature.
- optional extra buffers associated to netmap ports, for applications
that need to buffer data yet don't want to make copies.
- segmentation offloading for the VALE switch, useful between VMs.
and a number of bug fixes and performance improvements.
My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial
amount of work on these features so we owe them a big thanks.
There are some external repositories that can be of interest:
https://code.google.com/p/netmap
our public repository for netmap/VALE code, including
linux versions and other stuff that does not belong here,
such as python bindings.
https://code.google.com/p/netmap-libpcap
a clone of the libpcap repository with netmap support.
With this any libpcap client has access to most netmap
feature with no recompilation. E.g. tcpdump can filter
packets at 10-15 Mpps.
https://code.google.com/p/netmap-ipfw
a userspace version of ipfw+dummynet which uses netmap
to send/receive packets. Speed is up in the 7-10 Mpps
range per core for simple rulesets.
Both netmap-libpcap and netmap-ipfw will be merged upstream at some
point, but while this happens it is useful to have access to them.
And yes, this code will be merged soon. It is infinitely better
than the version currently in 10 and 9.
MFC after: 3 days
2014-02-15 04:53:04 +00:00
|
|
|
nm_nextpkt(struct nm_desc *d, struct nm_pkthdr *hdr)
|
2013-12-15 08:37:24 +00:00
|
|
|
{
|
2014-01-17 04:38:58 +00:00
|
|
|
int ri = d->cur_rx_ring;
|
2013-12-15 08:37:24 +00:00
|
|
|
|
|
|
|
do {
|
|
|
|
/* compute current ring to use */
|
|
|
|
struct netmap_ring *ring = NETMAP_RXRING(d->nifp, ri);
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
if (!nm_ring_empty(ring)) {
|
2013-12-15 08:37:24 +00:00
|
|
|
u_int i = ring->cur;
|
|
|
|
u_int idx = ring->slot[i].buf_idx;
|
|
|
|
u_char *buf = (u_char *)NETMAP_BUF(ring, idx);
|
2014-01-17 04:38:58 +00:00
|
|
|
|
|
|
|
// __builtin_prefetch(buf);
|
2013-12-15 08:37:24 +00:00
|
|
|
hdr->ts = ring->ts;
|
|
|
|
hdr->len = hdr->caplen = ring->slot[i].len;
|
It is 2014 and we have a new version of netmap.
Most relevant features:
- netmap emulation on any NIC, even those without native netmap support.
On the ixgbe we have measured about 4Mpps/core/queue in this mode,
which is still a lot more than with sockets/bpf.
- seamless interconnection of VALE switch, NICs and host stack.
If you disable accelerations on your NIC (say em0)
ifconfig em0 -txcsum -txcsum
you can use the VALE switch to connect the NIC and the host stack:
vale-ctl -h valeXX:em0
allowing sharing the NIC with other netmap clients.
- THE USER API HAS SLIGHTLY CHANGED (head/cur/tail pointers
instead of pointers/count as before). This was unavoidable to support,
in the future, multiple threads operating on the same rings.
Netmap clients require very small source code changes to compile again.
On the plus side, the new API should be easier to understand
and the internals are a lot simpler.
The manual page has been updated extensively to reflect the current
features and give some examples.
This is the result of work of several people including Giuseppe Lettieri,
Vincenzo Maffione, Michio Honda and myself, and has been financially
supported by EU projects CHANGE and OPENLAB, from NetApp University
Research Fund, NEC, and of course the Universita` di Pisa.
2014-01-06 12:53:15 +00:00
|
|
|
ring->cur = nm_ring_next(ring, i);
|
|
|
|
/* we could postpone advancing head if we want
|
|
|
|
* to hold the buffer. This can be supported in
|
|
|
|
* the future.
|
|
|
|
*/
|
|
|
|
ring->head = ring->cur;
|
2014-01-17 04:38:58 +00:00
|
|
|
d->cur_rx_ring = ri;
|
2013-12-15 08:37:24 +00:00
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
ri++;
|
2014-01-17 04:38:58 +00:00
|
|
|
if (ri > d->last_rx_ring)
|
|
|
|
ri = d->first_rx_ring;
|
|
|
|
} while (ri != d->cur_rx_ring);
|
2013-12-15 08:37:24 +00:00
|
|
|
return NULL; /* nothing found */
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* !HAVE_NETMAP_WITH_LIBS */
|
|
|
|
|
|
|
|
#endif /* NETMAP_WITH_LIBS */
|
|
|
|
|
Bring in support for netmap, a framework for very efficient packet
I/O from userspace, capable of line rate at 10G, see
http://info.iet.unipi.it/~luigi/netmap/
At this time I am bringing in only the generic code (sys/dev/netmap/
plus two headers under sys/net/), and some sample applications in
tools/tools/netmap. There is also a manpage in share/man/man4 [1]
In order to make use of the framework you need to build a kernel
with "device netmap", and patch individual drivers with the code
that you can find in
sys/dev/netmap/head.diff
The file will go away as the relevant pieces are committed to
the various device drivers, which should happen in a few days
after talking to the driver maintainers.
Netmap support is available at the moment for Intel 10G and 1G
cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re").
I have partial patches for "bge" and am starting to work on "cxgbe".
Hopefully changes are trivial enough so interested third parties
can submit their patches. Interested people can contact me
for advice on how to add netmap support to specific devices.
CREDITS:
Netmap has been developed by Luigi Rizzo and other collaborators
at the Universita` di Pisa, and supported by EU project CHANGE
(http://www.change-project.eu/)
The code is distributed under a BSD Copyright.
[1] In my opinion is a bad idea to have all manpage in one directory.
We should place kernel documentation in the same dir that contains
the code, which would make it much simpler to keep doc and code
in sync, reduce the clutter in share/man/ and incidentally is
the policy used for all of userspace code.
Makefiles and doc tools can be trivially adjusted to find the
manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
|
|
|
#endif /* _NET_NETMAP_USER_H_ */
|