freebsd-skq/sys/net/netmap_user.h

1190 lines
31 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2011-2016 Universita` di Pisa
* All rights reserved.
*
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
*/
/*
* $FreeBSD$
*
* Functions and macros to manipulate netmap structures and packets
* in userspace. See netmap(4) for more information.
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
*
* The address of the struct netmap_if, say nifp, is computed from the
* value returned from ioctl(.., NIOCREG, ...) and the mmap region:
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
* ioctl(fd, NIOCREG, &req);
* mem = mmap(0, ... );
* nifp = NETMAP_IF(mem, req.nr_nifp);
* (so simple, we could just do it manually)
*
* From there:
* struct netmap_ring *NETMAP_TXRING(nifp, index)
* struct netmap_ring *NETMAP_RXRING(nifp, index)
* we can access ring->cur, ring->head, ring->tail, etc.
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
*
* ring->slot[i] gives us the i-th slot (we can access
* directly len, flags, buf_idx)
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
*
2013-05-30 13:41:19 +00:00
* char *buf = NETMAP_BUF(ring, x) returns a pointer to
* the buffer numbered x
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
*
* All ring indexes (head, cur, tail) should always move forward.
* To compute the next index in a circular ring you can use
* i = nm_ring_next(ring, i);
*
* To ease porting apps from pcap to netmap we supply a few functions
* that can be called to open, close, read and write on netmap in a way
* similar to libpcap. Note that the read/write function depend on
* an ioctl()/select()/poll() being issued to refill rings or push
* packets out.
*
* In order to use these, include #define NETMAP_WITH_LIBS
* in the source file that invokes these functions.
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
*/
#ifndef _NET_NETMAP_USER_H_
#define _NET_NETMAP_USER_H_
#define NETMAP_DEVICE_NAME "/dev/netmap"
#ifdef __CYGWIN__
/*
* we can compile userspace apps with either cygwin or msvc,
* and we use _WIN32 to identify windows specific code
*/
#ifndef _WIN32
#define _WIN32
#endif /* _WIN32 */
#endif /* __CYGWIN__ */
#ifdef _WIN32
#undef NETMAP_DEVICE_NAME
#define NETMAP_DEVICE_NAME "/proc/sys/DosDevices/Global/netmap"
#include <windows.h>
#include <WinDef.h>
#include <sys/cygwin.h>
#endif /* _WIN32 */
#include <stdint.h>
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
#include <sys/socket.h> /* apple needs sockaddr */
#include <net/if.h> /* IFNAMSIZ */
#include <ctype.h>
#include <string.h> /* memset */
#include <sys/time.h> /* gettimeofday */
#ifndef likely
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#endif /* likely and unlikely */
#include <net/netmap.h>
/* helper macro */
#define _NETMAP_OFFSET(type, ptr, offset) \
((type)(void *)((char *)(ptr) + (offset)))
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
#define NETMAP_IF(_base, _ofs) _NETMAP_OFFSET(struct netmap_if *, _base, _ofs)
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
#define NETMAP_TXRING(nifp, index) _NETMAP_OFFSET(struct netmap_ring *, \
nifp, (nifp)->ring_ofs[index] )
#define NETMAP_RXRING(nifp, index) _NETMAP_OFFSET(struct netmap_ring *, \
nifp, (nifp)->ring_ofs[index + (nifp)->ni_tx_rings + \
(nifp)->ni_host_tx_rings] )
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
#define NETMAP_BUF(ring, index) \
((char *)(ring) + (ring)->buf_ofs + ((size_t)(index)*(ring)->nr_buf_size))
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
#define NETMAP_BUF_IDX(ring, buf) \
( ((char *)(buf) - ((char *)(ring) + (ring)->buf_ofs) ) / \
(ring)->nr_buf_size )
/* read the offset field in a ring's slot */
#define NETMAP_ROFFSET(ring, slot) \
((slot)->ptr & (ring)->offset_mask)
/* update the offset field in a ring's slot */
#define NETMAP_WOFFSET(ring, slot, offset) \
do { (slot)->ptr = ((slot)->ptr & ~(ring)->offset_mask) | \
((offset) & (ring)->offset_mask); } while (0)
/* obtain the start of the buffer pointed to by a ring's slot, taking the
* offset field into account
*/
#define NETMAP_BUF_OFFSET(ring, slot) \
(NETMAP_BUF(ring, (slot)->buf_idx) + NETMAP_ROFFSET(ring, slot))
static inline uint32_t
nm_ring_next(struct netmap_ring *r, uint32_t i)
{
return ( unlikely(i + 1 == r->num_slots) ? 0 : i + 1);
}
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
/*
* Return 1 if we have pending transmissions in the tx ring.
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
* When everything is complete ring->head = ring->tail + 1 (modulo ring size)
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
*/
static inline int
nm_tx_pending(struct netmap_ring *r)
{
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
return nm_ring_next(r, r->tail) != r->head;
}
/* Compute the number of slots available in the netmap ring. We use
* ring->head as explained in the comment above nm_ring_empty(). */
static inline uint32_t
nm_ring_space(struct netmap_ring *ring)
{
int ret = ring->tail - ring->head;
if (ret < 0)
ret += ring->num_slots;
return ret;
}
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
#ifndef ND /* debug macros */
/* debug support */
#define ND(_fmt, ...) do {} while(0)
#define D(_fmt, ...) \
do { \
Update to the current version of netmap. Mostly bugfixes or features developed in the past 6 months, so this is a 10.1 candidate. Basically no user API changes (some bugfixes in sys/net/netmap_user.h). In detail: 1. netmap support for virtio-net, including in netmap mode. Under bhyve and with a netmap backend [2] we reach over 1Mpps with standard APIs (e.g. libpcap), and 5-8 Mpps in netmap mode. 2. (kernel) add support for multiple memory allocators, so we can better partition physical and virtual interfaces giving access to separate users. The most visible effect is one additional argument to the various kernel functions to compute buffer addresses. All netmap-supported drivers are affected, but changes are mechanical and trivial 3. (kernel) simplify the prototype for *txsync() and *rxsync() driver methods. All netmap drivers affected, changes mostly mechanical. 4. add support for netmap-monitor ports. Think of it as a mirroring port on a physical switch: a netmap monitor port replicates traffic present on the main port. Restrictions apply. Drive carefully. 5. if_lem.c: support for various paravirtualization features, experimental and disabled by default. Most of these are described in our ANCS'13 paper [1]. Paravirtualized support in netmap mode is new, and beats the numbers in the paper by a large factor (under qemu-kvm, we measured gues-host throughput up to 10-12 Mpps). A lot of refactoring and additional documentation in the files in sys/dev/netmap, but apart from #2 and #3 above, almost nothing of this stuff is visible to other kernel parts. Example programs in tools/tools/netmap have been updated with bugfixes and to support more of the existing features. This is meant to go into 10.1 so we plan an MFC before the Aug.22 deadline. A lot of this code has been contributed by my colleagues at UNIPI, including Giuseppe Lettieri, Vincenzo Maffione, Stefano Garzarella. MFC after: 3 days.
2014-08-16 15:00:01 +00:00
struct timeval _t0; \
gettimeofday(&_t0, NULL); \
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
fprintf(stderr, "%03d.%06d %s [%d] " _fmt "\n", \
Update to the current version of netmap. Mostly bugfixes or features developed in the past 6 months, so this is a 10.1 candidate. Basically no user API changes (some bugfixes in sys/net/netmap_user.h). In detail: 1. netmap support for virtio-net, including in netmap mode. Under bhyve and with a netmap backend [2] we reach over 1Mpps with standard APIs (e.g. libpcap), and 5-8 Mpps in netmap mode. 2. (kernel) add support for multiple memory allocators, so we can better partition physical and virtual interfaces giving access to separate users. The most visible effect is one additional argument to the various kernel functions to compute buffer addresses. All netmap-supported drivers are affected, but changes are mechanical and trivial 3. (kernel) simplify the prototype for *txsync() and *rxsync() driver methods. All netmap drivers affected, changes mostly mechanical. 4. add support for netmap-monitor ports. Think of it as a mirroring port on a physical switch: a netmap monitor port replicates traffic present on the main port. Restrictions apply. Drive carefully. 5. if_lem.c: support for various paravirtualization features, experimental and disabled by default. Most of these are described in our ANCS'13 paper [1]. Paravirtualized support in netmap mode is new, and beats the numbers in the paper by a large factor (under qemu-kvm, we measured gues-host throughput up to 10-12 Mpps). A lot of refactoring and additional documentation in the files in sys/dev/netmap, but apart from #2 and #3 above, almost nothing of this stuff is visible to other kernel parts. Example programs in tools/tools/netmap have been updated with bugfixes and to support more of the existing features. This is meant to go into 10.1 so we plan an MFC before the Aug.22 deadline. A lot of this code has been contributed by my colleagues at UNIPI, including Giuseppe Lettieri, Vincenzo Maffione, Stefano Garzarella. MFC after: 3 days.
2014-08-16 15:00:01 +00:00
(int)(_t0.tv_sec % 1000), (int)_t0.tv_usec, \
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
__FUNCTION__, __LINE__, ##__VA_ARGS__); \
} while (0)
/* Rate limited version of "D", lps indicates how many per second */
#define RD(lps, format, ...) \
do { \
Update to the current version of netmap. Mostly bugfixes or features developed in the past 6 months, so this is a 10.1 candidate. Basically no user API changes (some bugfixes in sys/net/netmap_user.h). In detail: 1. netmap support for virtio-net, including in netmap mode. Under bhyve and with a netmap backend [2] we reach over 1Mpps with standard APIs (e.g. libpcap), and 5-8 Mpps in netmap mode. 2. (kernel) add support for multiple memory allocators, so we can better partition physical and virtual interfaces giving access to separate users. The most visible effect is one additional argument to the various kernel functions to compute buffer addresses. All netmap-supported drivers are affected, but changes are mechanical and trivial 3. (kernel) simplify the prototype for *txsync() and *rxsync() driver methods. All netmap drivers affected, changes mostly mechanical. 4. add support for netmap-monitor ports. Think of it as a mirroring port on a physical switch: a netmap monitor port replicates traffic present on the main port. Restrictions apply. Drive carefully. 5. if_lem.c: support for various paravirtualization features, experimental and disabled by default. Most of these are described in our ANCS'13 paper [1]. Paravirtualized support in netmap mode is new, and beats the numbers in the paper by a large factor (under qemu-kvm, we measured gues-host throughput up to 10-12 Mpps). A lot of refactoring and additional documentation in the files in sys/dev/netmap, but apart from #2 and #3 above, almost nothing of this stuff is visible to other kernel parts. Example programs in tools/tools/netmap have been updated with bugfixes and to support more of the existing features. This is meant to go into 10.1 so we plan an MFC before the Aug.22 deadline. A lot of this code has been contributed by my colleagues at UNIPI, including Giuseppe Lettieri, Vincenzo Maffione, Stefano Garzarella. MFC after: 3 days.
2014-08-16 15:00:01 +00:00
static int __t0, __cnt; \
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
struct timeval __xxts; \
gettimeofday(&__xxts, NULL); \
Update to the current version of netmap. Mostly bugfixes or features developed in the past 6 months, so this is a 10.1 candidate. Basically no user API changes (some bugfixes in sys/net/netmap_user.h). In detail: 1. netmap support for virtio-net, including in netmap mode. Under bhyve and with a netmap backend [2] we reach over 1Mpps with standard APIs (e.g. libpcap), and 5-8 Mpps in netmap mode. 2. (kernel) add support for multiple memory allocators, so we can better partition physical and virtual interfaces giving access to separate users. The most visible effect is one additional argument to the various kernel functions to compute buffer addresses. All netmap-supported drivers are affected, but changes are mechanical and trivial 3. (kernel) simplify the prototype for *txsync() and *rxsync() driver methods. All netmap drivers affected, changes mostly mechanical. 4. add support for netmap-monitor ports. Think of it as a mirroring port on a physical switch: a netmap monitor port replicates traffic present on the main port. Restrictions apply. Drive carefully. 5. if_lem.c: support for various paravirtualization features, experimental and disabled by default. Most of these are described in our ANCS'13 paper [1]. Paravirtualized support in netmap mode is new, and beats the numbers in the paper by a large factor (under qemu-kvm, we measured gues-host throughput up to 10-12 Mpps). A lot of refactoring and additional documentation in the files in sys/dev/netmap, but apart from #2 and #3 above, almost nothing of this stuff is visible to other kernel parts. Example programs in tools/tools/netmap have been updated with bugfixes and to support more of the existing features. This is meant to go into 10.1 so we plan an MFC before the Aug.22 deadline. A lot of this code has been contributed by my colleagues at UNIPI, including Giuseppe Lettieri, Vincenzo Maffione, Stefano Garzarella. MFC after: 3 days.
2014-08-16 15:00:01 +00:00
if (__t0 != __xxts.tv_sec) { \
__t0 = __xxts.tv_sec; \
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
__cnt = 0; \
} \
if (__cnt++ < lps) { \
D(format, ##__VA_ARGS__); \
} \
} while (0)
#endif
/*
* this is a slightly optimized copy routine which rounds
* to multiple of 64 bytes and is often faster than dealing
* with other odd sizes. We assume there is enough room
* in the source and destination buffers.
*/
static inline void
nm_pkt_copy(const void *_src, void *_dst, int l)
{
const uint64_t *src = (const uint64_t *)_src;
uint64_t *dst = (uint64_t *)_dst;
if (unlikely(l >= 1024 || l % 64)) {
memcpy(dst, src, l);
return;
}
for (; likely(l > 0); l-=64) {
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
*dst++ = *src++;
}
}
#ifdef NETMAP_WITH_LIBS
/*
* Support for simple I/O libraries.
* Include other system headers required for compiling this.
*/
#ifndef HAVE_NETMAP_WITH_LIBS
#define HAVE_NETMAP_WITH_LIBS
#include <stdio.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/errno.h> /* EINVAL */
#include <fcntl.h> /* O_RDWR */
#include <unistd.h> /* close() */
#include <signal.h>
#include <stdlib.h>
struct nm_pkthdr { /* first part is the same as pcap_pkthdr */
struct timeval ts;
uint32_t caplen;
uint32_t len;
uint64_t flags; /* NM_MORE_PKTS etc */
#define NM_MORE_PKTS 1
struct nm_desc *d;
struct netmap_slot *slot;
uint8_t *buf;
};
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
struct nm_stat { /* same as pcap_stat */
2014-01-17 04:38:58 +00:00
u_int ps_recv;
u_int ps_drop;
u_int ps_ifdrop;
#ifdef WIN32 /* XXX or _WIN32 ? */
2014-01-17 04:38:58 +00:00
u_int bs_capt;
#endif /* WIN32 */
};
#define NM_ERRBUF_SIZE 512
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
struct nm_desc {
struct nm_desc *self; /* point to self if netmap. */
int fd;
void *mem;
size_t memsize;
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
int done_mmap; /* set if mem is the result of mmap */
struct netmap_if * const nifp;
2014-01-17 04:38:58 +00:00
uint16_t first_tx_ring, last_tx_ring, cur_tx_ring;
uint16_t first_rx_ring, last_rx_ring, cur_rx_ring;
struct nmreq req; /* also contains the nr_name = ifname */
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
struct nm_pkthdr hdr;
2014-01-17 04:38:58 +00:00
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
/*
* The memory contains netmap_if, rings and then buffers.
* Given a pointer (e.g. to nm_inject) we can compare with
* mem/buf_start/buf_end to tell if it is a buffer or
* some other descriptor in our region.
* We also store a pointer to some ring as it helps in the
* translation from buffer indexes to addresses.
*/
struct netmap_ring * const some_ring;
void * const buf_start;
void * const buf_end;
2014-01-17 04:38:58 +00:00
/* parameters from pcap_open_live */
int snaplen;
int promisc;
int to_ms;
char *errbuf;
/* save flags so we can restore them on close */
uint32_t if_flags;
uint32_t if_reqcap;
uint32_t if_curcap;
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
struct nm_stat st;
2014-01-17 04:38:58 +00:00
char msg[NM_ERRBUF_SIZE];
};
/*
* when the descriptor is open correctly, d->self == d
* Eventually we should also use some magic number.
*/
#define P2NMD(p) ((const struct nm_desc *)(p))
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
#define IS_NETMAP_DESC(d) ((d) && P2NMD(d)->self == P2NMD(d))
#define NETMAP_FD(d) (P2NMD(d)->fd)
/*
* The callback, invoked on each received packet. Same as libpcap
*/
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
typedef void (*nm_cb_t)(u_char *, const struct nm_pkthdr *, const u_char *d);
/*
*--- the pcap-like API ---
*
* nm_open() opens a file descriptor, binds to a port and maps memory.
*
* ifname (netmap:foo or vale:foo) is the port name
* a suffix can indicate the following:
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
* ^ bind the host (sw) ring pair
* * bind host and NIC ring pairs
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
* -NN bind individual NIC ring pair
* {NN bind master side of pipe NN
* }NN bind slave side of pipe NN
* a suffix starting with / and the following flags,
2015-07-10 05:51:36 +00:00
* in any order:
* x exclusive access
* z zero copy monitor (both tx and rx)
* t monitor tx side (copy monitor)
* r monitor rx side (copy monitor)
* R bind only RX ring(s)
* T bind only TX ring(s)
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
*
* req provides the initial values of nmreq before parsing ifname.
* Remember that the ifname parsing will override the ring
* number in nm_ringid, and part of nm_flags;
* flags special functions, normally 0
* indicates which fields of *arg are significant
* arg special functions, normally NULL
* if passed a netmap_desc with mem != NULL,
* use that memory instead of mmap.
*/
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
static struct nm_desc *nm_open(const char *ifname, const struct nmreq *req,
uint64_t flags, const struct nm_desc *arg);
/*
* nm_open can import some fields from the parent descriptor.
* These flags control which ones.
* Also in flags you can specify NETMAP_NO_TX_POLL and NETMAP_DO_RX_POLL,
* which set the initial value for these flags.
* Note that the 16 low bits of the flags are reserved for data
* that may go into the nmreq.
*/
enum {
NM_OPEN_NO_MMAP = 0x040000, /* reuse mmap from parent */
NM_OPEN_IFNAME = 0x080000, /* nr_name, nr_ringid, nr_flags */
NM_OPEN_ARG1 = 0x100000,
NM_OPEN_ARG2 = 0x200000,
NM_OPEN_ARG3 = 0x400000,
NM_OPEN_RING_CFG = 0x800000, /* tx|rx rings|slots */
};
/*
* nm_close() closes and restores the port to its previous state
*/
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
static int nm_close(struct nm_desc *);
/*
* nm_mmap() do mmap or inherit from parent if the nr_arg2
* (memory block) matches.
*/
static int nm_mmap(struct nm_desc *, const struct nm_desc *);
/*
* nm_inject() is the same as pcap_inject()
* nm_dispatch() is the same as pcap_dispatch()
* nm_nextpkt() is the same as pcap_next()
*/
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
static int nm_inject(struct nm_desc *, const void *, size_t);
static int nm_dispatch(struct nm_desc *, int, nm_cb_t, u_char *);
static u_char *nm_nextpkt(struct nm_desc *, struct nm_pkthdr *);
#ifdef _WIN32
intptr_t _get_osfhandle(int); /* defined in io.h in windows */
/*
* In windows we do not have yet native poll support, so we keep track
* of file descriptors associated to netmap ports to emulate poll on
* them and fall back on regular poll on other file descriptors.
*/
struct win_netmap_fd_list {
struct win_netmap_fd_list *next;
int win_netmap_fd;
HANDLE win_netmap_handle;
};
/*
* list head containing all the netmap opened fd and their
* windows HANDLE counterparts
*/
static struct win_netmap_fd_list *win_netmap_fd_list_head;
static void
win_insert_fd_record(int fd)
{
struct win_netmap_fd_list *curr;
for (curr = win_netmap_fd_list_head; curr; curr = curr->next) {
if (fd == curr->win_netmap_fd) {
return;
}
}
curr = calloc(1, sizeof(*curr));
curr->next = win_netmap_fd_list_head;
curr->win_netmap_fd = fd;
curr->win_netmap_handle = IntToPtr(_get_osfhandle(fd));
win_netmap_fd_list_head = curr;
}
void
win_remove_fd_record(int fd)
{
struct win_netmap_fd_list *curr = win_netmap_fd_list_head;
struct win_netmap_fd_list *prev = NULL;
for (; curr ; prev = curr, curr = curr->next) {
if (fd != curr->win_netmap_fd)
continue;
/* found the entry */
if (prev == NULL) { /* we are freeing the first entry */
win_netmap_fd_list_head = curr->next;
} else {
prev->next = curr->next;
}
free(curr);
break;
}
}
HANDLE
win_get_netmap_handle(int fd)
{
struct win_netmap_fd_list *curr;
for (curr = win_netmap_fd_list_head; curr; curr = curr->next) {
if (fd == curr->win_netmap_fd) {
return curr->win_netmap_handle;
}
}
return NULL;
}
/*
* we need to wrap ioctl and mmap, at least for the netmap file descriptors
*/
/*
* use this function only from netmap_user.h internal functions
* same as ioctl, returns 0 on success and -1 on error
*/
static int
win_nm_ioctl_internal(HANDLE h, int32_t ctlCode, void *arg)
{
DWORD bReturn = 0, szIn, szOut;
BOOL ioctlReturnStatus;
void *inParam = arg, *outParam = arg;
switch (ctlCode) {
case NETMAP_POLL:
szIn = sizeof(POLL_REQUEST_DATA);
szOut = sizeof(POLL_REQUEST_DATA);
break;
case NETMAP_MMAP:
szIn = 0;
szOut = sizeof(void*);
inParam = NULL; /* nothing on input */
break;
case NIOCTXSYNC:
case NIOCRXSYNC:
szIn = 0;
szOut = 0;
break;
case NIOCREGIF:
szIn = sizeof(struct nmreq);
szOut = sizeof(struct nmreq);
break;
case NIOCCONFIG:
D("unsupported NIOCCONFIG!");
return -1;
default: /* a regular ioctl */
D("invalid ioctl %x on netmap fd", ctlCode);
return -1;
}
ioctlReturnStatus = DeviceIoControl(h,
ctlCode, inParam, szIn,
outParam, szOut,
&bReturn, NULL);
// XXX note windows returns 0 on error or async call, 1 on success
// we could call GetLastError() to figure out what happened
return ioctlReturnStatus ? 0 : -1;
}
/*
* this function is what must be called from user-space programs
* same as ioctl, returns 0 on success and -1 on error
*/
static int
win_nm_ioctl(int fd, int32_t ctlCode, void *arg)
{
HANDLE h = win_get_netmap_handle(fd);
if (h == NULL) {
return ioctl(fd, ctlCode, arg);
} else {
return win_nm_ioctl_internal(h, ctlCode, arg);
}
}
#define ioctl win_nm_ioctl /* from now on, within this file ... */
/*
* We cannot use the native mmap on windows
* The only parameter used is "fd", the other ones are just declared to
* make this signature comparable to the FreeBSD/Linux one
*/
static void *
win32_mmap_emulated(void *addr, size_t length, int prot, int flags, int fd, int32_t offset)
{
HANDLE h = win_get_netmap_handle(fd);
if (h == NULL) {
return mmap(addr, length, prot, flags, fd, offset);
} else {
MEMORY_ENTRY ret;
return win_nm_ioctl_internal(h, NETMAP_MMAP, &ret) ?
NULL : ret.pUsermodeVirtualAddress;
}
}
#define mmap win32_mmap_emulated
#include <sys/poll.h> /* XXX needed to use the structure pollfd */
static int
win_nm_poll(struct pollfd *fds, int nfds, int timeout)
{
HANDLE h;
if (nfds != 1 || fds == NULL || (h = win_get_netmap_handle(fds->fd)) == NULL) {;
return poll(fds, nfds, timeout);
} else {
POLL_REQUEST_DATA prd;
prd.timeout = timeout;
prd.events = fds->events;
win_nm_ioctl_internal(h, NETMAP_POLL, &prd);
if ((prd.revents == POLLERR) || (prd.revents == STATUS_TIMEOUT)) {
return -1;
}
return 1;
}
}
#define poll win_nm_poll
static int
win_nm_open(char* pathname, int flags)
{
if (strcmp(pathname, NETMAP_DEVICE_NAME) == 0) {
int fd = open(NETMAP_DEVICE_NAME, O_RDWR);
if (fd < 0) {
return -1;
}
win_insert_fd_record(fd);
return fd;
} else {
return open(pathname, flags);
}
}
#define open win_nm_open
static int
win_nm_close(int fd)
{
if (fd != -1) {
close(fd);
if (win_get_netmap_handle(fd) != NULL) {
win_remove_fd_record(fd);
}
}
return 0;
}
#define close win_nm_close
#endif /* _WIN32 */
static int
nm_is_identifier(const char *s, const char *e)
{
for (; s != e; s++) {
if (!isalnum(*s) && *s != '_') {
return 0;
}
}
return 1;
}
#define MAXERRMSG 80
static int
2018-04-12 07:20:50 +00:00
nm_parse(const char *ifname, struct nm_desc *d, char *err)
{
int is_vale;
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
const char *port = NULL;
const char *vpname = NULL;
u_int namelen;
uint32_t nr_ringid = 0, nr_flags;
char errmsg[MAXERRMSG] = "", *tmp;
2015-07-10 05:51:36 +00:00
long num;
uint16_t nr_arg2 = 0;
enum { P_START, P_RNGSFXOK, P_GETNUM, P_FLAGS, P_FLAGSOK, P_MEMID } p_state;
errno = 0;
is_vale = (ifname[0] == 'v');
if (is_vale) {
port = index(ifname, ':');
if (port == NULL) {
snprintf(errmsg, MAXERRMSG,
"missing ':' in vale name");
goto fail;
}
if (!nm_is_identifier(ifname + 4, port)) {
snprintf(errmsg, MAXERRMSG, "invalid bridge name");
goto fail;
}
vpname = ++port;
} else {
ifname += 7;
port = ifname;
}
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
/* scan for a separator */
for (; *port && !index("-*^{}/@", *port); port++)
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
;
if (is_vale && !nm_is_identifier(vpname, port)) {
snprintf(errmsg, MAXERRMSG, "invalid bridge port name");
goto fail;
}
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
namelen = port - ifname;
2018-04-12 07:20:50 +00:00
if (namelen >= sizeof(d->req.nr_name)) {
2015-07-10 05:51:36 +00:00
snprintf(errmsg, MAXERRMSG, "name too long");
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
goto fail;
2014-01-17 04:38:58 +00:00
}
2018-04-12 07:20:50 +00:00
memcpy(d->req.nr_name, ifname, namelen);
d->req.nr_name[namelen] = '\0';
2015-07-10 05:51:36 +00:00
p_state = P_START;
nr_flags = NR_REG_ALL_NIC; /* default for no suffix */
while (*port) {
switch (p_state) {
case P_START:
switch (*port) {
case '^': /* only SW ring */
nr_flags = NR_REG_SW;
p_state = P_RNGSFXOK;
break;
case '*': /* NIC and SW */
nr_flags = NR_REG_NIC_SW;
p_state = P_RNGSFXOK;
break;
case '-': /* one NIC ring pair */
nr_flags = NR_REG_ONE_NIC;
p_state = P_GETNUM;
break;
case '{': /* pipe (master endpoint) */
nr_flags = NR_REG_PIPE_MASTER;
p_state = P_GETNUM;
break;
case '}': /* pipe (slave endpoint) */
2015-07-10 05:51:36 +00:00
nr_flags = NR_REG_PIPE_SLAVE;
p_state = P_GETNUM;
break;
case '/': /* start of flags */
p_state = P_FLAGS;
break;
case '@': /* start of memid */
p_state = P_MEMID;
break;
2015-07-10 05:51:36 +00:00
default:
snprintf(errmsg, MAXERRMSG, "unknown modifier: '%c'", *port);
goto fail;
}
port++;
break;
case P_RNGSFXOK:
switch (*port) {
case '/':
p_state = P_FLAGS;
break;
case '@':
p_state = P_MEMID;
break;
2015-07-10 05:51:36 +00:00
default:
snprintf(errmsg, MAXERRMSG, "unexpected character: '%c'", *port);
goto fail;
}
port++;
break;
case P_GETNUM:
num = strtol(port, &tmp, 10);
2015-07-10 05:51:36 +00:00
if (num < 0 || num >= NETMAP_RING_MASK) {
snprintf(errmsg, MAXERRMSG, "'%ld' out of range [0, %d)",
num, NETMAP_RING_MASK);
goto fail;
}
port = tmp;
2015-07-10 05:51:36 +00:00
nr_ringid = num & NETMAP_RING_MASK;
p_state = P_RNGSFXOK;
break;
case P_FLAGS:
case P_FLAGSOK:
if (*port == '@') {
port++;
p_state = P_MEMID;
break;
}
2015-07-10 05:51:36 +00:00
switch (*port) {
case 'x':
nr_flags |= NR_EXCLUSIVE;
break;
case 'z':
nr_flags |= NR_ZCOPY_MON;
break;
case 't':
nr_flags |= NR_MONITOR_TX;
break;
case 'r':
nr_flags |= NR_MONITOR_RX;
break;
case 'R':
nr_flags |= NR_RX_RINGS_ONLY;
break;
case 'T':
nr_flags |= NR_TX_RINGS_ONLY;
break;
2015-07-10 05:51:36 +00:00
default:
snprintf(errmsg, MAXERRMSG, "unrecognized flag: '%c'", *port);
goto fail;
}
port++;
p_state = P_FLAGSOK;
break;
case P_MEMID:
2018-04-12 07:20:50 +00:00
if (nr_arg2 != 0) {
snprintf(errmsg, MAXERRMSG, "double setting of memid");
goto fail;
}
num = strtol(port, &tmp, 10);
if (num <= 0) {
2018-04-12 07:20:50 +00:00
snprintf(errmsg, MAXERRMSG, "invalid memid %ld, must be >0", num);
goto fail;
}
port = tmp;
2018-04-12 07:20:50 +00:00
nr_arg2 = num;
p_state = P_RNGSFXOK;
break;
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
}
}
2018-04-12 07:20:50 +00:00
if (p_state != P_START && p_state != P_RNGSFXOK && p_state != P_FLAGSOK) {
2015-07-10 05:51:36 +00:00
snprintf(errmsg, MAXERRMSG, "unexpected end of port name");
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
goto fail;
}
2015-07-10 05:51:36 +00:00
ND("flags: %s %s %s %s",
(nr_flags & NR_EXCLUSIVE) ? "EXCLUSIVE" : "",
(nr_flags & NR_ZCOPY_MON) ? "ZCOPY_MON" : "",
(nr_flags & NR_MONITOR_TX) ? "MONITOR_TX" : "",
(nr_flags & NR_MONITOR_RX) ? "MONITOR_RX" : "");
2018-04-12 07:20:50 +00:00
d->req.nr_flags |= nr_flags;
d->req.nr_ringid |= nr_ringid;
d->req.nr_arg2 = nr_arg2;
d->self = d;
2018-04-12 07:20:50 +00:00
return 0;
fail:
if (!errno)
errno = EINVAL;
2018-04-12 07:20:50 +00:00
if (err)
strncpy(err, errmsg, MAXERRMSG);
return -1;
}
/*
* Try to open, return descriptor if successful, NULL otherwise.
* An invalid netmap name will return errno = 0;
* You can pass a pointer to a pre-filled nm_desc to add special
* parameters. Flags is used as follows
2018-04-12 07:20:50 +00:00
* NM_OPEN_NO_MMAP use the memory from arg, only XXX avoid mmap
* if the nr_arg2 (memory block) matches.
* NM_OPEN_ARG1 use req.nr_arg1 from arg
* NM_OPEN_ARG2 use req.nr_arg2 from arg
* NM_OPEN_RING_CFG user ring config from arg
*/
static struct nm_desc *
nm_open(const char *ifname, const struct nmreq *req,
uint64_t new_flags, const struct nm_desc *arg)
{
struct nm_desc *d = NULL;
const struct nm_desc *parent = arg;
char errmsg[MAXERRMSG] = "";
uint32_t nr_reg;
if (strncmp(ifname, "netmap:", 7) &&
strncmp(ifname, NM_BDG_NAME, strlen(NM_BDG_NAME))) {
errno = 0; /* name not recognised, not an error */
return NULL;
}
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
d = (struct nm_desc *)calloc(1, sizeof(*d));
if (d == NULL) {
2015-07-10 05:51:36 +00:00
snprintf(errmsg, MAXERRMSG, "nm_desc alloc failure");
errno = ENOMEM;
return NULL;
}
d->self = d; /* set this early so nm_close() works */
d->fd = open(NETMAP_DEVICE_NAME, O_RDWR);
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
if (d->fd < 0) {
2015-07-10 05:51:36 +00:00
snprintf(errmsg, MAXERRMSG, "cannot open /dev/netmap: %s", strerror(errno));
goto fail;
}
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
2018-04-12 07:20:50 +00:00
if (req)
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
d->req = *req;
if (!(new_flags & NM_OPEN_IFNAME)) {
2018-04-12 07:20:50 +00:00
if (nm_parse(ifname, d, errmsg) < 0)
goto fail;
}
d->req.nr_version = NETMAP_API;
d->req.nr_ringid &= NETMAP_RING_MASK;
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
/* optionally import info from parent */
if (IS_NETMAP_DESC(parent) && new_flags) {
2018-04-12 07:20:50 +00:00
if (new_flags & NM_OPEN_ARG1)
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
D("overriding ARG1 %d", parent->req.nr_arg1);
2018-04-12 07:20:50 +00:00
d->req.nr_arg1 = new_flags & NM_OPEN_ARG1 ?
parent->req.nr_arg1 : 4;
if (new_flags & NM_OPEN_ARG2) {
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
D("overriding ARG2 %d", parent->req.nr_arg2);
2018-04-12 07:20:50 +00:00
d->req.nr_arg2 = parent->req.nr_arg2;
}
2018-04-12 07:20:50 +00:00
if (new_flags & NM_OPEN_ARG3)
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
D("overriding ARG3 %d", parent->req.nr_arg3);
2018-04-12 07:20:50 +00:00
d->req.nr_arg3 = new_flags & NM_OPEN_ARG3 ?
parent->req.nr_arg3 : 0;
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
if (new_flags & NM_OPEN_RING_CFG) {
D("overriding RING_CFG");
d->req.nr_tx_slots = parent->req.nr_tx_slots;
d->req.nr_rx_slots = parent->req.nr_rx_slots;
d->req.nr_tx_rings = parent->req.nr_tx_rings;
d->req.nr_rx_rings = parent->req.nr_rx_rings;
}
if (new_flags & NM_OPEN_IFNAME) {
D("overriding ifname %s ringid 0x%x flags 0x%x",
parent->req.nr_name, parent->req.nr_ringid,
parent->req.nr_flags);
memcpy(d->req.nr_name, parent->req.nr_name,
sizeof(d->req.nr_name));
d->req.nr_ringid = parent->req.nr_ringid;
d->req.nr_flags = parent->req.nr_flags;
}
}
/* add the *XPOLL flags */
d->req.nr_ringid |= new_flags & (NETMAP_NO_TX_POLL | NETMAP_DO_RX_POLL);
2014-01-17 04:38:58 +00:00
if (ioctl(d->fd, NIOCREGIF, &d->req)) {
2015-07-10 05:51:36 +00:00
snprintf(errmsg, MAXERRMSG, "NIOCREGIF failed: %s", strerror(errno));
goto fail;
2014-01-17 04:38:58 +00:00
}
2015-07-10 05:51:36 +00:00
nr_reg = d->req.nr_flags & NR_REG_MASK;
if (nr_reg == NR_REG_SW) { /* host stack */
2014-01-17 04:38:58 +00:00
d->first_tx_ring = d->last_tx_ring = d->req.nr_tx_rings;
d->first_rx_ring = d->last_rx_ring = d->req.nr_rx_rings;
2015-07-10 05:51:36 +00:00
} else if (nr_reg == NR_REG_ALL_NIC) { /* only nic */
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
d->first_tx_ring = 0;
d->first_rx_ring = 0;
2014-01-17 04:38:58 +00:00
d->last_tx_ring = d->req.nr_tx_rings - 1;
d->last_rx_ring = d->req.nr_rx_rings - 1;
2015-07-10 05:51:36 +00:00
} else if (nr_reg == NR_REG_NIC_SW) {
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
d->first_tx_ring = 0;
d->first_rx_ring = 0;
d->last_tx_ring = d->req.nr_tx_rings;
d->last_rx_ring = d->req.nr_rx_rings;
2015-07-10 05:51:36 +00:00
} else if (nr_reg == NR_REG_ONE_NIC) {
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
/* XXX check validity */
d->first_tx_ring = d->last_tx_ring =
Update to the current version of netmap. Mostly bugfixes or features developed in the past 6 months, so this is a 10.1 candidate. Basically no user API changes (some bugfixes in sys/net/netmap_user.h). In detail: 1. netmap support for virtio-net, including in netmap mode. Under bhyve and with a netmap backend [2] we reach over 1Mpps with standard APIs (e.g. libpcap), and 5-8 Mpps in netmap mode. 2. (kernel) add support for multiple memory allocators, so we can better partition physical and virtual interfaces giving access to separate users. The most visible effect is one additional argument to the various kernel functions to compute buffer addresses. All netmap-supported drivers are affected, but changes are mechanical and trivial 3. (kernel) simplify the prototype for *txsync() and *rxsync() driver methods. All netmap drivers affected, changes mostly mechanical. 4. add support for netmap-monitor ports. Think of it as a mirroring port on a physical switch: a netmap monitor port replicates traffic present on the main port. Restrictions apply. Drive carefully. 5. if_lem.c: support for various paravirtualization features, experimental and disabled by default. Most of these are described in our ANCS'13 paper [1]. Paravirtualized support in netmap mode is new, and beats the numbers in the paper by a large factor (under qemu-kvm, we measured gues-host throughput up to 10-12 Mpps). A lot of refactoring and additional documentation in the files in sys/dev/netmap, but apart from #2 and #3 above, almost nothing of this stuff is visible to other kernel parts. Example programs in tools/tools/netmap have been updated with bugfixes and to support more of the existing features. This is meant to go into 10.1 so we plan an MFC before the Aug.22 deadline. A lot of this code has been contributed by my colleagues at UNIPI, including Giuseppe Lettieri, Vincenzo Maffione, Stefano Garzarella. MFC after: 3 days.
2014-08-16 15:00:01 +00:00
d->first_rx_ring = d->last_rx_ring = d->req.nr_ringid & NETMAP_RING_MASK;
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
} else { /* pipes */
d->first_tx_ring = d->last_tx_ring = 0;
d->first_rx_ring = d->last_rx_ring = 0;
}
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
2018-04-12 07:20:50 +00:00
/* if parent is defined, do nm_mmap() even if NM_OPEN_NO_MMAP is set */
if ((!(new_flags & NM_OPEN_NO_MMAP) || parent) && nm_mmap(d, parent)) {
snprintf(errmsg, MAXERRMSG, "mmap failed: %s", strerror(errno));
goto fail;
}
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
#ifdef DEBUG_NETMAP_USER
{ /* debugging code */
int i;
D("%s tx %d .. %d %d rx %d .. %d %d", ifname,
d->first_tx_ring, d->last_tx_ring, d->req.nr_tx_rings,
d->first_rx_ring, d->last_rx_ring, d->req.nr_rx_rings);
for (i = 0; i <= d->req.nr_tx_rings; i++) {
struct netmap_ring *r = NETMAP_TXRING(d->nifp, i);
D("TX%d %p h %d c %d t %d", i, r, r->head, r->cur, r->tail);
2014-01-17 04:38:58 +00:00
}
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
for (i = 0; i <= d->req.nr_rx_rings; i++) {
struct netmap_ring *r = NETMAP_RXRING(d->nifp, i);
D("RX%d %p h %d c %d t %d", i, r, r->head, r->cur, r->tail);
}
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
}
#endif /* debugging */
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
d->cur_tx_ring = d->first_tx_ring;
d->cur_rx_ring = d->first_rx_ring;
return d;
fail:
nm_close(d);
2015-07-10 05:51:36 +00:00
if (errmsg[0])
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
D("%s %s", errmsg, ifname);
if (errno == 0)
errno = EINVAL;
return NULL;
}
static int
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
nm_close(struct nm_desc *d)
{
/*
* ugly trick to avoid unused warnings
*/
static void *__xxzt[] __attribute__ ((unused)) =
{ (void *)nm_open, (void *)nm_inject,
2018-04-12 07:20:50 +00:00
(void *)nm_dispatch, (void *)nm_nextpkt } ;
if (d == NULL || d->self != d)
return EINVAL;
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
if (d->done_mmap && d->mem)
munmap(d->mem, d->memsize);
if (d->fd != -1) {
close(d->fd);
}
bzero(d, sizeof(*d));
free(d);
return 0;
}
static int
nm_mmap(struct nm_desc *d, const struct nm_desc *parent)
{
if (d->done_mmap)
return 0;
if (IS_NETMAP_DESC(parent) && parent->mem &&
parent->req.nr_arg2 == d->req.nr_arg2) {
/* do not mmap, inherit from parent */
D("do not mmap, inherit from parent");
d->memsize = parent->memsize;
d->mem = parent->mem;
} else {
/* XXX TODO: check if memsize is too large (or there is overflow) */
d->memsize = d->req.nr_memsize;
d->mem = mmap(0, d->memsize, PROT_WRITE | PROT_READ, MAP_SHARED,
d->fd, 0);
if (d->mem == MAP_FAILED) {
goto fail;
}
d->done_mmap = 1;
}
2018-04-12 07:20:50 +00:00
{
struct netmap_if *nifp = NETMAP_IF(d->mem, d->req.nr_offset);
struct netmap_ring *r = NETMAP_RXRING(nifp, d->first_rx_ring);
if ((void *)r == (void *)nifp) {
/* the descriptor is open for TX only */
r = NETMAP_TXRING(nifp, d->first_tx_ring);
}
*(struct netmap_if **)(uintptr_t)&(d->nifp) = nifp;
*(struct netmap_ring **)(uintptr_t)&d->some_ring = r;
*(void **)(uintptr_t)&d->buf_start = NETMAP_BUF(r, 0);
*(void **)(uintptr_t)&d->buf_end =
(char *)d->mem + d->memsize;
}
return 0;
fail:
return EINVAL;
}
/*
* Same prototype as pcap_inject(), only need to cast.
*/
static int
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
nm_inject(struct nm_desc *d, const void *buf, size_t size)
{
u_int c, n = d->last_tx_ring - d->first_tx_ring + 1,
ri = d->cur_tx_ring;
for (c = 0; c < n ; c++, ri++) {
/* compute current ring to use */
struct netmap_ring *ring;
uint32_t i, j, idx;
size_t rem;
2014-01-17 04:38:58 +00:00
if (ri > d->last_tx_ring)
ri = d->first_tx_ring;
ring = NETMAP_TXRING(d->nifp, ri);
rem = size;
j = ring->cur;
while (rem > ring->nr_buf_size && j != ring->tail) {
rem -= ring->nr_buf_size;
j = nm_ring_next(ring, j);
}
if (j == ring->tail && rem > 0)
continue;
i = ring->cur;
while (i != j) {
idx = ring->slot[i].buf_idx;
ring->slot[i].len = ring->nr_buf_size;
ring->slot[i].flags = NS_MOREFRAG;
nm_pkt_copy(buf, NETMAP_BUF(ring, idx), ring->nr_buf_size);
i = nm_ring_next(ring, i);
buf = (const char *)buf + ring->nr_buf_size;
}
idx = ring->slot[i].buf_idx;
ring->slot[i].len = rem;
ring->slot[i].flags = 0;
nm_pkt_copy(buf, NETMAP_BUF(ring, idx), rem);
ring->head = ring->cur = nm_ring_next(ring, i);
d->cur_tx_ring = ri;
return size;
}
return 0; /* fail */
}
/*
* Same prototype as pcap_dispatch(), only need to cast.
*/
static int
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
nm_dispatch(struct nm_desc *d, int cnt, nm_cb_t cb, u_char *arg)
{
2014-01-17 04:38:58 +00:00
int n = d->last_rx_ring - d->first_rx_ring + 1;
int c, got = 0, ri = d->cur_rx_ring;
d->hdr.buf = NULL;
d->hdr.flags = NM_MORE_PKTS;
d->hdr.d = d;
if (cnt == 0)
cnt = -1;
/* cnt == -1 means infinite, but rings have a finite amount
* of buffers and the int is large enough that we never wrap,
* so we can omit checking for -1
*/
for (c=0; c < n && cnt != got; c++, ri++) {
/* compute current ring to use */
struct netmap_ring *ring;
2014-01-17 04:38:58 +00:00
if (ri > d->last_rx_ring)
ri = d->first_rx_ring;
ring = NETMAP_RXRING(d->nifp, ri);
for ( ; !nm_ring_empty(ring) && cnt != got; got++) {
u_int idx, i;
u_char *oldbuf;
struct netmap_slot *slot;
if (d->hdr.buf) { /* from previous round */
cb(arg, &d->hdr, d->hdr.buf);
}
i = ring->cur;
slot = &ring->slot[i];
idx = slot->buf_idx;
/* d->cur_rx_ring doesn't change inside this loop, but
* set it here, so it reflects d->hdr.buf's ring */
d->cur_rx_ring = ri;
d->hdr.slot = slot;
oldbuf = d->hdr.buf = (u_char *)NETMAP_BUF(ring, idx);
2014-01-17 04:38:58 +00:00
// __builtin_prefetch(buf);
d->hdr.len = d->hdr.caplen = slot->len;
while (slot->flags & NS_MOREFRAG) {
u_char *nbuf;
u_int oldlen = slot->len;
i = nm_ring_next(ring, i);
slot = &ring->slot[i];
d->hdr.len += slot->len;
nbuf = (u_char *)NETMAP_BUF(ring, slot->buf_idx);
if (oldbuf != NULL && nbuf - oldbuf == ring->nr_buf_size &&
oldlen == ring->nr_buf_size) {
d->hdr.caplen += slot->len;
oldbuf = nbuf;
} else {
oldbuf = NULL;
}
}
d->hdr.ts = ring->ts;
ring->head = ring->cur = nm_ring_next(ring, i);
}
}
if (d->hdr.buf) { /* from previous round */
d->hdr.flags = 0;
cb(arg, &d->hdr, d->hdr.buf);
}
return got;
}
static u_char *
This new version of netmap brings you the following: - netmap pipes, providing bidirectional blocking I/O while moving 100+ Mpps between processes using shared memory channels (no mistake: over one hundred million. But mind you, i said *moving* not *processing*); - kqueue support (BHyVe needs it); - improved user library. Just the interface name lets you select a NIC, host port, VALE switch port, netmap pipe, and individual queues. The upcoming netmap-enabled libpcap will use this feature. - optional extra buffers associated to netmap ports, for applications that need to buffer data yet don't want to make copies. - segmentation offloading for the VALE switch, useful between VMs. and a number of bug fixes and performance improvements. My colleagues Giuseppe Lettieri and Vincenzo Maffione did a substantial amount of work on these features so we owe them a big thanks. There are some external repositories that can be of interest: https://code.google.com/p/netmap our public repository for netmap/VALE code, including linux versions and other stuff that does not belong here, such as python bindings. https://code.google.com/p/netmap-libpcap a clone of the libpcap repository with netmap support. With this any libpcap client has access to most netmap feature with no recompilation. E.g. tcpdump can filter packets at 10-15 Mpps. https://code.google.com/p/netmap-ipfw a userspace version of ipfw+dummynet which uses netmap to send/receive packets. Speed is up in the 7-10 Mpps range per core for simple rulesets. Both netmap-libpcap and netmap-ipfw will be merged upstream at some point, but while this happens it is useful to have access to them. And yes, this code will be merged soon. It is infinitely better than the version currently in 10 and 9. MFC after: 3 days
2014-02-15 04:53:04 +00:00
nm_nextpkt(struct nm_desc *d, struct nm_pkthdr *hdr)
{
2014-01-17 04:38:58 +00:00
int ri = d->cur_rx_ring;
do {
/* compute current ring to use */
struct netmap_ring *ring = NETMAP_RXRING(d->nifp, ri);
if (!nm_ring_empty(ring)) {
u_int i = ring->cur;
u_int idx = ring->slot[i].buf_idx;
u_char *buf = (u_char *)NETMAP_BUF(ring, idx);
2014-01-17 04:38:58 +00:00
// __builtin_prefetch(buf);
hdr->ts = ring->ts;
hdr->len = hdr->caplen = ring->slot[i].len;
ring->cur = nm_ring_next(ring, i);
/* we could postpone advancing head if we want
* to hold the buffer. This can be supported in
* the future.
*/
ring->head = ring->cur;
2014-01-17 04:38:58 +00:00
d->cur_rx_ring = ri;
return buf;
}
ri++;
2014-01-17 04:38:58 +00:00
if (ri > d->last_rx_ring)
ri = d->first_rx_ring;
} while (ri != d->cur_rx_ring);
return NULL; /* nothing found */
}
#endif /* !HAVE_NETMAP_WITH_LIBS */
#endif /* NETMAP_WITH_LIBS */
Bring in support for netmap, a framework for very efficient packet I/O from userspace, capable of line rate at 10G, see http://info.iet.unipi.it/~luigi/netmap/ At this time I am bringing in only the generic code (sys/dev/netmap/ plus two headers under sys/net/), and some sample applications in tools/tools/netmap. There is also a manpage in share/man/man4 [1] In order to make use of the framework you need to build a kernel with "device netmap", and patch individual drivers with the code that you can find in sys/dev/netmap/head.diff The file will go away as the relevant pieces are committed to the various device drivers, which should happen in a few days after talking to the driver maintainers. Netmap support is available at the moment for Intel 10G and 1G cards (ixgbe, em/lem/igb), and for the Realtek 1G card ("re"). I have partial patches for "bge" and am starting to work on "cxgbe". Hopefully changes are trivial enough so interested third parties can submit their patches. Interested people can contact me for advice on how to add netmap support to specific devices. CREDITS: Netmap has been developed by Luigi Rizzo and other collaborators at the Universita` di Pisa, and supported by EU project CHANGE (http://www.change-project.eu/) The code is distributed under a BSD Copyright. [1] In my opinion is a bad idea to have all manpage in one directory. We should place kernel documentation in the same dir that contains the code, which would make it much simpler to keep doc and code in sync, reduce the clutter in share/man/ and incidentally is the policy used for all of userspace code. Makefiles and doc tools can be trivially adjusted to find the manpages in the relevant subdirs.
2011-11-17 12:17:39 +00:00
#endif /* _NET_NETMAP_USER_H_ */