freebsd-skq/sys/nfs/nfs_fha.h

123 lines
4.0 KiB
C
Raw Normal View History

Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
* Copyright (c) 2008 Isilon Inc http://www.isilon.com/
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* $FreeBSD$ */
Revamp the old NFS server's File Handle Affinity (FHA) code so that it will work with either the old or new server. The FHA code keeps a cache of currently active file handles for NFSv2 and v3 requests, so that read and write requests for the same file are directed to the same group of threads (reads) or thread (writes). It does not currently work for NFSv4 requests. They are more complex, and will take more work to support. This improves read-ahead performance, especially with ZFS, if the FHA tuning parameters are configured appropriately. Without the FHA code, concurrent reads that are part of a sequential read from a file will be directed to separate NFS threads. This has the effect of confusing the ZFS zfetch (prefetch) code and makes sequential reads significantly slower with clients like Linux that do a lot of prefetching. The FHA code has also been updated to direct write requests to nearby file offsets to the same thread in the same way it batches reads, and the FHA code will now also send writes to multiple threads when needed. This improves sequential write performance in ZFS, because writes to a file are now more ordered. Since NFS writes (generally less than 64K) are smaller than the typical ZFS record size (usually 128K), out of order NFS writes to the same block can trigger a read in ZFS. Sending them down the same thread increases the odds of their being in order. In order for multiple write threads per file in the FHA code to be useful, writes in the NFS server have been changed to use a LK_SHARED vnode lock, and upgrade that to LK_EXCLUSIVE if the filesystem doesn't allow multiple writers to a file at once. ZFS is currently the only filesystem that allows multiple writers to a file, because it has internal file range locking. This change does not affect the NFSv4 code. This improves random write performance to a single file in ZFS, since we can now have multiple writers inside ZFS at one time. I have changed the default tuning parameters to a 22 bit (4MB) window size (from 256K) and unlimited commands per thread as a result of my benchmarking with ZFS. The FHA code has been updated to allow configuring the tuning parameters from loader tunable variables in addition to sysctl variables. The read offset window calculation has been slightly modified as well. Instead of having separate bins, each file handle has a rolling window of bin_shift size. This minimizes glitches in throughput when shifting from one bin to another. sys/conf/files: Add nfs_fha_new.c and nfs_fha_old.c. Compile nfs_fha.c when either the old or the new NFS server is built. sys/fs/nfs/nfsport.h, sys/fs/nfs/nfs_commonport.c: Bring in changes from Rick Macklem to newnfs_realign that allow it to operate in blocking (M_WAITOK) or non-blocking (M_NOWAIT) mode. sys/fs/nfs/nfs_commonsubs.c, sys/fs/nfs/nfs_var.h: Bring in a change from Rick Macklem to allow telling nfsm_dissect() whether or not to wait for mallocs. sys/fs/nfs/nfsm_subs.h: Bring in changes from Rick Macklem to create a new nfsm_dissect_nonblock() inline function and NFSM_DISSECT_NONBLOCK() macro. sys/fs/nfs/nfs_commonkrpc.c, sys/fs/nfsclient/nfs_clkrpc.c: Add the malloc wait flag to a newnfs_realign() call. sys/fs/nfsserver/nfs_nfsdkrpc.c: Setup the new NFS server's RPC thread pool so that it will call the FHA code. Add the malloc flag argument to newnfs_realign(). Unstaticize newnfs_nfsv3_procid[] so that we can use it in the FHA code. sys/fs/nfsserver/nfs_nfsdsocket.c: In nfsrvd_dorpc(), add NFSPROC_WRITE to the list of RPC types that use the LK_SHARED lock type. sys/fs/nfsserver/nfs_nfsdport.c: In nfsd_fhtovp(), if we're starting a write, check to see whether the underlying filesystem supports shared writes. If not, upgrade the lock type from LK_SHARED to LK_EXCLUSIVE. sys/nfsserver/nfs_fha.c: Remove all code that is specific to the NFS server implementation. Anything that is server-specific is now accessed through a callback supplied by that server's FHA shim in the new softc. There are now separate sysctls and tunables for the FHA implementations for the old and new NFS servers. The new NFS server has its tunables under vfs.nfsd.fha, the old NFS server's tunables are under vfs.nfsrv.fha as before. In fha_extract_info(), use callouts for all server-specific code. Getting file handles and offsets is now done in the individual server's shim module. In fha_hash_entry_choose_thread(), change the way we decide whether two reads are in proximity to each other. Previously, the calculation was a simple shift operation to see whether the offsets were in the same power of 2 bucket. The issue was that there would be a bucket (and therefore thread) transition, even if the reads were in close proximity. When there is a thread transition, reads wind up going somewhat out of order, and ZFS gets confused. The new calculation simply tries to see whether the offsets are within 1 << bin_shift of each other. If they are, the reads will be sent to the same thread. The effect of this change is that for sequential reads, if the client doesn't exceed the max_reqs_per_nfsd parameter and the bin_shift is set to a reasonable value (22, or 4MB works well in my tests), the reads in any sequential stream will largely be confined to a single thread. Change fha_assign() so that it takes a softc argument. It is now called from the individual server's shim code, which will pass in the softc. Change fhe_stats_sysctl() so that it takes a softc parameter. It is now called from the individual server's shim code. Add the current offset to the list of things printed out about each active thread. Change the num_reads and num_writes counters in the fha_hash_entry structure to 32-bit values, and rename them num_rw and num_exclusive, respectively, to reflect their changed usage. Add an enable sysctl and tunable that allows the user to disable the FHA code (when vfs.XXX.fha.enable = 0). This is useful for before/after performance comparisons. nfs_fha.h: Move most structure definitions out of nfs_fha.c and into the header file, so that the individual server shims can see them. Change the default bin_shift to 22 (4MB) instead of 18 (256K). Allow unlimited commands per thread. sys/nfsserver/nfs_fha_old.c, sys/nfsserver/nfs_fha_old.h, sys/fs/nfsserver/nfs_fha_new.c, sys/fs/nfsserver/nfs_fha_new.h: Add shims for the old and new NFS servers to interface with the FHA code, and callbacks for the The shims contain all of the code and definitions that are specific to the NFS servers. They setup the server-specific callbacks and set the server name for the sysctl and loader tunable variables. sys/nfsserver/nfs_srvkrpc.c: Configure the RPC code to call fhaold_assign() instead of fha_assign(). sys/modules/nfsd/Makefile: Add nfs_fha.c and nfs_fha_new.c. sys/modules/nfsserver/Makefile: Add nfs_fha_old.c. Reviewed by: rmacklem Sponsored by: Spectra Logic MFC after: 2 weeks
2013-04-17 21:00:22 +00:00
#ifndef _NFS_FHA_H
#define _NFS_FHA_H 1
#ifdef _KERNEL
/* Sysctl defaults. */
#define FHA_DEF_ENABLE 1
#define FHA_DEF_READ 1
#define FHA_DEF_WRITE 1
Revamp the old NFS server's File Handle Affinity (FHA) code so that it will work with either the old or new server. The FHA code keeps a cache of currently active file handles for NFSv2 and v3 requests, so that read and write requests for the same file are directed to the same group of threads (reads) or thread (writes). It does not currently work for NFSv4 requests. They are more complex, and will take more work to support. This improves read-ahead performance, especially with ZFS, if the FHA tuning parameters are configured appropriately. Without the FHA code, concurrent reads that are part of a sequential read from a file will be directed to separate NFS threads. This has the effect of confusing the ZFS zfetch (prefetch) code and makes sequential reads significantly slower with clients like Linux that do a lot of prefetching. The FHA code has also been updated to direct write requests to nearby file offsets to the same thread in the same way it batches reads, and the FHA code will now also send writes to multiple threads when needed. This improves sequential write performance in ZFS, because writes to a file are now more ordered. Since NFS writes (generally less than 64K) are smaller than the typical ZFS record size (usually 128K), out of order NFS writes to the same block can trigger a read in ZFS. Sending them down the same thread increases the odds of their being in order. In order for multiple write threads per file in the FHA code to be useful, writes in the NFS server have been changed to use a LK_SHARED vnode lock, and upgrade that to LK_EXCLUSIVE if the filesystem doesn't allow multiple writers to a file at once. ZFS is currently the only filesystem that allows multiple writers to a file, because it has internal file range locking. This change does not affect the NFSv4 code. This improves random write performance to a single file in ZFS, since we can now have multiple writers inside ZFS at one time. I have changed the default tuning parameters to a 22 bit (4MB) window size (from 256K) and unlimited commands per thread as a result of my benchmarking with ZFS. The FHA code has been updated to allow configuring the tuning parameters from loader tunable variables in addition to sysctl variables. The read offset window calculation has been slightly modified as well. Instead of having separate bins, each file handle has a rolling window of bin_shift size. This minimizes glitches in throughput when shifting from one bin to another. sys/conf/files: Add nfs_fha_new.c and nfs_fha_old.c. Compile nfs_fha.c when either the old or the new NFS server is built. sys/fs/nfs/nfsport.h, sys/fs/nfs/nfs_commonport.c: Bring in changes from Rick Macklem to newnfs_realign that allow it to operate in blocking (M_WAITOK) or non-blocking (M_NOWAIT) mode. sys/fs/nfs/nfs_commonsubs.c, sys/fs/nfs/nfs_var.h: Bring in a change from Rick Macklem to allow telling nfsm_dissect() whether or not to wait for mallocs. sys/fs/nfs/nfsm_subs.h: Bring in changes from Rick Macklem to create a new nfsm_dissect_nonblock() inline function and NFSM_DISSECT_NONBLOCK() macro. sys/fs/nfs/nfs_commonkrpc.c, sys/fs/nfsclient/nfs_clkrpc.c: Add the malloc wait flag to a newnfs_realign() call. sys/fs/nfsserver/nfs_nfsdkrpc.c: Setup the new NFS server's RPC thread pool so that it will call the FHA code. Add the malloc flag argument to newnfs_realign(). Unstaticize newnfs_nfsv3_procid[] so that we can use it in the FHA code. sys/fs/nfsserver/nfs_nfsdsocket.c: In nfsrvd_dorpc(), add NFSPROC_WRITE to the list of RPC types that use the LK_SHARED lock type. sys/fs/nfsserver/nfs_nfsdport.c: In nfsd_fhtovp(), if we're starting a write, check to see whether the underlying filesystem supports shared writes. If not, upgrade the lock type from LK_SHARED to LK_EXCLUSIVE. sys/nfsserver/nfs_fha.c: Remove all code that is specific to the NFS server implementation. Anything that is server-specific is now accessed through a callback supplied by that server's FHA shim in the new softc. There are now separate sysctls and tunables for the FHA implementations for the old and new NFS servers. The new NFS server has its tunables under vfs.nfsd.fha, the old NFS server's tunables are under vfs.nfsrv.fha as before. In fha_extract_info(), use callouts for all server-specific code. Getting file handles and offsets is now done in the individual server's shim module. In fha_hash_entry_choose_thread(), change the way we decide whether two reads are in proximity to each other. Previously, the calculation was a simple shift operation to see whether the offsets were in the same power of 2 bucket. The issue was that there would be a bucket (and therefore thread) transition, even if the reads were in close proximity. When there is a thread transition, reads wind up going somewhat out of order, and ZFS gets confused. The new calculation simply tries to see whether the offsets are within 1 << bin_shift of each other. If they are, the reads will be sent to the same thread. The effect of this change is that for sequential reads, if the client doesn't exceed the max_reqs_per_nfsd parameter and the bin_shift is set to a reasonable value (22, or 4MB works well in my tests), the reads in any sequential stream will largely be confined to a single thread. Change fha_assign() so that it takes a softc argument. It is now called from the individual server's shim code, which will pass in the softc. Change fhe_stats_sysctl() so that it takes a softc parameter. It is now called from the individual server's shim code. Add the current offset to the list of things printed out about each active thread. Change the num_reads and num_writes counters in the fha_hash_entry structure to 32-bit values, and rename them num_rw and num_exclusive, respectively, to reflect their changed usage. Add an enable sysctl and tunable that allows the user to disable the FHA code (when vfs.XXX.fha.enable = 0). This is useful for before/after performance comparisons. nfs_fha.h: Move most structure definitions out of nfs_fha.c and into the header file, so that the individual server shims can see them. Change the default bin_shift to 22 (4MB) instead of 18 (256K). Allow unlimited commands per thread. sys/nfsserver/nfs_fha_old.c, sys/nfsserver/nfs_fha_old.h, sys/fs/nfsserver/nfs_fha_new.c, sys/fs/nfsserver/nfs_fha_new.h: Add shims for the old and new NFS servers to interface with the FHA code, and callbacks for the The shims contain all of the code and definitions that are specific to the NFS servers. They setup the server-specific callbacks and set the server name for the sysctl and loader tunable variables. sys/nfsserver/nfs_srvkrpc.c: Configure the RPC code to call fhaold_assign() instead of fha_assign(). sys/modules/nfsd/Makefile: Add nfs_fha.c and nfs_fha_new.c. sys/modules/nfsserver/Makefile: Add nfs_fha_old.c. Reviewed by: rmacklem Sponsored by: Spectra Logic MFC after: 2 weeks
2013-04-17 21:00:22 +00:00
#define FHA_DEF_BIN_SHIFT 22 /* 4MB */
#define FHA_DEF_MAX_NFSDS_PER_FH 8
#define FHA_DEF_MAX_REQS_PER_NFSD 0 /* Unlimited */
#define FHA_HASH_SIZE 251
Revamp the old NFS server's File Handle Affinity (FHA) code so that it will work with either the old or new server. The FHA code keeps a cache of currently active file handles for NFSv2 and v3 requests, so that read and write requests for the same file are directed to the same group of threads (reads) or thread (writes). It does not currently work for NFSv4 requests. They are more complex, and will take more work to support. This improves read-ahead performance, especially with ZFS, if the FHA tuning parameters are configured appropriately. Without the FHA code, concurrent reads that are part of a sequential read from a file will be directed to separate NFS threads. This has the effect of confusing the ZFS zfetch (prefetch) code and makes sequential reads significantly slower with clients like Linux that do a lot of prefetching. The FHA code has also been updated to direct write requests to nearby file offsets to the same thread in the same way it batches reads, and the FHA code will now also send writes to multiple threads when needed. This improves sequential write performance in ZFS, because writes to a file are now more ordered. Since NFS writes (generally less than 64K) are smaller than the typical ZFS record size (usually 128K), out of order NFS writes to the same block can trigger a read in ZFS. Sending them down the same thread increases the odds of their being in order. In order for multiple write threads per file in the FHA code to be useful, writes in the NFS server have been changed to use a LK_SHARED vnode lock, and upgrade that to LK_EXCLUSIVE if the filesystem doesn't allow multiple writers to a file at once. ZFS is currently the only filesystem that allows multiple writers to a file, because it has internal file range locking. This change does not affect the NFSv4 code. This improves random write performance to a single file in ZFS, since we can now have multiple writers inside ZFS at one time. I have changed the default tuning parameters to a 22 bit (4MB) window size (from 256K) and unlimited commands per thread as a result of my benchmarking with ZFS. The FHA code has been updated to allow configuring the tuning parameters from loader tunable variables in addition to sysctl variables. The read offset window calculation has been slightly modified as well. Instead of having separate bins, each file handle has a rolling window of bin_shift size. This minimizes glitches in throughput when shifting from one bin to another. sys/conf/files: Add nfs_fha_new.c and nfs_fha_old.c. Compile nfs_fha.c when either the old or the new NFS server is built. sys/fs/nfs/nfsport.h, sys/fs/nfs/nfs_commonport.c: Bring in changes from Rick Macklem to newnfs_realign that allow it to operate in blocking (M_WAITOK) or non-blocking (M_NOWAIT) mode. sys/fs/nfs/nfs_commonsubs.c, sys/fs/nfs/nfs_var.h: Bring in a change from Rick Macklem to allow telling nfsm_dissect() whether or not to wait for mallocs. sys/fs/nfs/nfsm_subs.h: Bring in changes from Rick Macklem to create a new nfsm_dissect_nonblock() inline function and NFSM_DISSECT_NONBLOCK() macro. sys/fs/nfs/nfs_commonkrpc.c, sys/fs/nfsclient/nfs_clkrpc.c: Add the malloc wait flag to a newnfs_realign() call. sys/fs/nfsserver/nfs_nfsdkrpc.c: Setup the new NFS server's RPC thread pool so that it will call the FHA code. Add the malloc flag argument to newnfs_realign(). Unstaticize newnfs_nfsv3_procid[] so that we can use it in the FHA code. sys/fs/nfsserver/nfs_nfsdsocket.c: In nfsrvd_dorpc(), add NFSPROC_WRITE to the list of RPC types that use the LK_SHARED lock type. sys/fs/nfsserver/nfs_nfsdport.c: In nfsd_fhtovp(), if we're starting a write, check to see whether the underlying filesystem supports shared writes. If not, upgrade the lock type from LK_SHARED to LK_EXCLUSIVE. sys/nfsserver/nfs_fha.c: Remove all code that is specific to the NFS server implementation. Anything that is server-specific is now accessed through a callback supplied by that server's FHA shim in the new softc. There are now separate sysctls and tunables for the FHA implementations for the old and new NFS servers. The new NFS server has its tunables under vfs.nfsd.fha, the old NFS server's tunables are under vfs.nfsrv.fha as before. In fha_extract_info(), use callouts for all server-specific code. Getting file handles and offsets is now done in the individual server's shim module. In fha_hash_entry_choose_thread(), change the way we decide whether two reads are in proximity to each other. Previously, the calculation was a simple shift operation to see whether the offsets were in the same power of 2 bucket. The issue was that there would be a bucket (and therefore thread) transition, even if the reads were in close proximity. When there is a thread transition, reads wind up going somewhat out of order, and ZFS gets confused. The new calculation simply tries to see whether the offsets are within 1 << bin_shift of each other. If they are, the reads will be sent to the same thread. The effect of this change is that for sequential reads, if the client doesn't exceed the max_reqs_per_nfsd parameter and the bin_shift is set to a reasonable value (22, or 4MB works well in my tests), the reads in any sequential stream will largely be confined to a single thread. Change fha_assign() so that it takes a softc argument. It is now called from the individual server's shim code, which will pass in the softc. Change fhe_stats_sysctl() so that it takes a softc parameter. It is now called from the individual server's shim code. Add the current offset to the list of things printed out about each active thread. Change the num_reads and num_writes counters in the fha_hash_entry structure to 32-bit values, and rename them num_rw and num_exclusive, respectively, to reflect their changed usage. Add an enable sysctl and tunable that allows the user to disable the FHA code (when vfs.XXX.fha.enable = 0). This is useful for before/after performance comparisons. nfs_fha.h: Move most structure definitions out of nfs_fha.c and into the header file, so that the individual server shims can see them. Change the default bin_shift to 22 (4MB) instead of 18 (256K). Allow unlimited commands per thread. sys/nfsserver/nfs_fha_old.c, sys/nfsserver/nfs_fha_old.h, sys/fs/nfsserver/nfs_fha_new.c, sys/fs/nfsserver/nfs_fha_new.h: Add shims for the old and new NFS servers to interface with the FHA code, and callbacks for the The shims contain all of the code and definitions that are specific to the NFS servers. They setup the server-specific callbacks and set the server name for the sysctl and loader tunable variables. sys/nfsserver/nfs_srvkrpc.c: Configure the RPC code to call fhaold_assign() instead of fha_assign(). sys/modules/nfsd/Makefile: Add nfs_fha.c and nfs_fha_new.c. sys/modules/nfsserver/Makefile: Add nfs_fha_old.c. Reviewed by: rmacklem Sponsored by: Spectra Logic MFC after: 2 weeks
2013-04-17 21:00:22 +00:00
struct fha_ctls {
int enable;
int read;
int write;
Revamp the old NFS server's File Handle Affinity (FHA) code so that it will work with either the old or new server. The FHA code keeps a cache of currently active file handles for NFSv2 and v3 requests, so that read and write requests for the same file are directed to the same group of threads (reads) or thread (writes). It does not currently work for NFSv4 requests. They are more complex, and will take more work to support. This improves read-ahead performance, especially with ZFS, if the FHA tuning parameters are configured appropriately. Without the FHA code, concurrent reads that are part of a sequential read from a file will be directed to separate NFS threads. This has the effect of confusing the ZFS zfetch (prefetch) code and makes sequential reads significantly slower with clients like Linux that do a lot of prefetching. The FHA code has also been updated to direct write requests to nearby file offsets to the same thread in the same way it batches reads, and the FHA code will now also send writes to multiple threads when needed. This improves sequential write performance in ZFS, because writes to a file are now more ordered. Since NFS writes (generally less than 64K) are smaller than the typical ZFS record size (usually 128K), out of order NFS writes to the same block can trigger a read in ZFS. Sending them down the same thread increases the odds of their being in order. In order for multiple write threads per file in the FHA code to be useful, writes in the NFS server have been changed to use a LK_SHARED vnode lock, and upgrade that to LK_EXCLUSIVE if the filesystem doesn't allow multiple writers to a file at once. ZFS is currently the only filesystem that allows multiple writers to a file, because it has internal file range locking. This change does not affect the NFSv4 code. This improves random write performance to a single file in ZFS, since we can now have multiple writers inside ZFS at one time. I have changed the default tuning parameters to a 22 bit (4MB) window size (from 256K) and unlimited commands per thread as a result of my benchmarking with ZFS. The FHA code has been updated to allow configuring the tuning parameters from loader tunable variables in addition to sysctl variables. The read offset window calculation has been slightly modified as well. Instead of having separate bins, each file handle has a rolling window of bin_shift size. This minimizes glitches in throughput when shifting from one bin to another. sys/conf/files: Add nfs_fha_new.c and nfs_fha_old.c. Compile nfs_fha.c when either the old or the new NFS server is built. sys/fs/nfs/nfsport.h, sys/fs/nfs/nfs_commonport.c: Bring in changes from Rick Macklem to newnfs_realign that allow it to operate in blocking (M_WAITOK) or non-blocking (M_NOWAIT) mode. sys/fs/nfs/nfs_commonsubs.c, sys/fs/nfs/nfs_var.h: Bring in a change from Rick Macklem to allow telling nfsm_dissect() whether or not to wait for mallocs. sys/fs/nfs/nfsm_subs.h: Bring in changes from Rick Macklem to create a new nfsm_dissect_nonblock() inline function and NFSM_DISSECT_NONBLOCK() macro. sys/fs/nfs/nfs_commonkrpc.c, sys/fs/nfsclient/nfs_clkrpc.c: Add the malloc wait flag to a newnfs_realign() call. sys/fs/nfsserver/nfs_nfsdkrpc.c: Setup the new NFS server's RPC thread pool so that it will call the FHA code. Add the malloc flag argument to newnfs_realign(). Unstaticize newnfs_nfsv3_procid[] so that we can use it in the FHA code. sys/fs/nfsserver/nfs_nfsdsocket.c: In nfsrvd_dorpc(), add NFSPROC_WRITE to the list of RPC types that use the LK_SHARED lock type. sys/fs/nfsserver/nfs_nfsdport.c: In nfsd_fhtovp(), if we're starting a write, check to see whether the underlying filesystem supports shared writes. If not, upgrade the lock type from LK_SHARED to LK_EXCLUSIVE. sys/nfsserver/nfs_fha.c: Remove all code that is specific to the NFS server implementation. Anything that is server-specific is now accessed through a callback supplied by that server's FHA shim in the new softc. There are now separate sysctls and tunables for the FHA implementations for the old and new NFS servers. The new NFS server has its tunables under vfs.nfsd.fha, the old NFS server's tunables are under vfs.nfsrv.fha as before. In fha_extract_info(), use callouts for all server-specific code. Getting file handles and offsets is now done in the individual server's shim module. In fha_hash_entry_choose_thread(), change the way we decide whether two reads are in proximity to each other. Previously, the calculation was a simple shift operation to see whether the offsets were in the same power of 2 bucket. The issue was that there would be a bucket (and therefore thread) transition, even if the reads were in close proximity. When there is a thread transition, reads wind up going somewhat out of order, and ZFS gets confused. The new calculation simply tries to see whether the offsets are within 1 << bin_shift of each other. If they are, the reads will be sent to the same thread. The effect of this change is that for sequential reads, if the client doesn't exceed the max_reqs_per_nfsd parameter and the bin_shift is set to a reasonable value (22, or 4MB works well in my tests), the reads in any sequential stream will largely be confined to a single thread. Change fha_assign() so that it takes a softc argument. It is now called from the individual server's shim code, which will pass in the softc. Change fhe_stats_sysctl() so that it takes a softc parameter. It is now called from the individual server's shim code. Add the current offset to the list of things printed out about each active thread. Change the num_reads and num_writes counters in the fha_hash_entry structure to 32-bit values, and rename them num_rw and num_exclusive, respectively, to reflect their changed usage. Add an enable sysctl and tunable that allows the user to disable the FHA code (when vfs.XXX.fha.enable = 0). This is useful for before/after performance comparisons. nfs_fha.h: Move most structure definitions out of nfs_fha.c and into the header file, so that the individual server shims can see them. Change the default bin_shift to 22 (4MB) instead of 18 (256K). Allow unlimited commands per thread. sys/nfsserver/nfs_fha_old.c, sys/nfsserver/nfs_fha_old.h, sys/fs/nfsserver/nfs_fha_new.c, sys/fs/nfsserver/nfs_fha_new.h: Add shims for the old and new NFS servers to interface with the FHA code, and callbacks for the The shims contain all of the code and definitions that are specific to the NFS servers. They setup the server-specific callbacks and set the server name for the sysctl and loader tunable variables. sys/nfsserver/nfs_srvkrpc.c: Configure the RPC code to call fhaold_assign() instead of fha_assign(). sys/modules/nfsd/Makefile: Add nfs_fha.c and nfs_fha_new.c. sys/modules/nfsserver/Makefile: Add nfs_fha_old.c. Reviewed by: rmacklem Sponsored by: Spectra Logic MFC after: 2 weeks
2013-04-17 21:00:22 +00:00
uint32_t bin_shift;
uint32_t max_nfsds_per_fh;
uint32_t max_reqs_per_nfsd;
};
/*
* These are the entries in the filehandle hash. They talk about a specific
* file, requests against which are being handled by one or more nfsds. We
* keep a chain of nfsds against the file. We only have more than one if reads
* are ongoing, and then only if the reads affect disparate regions of the
* file.
*
* In general, we want to assign a new request to an existing nfsd if it is
* going to contend with work happening already on that nfsd, or if the
* operation is a read and the nfsd is already handling a proximate read. We
* do this to avoid jumping around in the read stream unnecessarily, and to
* avoid contention between threads over single files.
*/
struct fha_hash_entry {
struct mtx *mtx;
Revamp the old NFS server's File Handle Affinity (FHA) code so that it will work with either the old or new server. The FHA code keeps a cache of currently active file handles for NFSv2 and v3 requests, so that read and write requests for the same file are directed to the same group of threads (reads) or thread (writes). It does not currently work for NFSv4 requests. They are more complex, and will take more work to support. This improves read-ahead performance, especially with ZFS, if the FHA tuning parameters are configured appropriately. Without the FHA code, concurrent reads that are part of a sequential read from a file will be directed to separate NFS threads. This has the effect of confusing the ZFS zfetch (prefetch) code and makes sequential reads significantly slower with clients like Linux that do a lot of prefetching. The FHA code has also been updated to direct write requests to nearby file offsets to the same thread in the same way it batches reads, and the FHA code will now also send writes to multiple threads when needed. This improves sequential write performance in ZFS, because writes to a file are now more ordered. Since NFS writes (generally less than 64K) are smaller than the typical ZFS record size (usually 128K), out of order NFS writes to the same block can trigger a read in ZFS. Sending them down the same thread increases the odds of their being in order. In order for multiple write threads per file in the FHA code to be useful, writes in the NFS server have been changed to use a LK_SHARED vnode lock, and upgrade that to LK_EXCLUSIVE if the filesystem doesn't allow multiple writers to a file at once. ZFS is currently the only filesystem that allows multiple writers to a file, because it has internal file range locking. This change does not affect the NFSv4 code. This improves random write performance to a single file in ZFS, since we can now have multiple writers inside ZFS at one time. I have changed the default tuning parameters to a 22 bit (4MB) window size (from 256K) and unlimited commands per thread as a result of my benchmarking with ZFS. The FHA code has been updated to allow configuring the tuning parameters from loader tunable variables in addition to sysctl variables. The read offset window calculation has been slightly modified as well. Instead of having separate bins, each file handle has a rolling window of bin_shift size. This minimizes glitches in throughput when shifting from one bin to another. sys/conf/files: Add nfs_fha_new.c and nfs_fha_old.c. Compile nfs_fha.c when either the old or the new NFS server is built. sys/fs/nfs/nfsport.h, sys/fs/nfs/nfs_commonport.c: Bring in changes from Rick Macklem to newnfs_realign that allow it to operate in blocking (M_WAITOK) or non-blocking (M_NOWAIT) mode. sys/fs/nfs/nfs_commonsubs.c, sys/fs/nfs/nfs_var.h: Bring in a change from Rick Macklem to allow telling nfsm_dissect() whether or not to wait for mallocs. sys/fs/nfs/nfsm_subs.h: Bring in changes from Rick Macklem to create a new nfsm_dissect_nonblock() inline function and NFSM_DISSECT_NONBLOCK() macro. sys/fs/nfs/nfs_commonkrpc.c, sys/fs/nfsclient/nfs_clkrpc.c: Add the malloc wait flag to a newnfs_realign() call. sys/fs/nfsserver/nfs_nfsdkrpc.c: Setup the new NFS server's RPC thread pool so that it will call the FHA code. Add the malloc flag argument to newnfs_realign(). Unstaticize newnfs_nfsv3_procid[] so that we can use it in the FHA code. sys/fs/nfsserver/nfs_nfsdsocket.c: In nfsrvd_dorpc(), add NFSPROC_WRITE to the list of RPC types that use the LK_SHARED lock type. sys/fs/nfsserver/nfs_nfsdport.c: In nfsd_fhtovp(), if we're starting a write, check to see whether the underlying filesystem supports shared writes. If not, upgrade the lock type from LK_SHARED to LK_EXCLUSIVE. sys/nfsserver/nfs_fha.c: Remove all code that is specific to the NFS server implementation. Anything that is server-specific is now accessed through a callback supplied by that server's FHA shim in the new softc. There are now separate sysctls and tunables for the FHA implementations for the old and new NFS servers. The new NFS server has its tunables under vfs.nfsd.fha, the old NFS server's tunables are under vfs.nfsrv.fha as before. In fha_extract_info(), use callouts for all server-specific code. Getting file handles and offsets is now done in the individual server's shim module. In fha_hash_entry_choose_thread(), change the way we decide whether two reads are in proximity to each other. Previously, the calculation was a simple shift operation to see whether the offsets were in the same power of 2 bucket. The issue was that there would be a bucket (and therefore thread) transition, even if the reads were in close proximity. When there is a thread transition, reads wind up going somewhat out of order, and ZFS gets confused. The new calculation simply tries to see whether the offsets are within 1 << bin_shift of each other. If they are, the reads will be sent to the same thread. The effect of this change is that for sequential reads, if the client doesn't exceed the max_reqs_per_nfsd parameter and the bin_shift is set to a reasonable value (22, or 4MB works well in my tests), the reads in any sequential stream will largely be confined to a single thread. Change fha_assign() so that it takes a softc argument. It is now called from the individual server's shim code, which will pass in the softc. Change fhe_stats_sysctl() so that it takes a softc parameter. It is now called from the individual server's shim code. Add the current offset to the list of things printed out about each active thread. Change the num_reads and num_writes counters in the fha_hash_entry structure to 32-bit values, and rename them num_rw and num_exclusive, respectively, to reflect their changed usage. Add an enable sysctl and tunable that allows the user to disable the FHA code (when vfs.XXX.fha.enable = 0). This is useful for before/after performance comparisons. nfs_fha.h: Move most structure definitions out of nfs_fha.c and into the header file, so that the individual server shims can see them. Change the default bin_shift to 22 (4MB) instead of 18 (256K). Allow unlimited commands per thread. sys/nfsserver/nfs_fha_old.c, sys/nfsserver/nfs_fha_old.h, sys/fs/nfsserver/nfs_fha_new.c, sys/fs/nfsserver/nfs_fha_new.h: Add shims for the old and new NFS servers to interface with the FHA code, and callbacks for the The shims contain all of the code and definitions that are specific to the NFS servers. They setup the server-specific callbacks and set the server name for the sysctl and loader tunable variables. sys/nfsserver/nfs_srvkrpc.c: Configure the RPC code to call fhaold_assign() instead of fha_assign(). sys/modules/nfsd/Makefile: Add nfs_fha.c and nfs_fha_new.c. sys/modules/nfsserver/Makefile: Add nfs_fha_old.c. Reviewed by: rmacklem Sponsored by: Spectra Logic MFC after: 2 weeks
2013-04-17 21:00:22 +00:00
LIST_ENTRY(fha_hash_entry) link;
u_int64_t fh;
u_int32_t num_rw;
u_int32_t num_exclusive;
u_int8_t num_threads;
struct svcthread_list threads;
};
LIST_HEAD(fha_hash_entry_list, fha_hash_entry);
struct fha_hash_slot {
struct fha_hash_entry_list list;
struct mtx mtx;
};
Revamp the old NFS server's File Handle Affinity (FHA) code so that it will work with either the old or new server. The FHA code keeps a cache of currently active file handles for NFSv2 and v3 requests, so that read and write requests for the same file are directed to the same group of threads (reads) or thread (writes). It does not currently work for NFSv4 requests. They are more complex, and will take more work to support. This improves read-ahead performance, especially with ZFS, if the FHA tuning parameters are configured appropriately. Without the FHA code, concurrent reads that are part of a sequential read from a file will be directed to separate NFS threads. This has the effect of confusing the ZFS zfetch (prefetch) code and makes sequential reads significantly slower with clients like Linux that do a lot of prefetching. The FHA code has also been updated to direct write requests to nearby file offsets to the same thread in the same way it batches reads, and the FHA code will now also send writes to multiple threads when needed. This improves sequential write performance in ZFS, because writes to a file are now more ordered. Since NFS writes (generally less than 64K) are smaller than the typical ZFS record size (usually 128K), out of order NFS writes to the same block can trigger a read in ZFS. Sending them down the same thread increases the odds of their being in order. In order for multiple write threads per file in the FHA code to be useful, writes in the NFS server have been changed to use a LK_SHARED vnode lock, and upgrade that to LK_EXCLUSIVE if the filesystem doesn't allow multiple writers to a file at once. ZFS is currently the only filesystem that allows multiple writers to a file, because it has internal file range locking. This change does not affect the NFSv4 code. This improves random write performance to a single file in ZFS, since we can now have multiple writers inside ZFS at one time. I have changed the default tuning parameters to a 22 bit (4MB) window size (from 256K) and unlimited commands per thread as a result of my benchmarking with ZFS. The FHA code has been updated to allow configuring the tuning parameters from loader tunable variables in addition to sysctl variables. The read offset window calculation has been slightly modified as well. Instead of having separate bins, each file handle has a rolling window of bin_shift size. This minimizes glitches in throughput when shifting from one bin to another. sys/conf/files: Add nfs_fha_new.c and nfs_fha_old.c. Compile nfs_fha.c when either the old or the new NFS server is built. sys/fs/nfs/nfsport.h, sys/fs/nfs/nfs_commonport.c: Bring in changes from Rick Macklem to newnfs_realign that allow it to operate in blocking (M_WAITOK) or non-blocking (M_NOWAIT) mode. sys/fs/nfs/nfs_commonsubs.c, sys/fs/nfs/nfs_var.h: Bring in a change from Rick Macklem to allow telling nfsm_dissect() whether or not to wait for mallocs. sys/fs/nfs/nfsm_subs.h: Bring in changes from Rick Macklem to create a new nfsm_dissect_nonblock() inline function and NFSM_DISSECT_NONBLOCK() macro. sys/fs/nfs/nfs_commonkrpc.c, sys/fs/nfsclient/nfs_clkrpc.c: Add the malloc wait flag to a newnfs_realign() call. sys/fs/nfsserver/nfs_nfsdkrpc.c: Setup the new NFS server's RPC thread pool so that it will call the FHA code. Add the malloc flag argument to newnfs_realign(). Unstaticize newnfs_nfsv3_procid[] so that we can use it in the FHA code. sys/fs/nfsserver/nfs_nfsdsocket.c: In nfsrvd_dorpc(), add NFSPROC_WRITE to the list of RPC types that use the LK_SHARED lock type. sys/fs/nfsserver/nfs_nfsdport.c: In nfsd_fhtovp(), if we're starting a write, check to see whether the underlying filesystem supports shared writes. If not, upgrade the lock type from LK_SHARED to LK_EXCLUSIVE. sys/nfsserver/nfs_fha.c: Remove all code that is specific to the NFS server implementation. Anything that is server-specific is now accessed through a callback supplied by that server's FHA shim in the new softc. There are now separate sysctls and tunables for the FHA implementations for the old and new NFS servers. The new NFS server has its tunables under vfs.nfsd.fha, the old NFS server's tunables are under vfs.nfsrv.fha as before. In fha_extract_info(), use callouts for all server-specific code. Getting file handles and offsets is now done in the individual server's shim module. In fha_hash_entry_choose_thread(), change the way we decide whether two reads are in proximity to each other. Previously, the calculation was a simple shift operation to see whether the offsets were in the same power of 2 bucket. The issue was that there would be a bucket (and therefore thread) transition, even if the reads were in close proximity. When there is a thread transition, reads wind up going somewhat out of order, and ZFS gets confused. The new calculation simply tries to see whether the offsets are within 1 << bin_shift of each other. If they are, the reads will be sent to the same thread. The effect of this change is that for sequential reads, if the client doesn't exceed the max_reqs_per_nfsd parameter and the bin_shift is set to a reasonable value (22, or 4MB works well in my tests), the reads in any sequential stream will largely be confined to a single thread. Change fha_assign() so that it takes a softc argument. It is now called from the individual server's shim code, which will pass in the softc. Change fhe_stats_sysctl() so that it takes a softc parameter. It is now called from the individual server's shim code. Add the current offset to the list of things printed out about each active thread. Change the num_reads and num_writes counters in the fha_hash_entry structure to 32-bit values, and rename them num_rw and num_exclusive, respectively, to reflect their changed usage. Add an enable sysctl and tunable that allows the user to disable the FHA code (when vfs.XXX.fha.enable = 0). This is useful for before/after performance comparisons. nfs_fha.h: Move most structure definitions out of nfs_fha.c and into the header file, so that the individual server shims can see them. Change the default bin_shift to 22 (4MB) instead of 18 (256K). Allow unlimited commands per thread. sys/nfsserver/nfs_fha_old.c, sys/nfsserver/nfs_fha_old.h, sys/fs/nfsserver/nfs_fha_new.c, sys/fs/nfsserver/nfs_fha_new.h: Add shims for the old and new NFS servers to interface with the FHA code, and callbacks for the The shims contain all of the code and definitions that are specific to the NFS servers. They setup the server-specific callbacks and set the server name for the sysctl and loader tunable variables. sys/nfsserver/nfs_srvkrpc.c: Configure the RPC code to call fhaold_assign() instead of fha_assign(). sys/modules/nfsd/Makefile: Add nfs_fha.c and nfs_fha_new.c. sys/modules/nfsserver/Makefile: Add nfs_fha_old.c. Reviewed by: rmacklem Sponsored by: Spectra Logic MFC after: 2 weeks
2013-04-17 21:00:22 +00:00
/* A structure used for passing around data internally. */
struct fha_info {
u_int64_t fh;
off_t offset;
int locktype;
int read;
int write;
Revamp the old NFS server's File Handle Affinity (FHA) code so that it will work with either the old or new server. The FHA code keeps a cache of currently active file handles for NFSv2 and v3 requests, so that read and write requests for the same file are directed to the same group of threads (reads) or thread (writes). It does not currently work for NFSv4 requests. They are more complex, and will take more work to support. This improves read-ahead performance, especially with ZFS, if the FHA tuning parameters are configured appropriately. Without the FHA code, concurrent reads that are part of a sequential read from a file will be directed to separate NFS threads. This has the effect of confusing the ZFS zfetch (prefetch) code and makes sequential reads significantly slower with clients like Linux that do a lot of prefetching. The FHA code has also been updated to direct write requests to nearby file offsets to the same thread in the same way it batches reads, and the FHA code will now also send writes to multiple threads when needed. This improves sequential write performance in ZFS, because writes to a file are now more ordered. Since NFS writes (generally less than 64K) are smaller than the typical ZFS record size (usually 128K), out of order NFS writes to the same block can trigger a read in ZFS. Sending them down the same thread increases the odds of their being in order. In order for multiple write threads per file in the FHA code to be useful, writes in the NFS server have been changed to use a LK_SHARED vnode lock, and upgrade that to LK_EXCLUSIVE if the filesystem doesn't allow multiple writers to a file at once. ZFS is currently the only filesystem that allows multiple writers to a file, because it has internal file range locking. This change does not affect the NFSv4 code. This improves random write performance to a single file in ZFS, since we can now have multiple writers inside ZFS at one time. I have changed the default tuning parameters to a 22 bit (4MB) window size (from 256K) and unlimited commands per thread as a result of my benchmarking with ZFS. The FHA code has been updated to allow configuring the tuning parameters from loader tunable variables in addition to sysctl variables. The read offset window calculation has been slightly modified as well. Instead of having separate bins, each file handle has a rolling window of bin_shift size. This minimizes glitches in throughput when shifting from one bin to another. sys/conf/files: Add nfs_fha_new.c and nfs_fha_old.c. Compile nfs_fha.c when either the old or the new NFS server is built. sys/fs/nfs/nfsport.h, sys/fs/nfs/nfs_commonport.c: Bring in changes from Rick Macklem to newnfs_realign that allow it to operate in blocking (M_WAITOK) or non-blocking (M_NOWAIT) mode. sys/fs/nfs/nfs_commonsubs.c, sys/fs/nfs/nfs_var.h: Bring in a change from Rick Macklem to allow telling nfsm_dissect() whether or not to wait for mallocs. sys/fs/nfs/nfsm_subs.h: Bring in changes from Rick Macklem to create a new nfsm_dissect_nonblock() inline function and NFSM_DISSECT_NONBLOCK() macro. sys/fs/nfs/nfs_commonkrpc.c, sys/fs/nfsclient/nfs_clkrpc.c: Add the malloc wait flag to a newnfs_realign() call. sys/fs/nfsserver/nfs_nfsdkrpc.c: Setup the new NFS server's RPC thread pool so that it will call the FHA code. Add the malloc flag argument to newnfs_realign(). Unstaticize newnfs_nfsv3_procid[] so that we can use it in the FHA code. sys/fs/nfsserver/nfs_nfsdsocket.c: In nfsrvd_dorpc(), add NFSPROC_WRITE to the list of RPC types that use the LK_SHARED lock type. sys/fs/nfsserver/nfs_nfsdport.c: In nfsd_fhtovp(), if we're starting a write, check to see whether the underlying filesystem supports shared writes. If not, upgrade the lock type from LK_SHARED to LK_EXCLUSIVE. sys/nfsserver/nfs_fha.c: Remove all code that is specific to the NFS server implementation. Anything that is server-specific is now accessed through a callback supplied by that server's FHA shim in the new softc. There are now separate sysctls and tunables for the FHA implementations for the old and new NFS servers. The new NFS server has its tunables under vfs.nfsd.fha, the old NFS server's tunables are under vfs.nfsrv.fha as before. In fha_extract_info(), use callouts for all server-specific code. Getting file handles and offsets is now done in the individual server's shim module. In fha_hash_entry_choose_thread(), change the way we decide whether two reads are in proximity to each other. Previously, the calculation was a simple shift operation to see whether the offsets were in the same power of 2 bucket. The issue was that there would be a bucket (and therefore thread) transition, even if the reads were in close proximity. When there is a thread transition, reads wind up going somewhat out of order, and ZFS gets confused. The new calculation simply tries to see whether the offsets are within 1 << bin_shift of each other. If they are, the reads will be sent to the same thread. The effect of this change is that for sequential reads, if the client doesn't exceed the max_reqs_per_nfsd parameter and the bin_shift is set to a reasonable value (22, or 4MB works well in my tests), the reads in any sequential stream will largely be confined to a single thread. Change fha_assign() so that it takes a softc argument. It is now called from the individual server's shim code, which will pass in the softc. Change fhe_stats_sysctl() so that it takes a softc parameter. It is now called from the individual server's shim code. Add the current offset to the list of things printed out about each active thread. Change the num_reads and num_writes counters in the fha_hash_entry structure to 32-bit values, and rename them num_rw and num_exclusive, respectively, to reflect their changed usage. Add an enable sysctl and tunable that allows the user to disable the FHA code (when vfs.XXX.fha.enable = 0). This is useful for before/after performance comparisons. nfs_fha.h: Move most structure definitions out of nfs_fha.c and into the header file, so that the individual server shims can see them. Change the default bin_shift to 22 (4MB) instead of 18 (256K). Allow unlimited commands per thread. sys/nfsserver/nfs_fha_old.c, sys/nfsserver/nfs_fha_old.h, sys/fs/nfsserver/nfs_fha_new.c, sys/fs/nfsserver/nfs_fha_new.h: Add shims for the old and new NFS servers to interface with the FHA code, and callbacks for the The shims contain all of the code and definitions that are specific to the NFS servers. They setup the server-specific callbacks and set the server name for the sysctl and loader tunable variables. sys/nfsserver/nfs_srvkrpc.c: Configure the RPC code to call fhaold_assign() instead of fha_assign(). sys/modules/nfsd/Makefile: Add nfs_fha.c and nfs_fha_new.c. sys/modules/nfsserver/Makefile: Add nfs_fha_old.c. Reviewed by: rmacklem Sponsored by: Spectra Logic MFC after: 2 weeks
2013-04-17 21:00:22 +00:00
};
struct fha_callbacks {
rpcproc_t (*get_procnum)(rpcproc_t procnum);
int (*realign)(struct mbuf **mb, int malloc_flags);
int (*get_fh)(uint64_t *fh, int v3, struct mbuf **md, caddr_t *dpos);
Revamp the old NFS server's File Handle Affinity (FHA) code so that it will work with either the old or new server. The FHA code keeps a cache of currently active file handles for NFSv2 and v3 requests, so that read and write requests for the same file are directed to the same group of threads (reads) or thread (writes). It does not currently work for NFSv4 requests. They are more complex, and will take more work to support. This improves read-ahead performance, especially with ZFS, if the FHA tuning parameters are configured appropriately. Without the FHA code, concurrent reads that are part of a sequential read from a file will be directed to separate NFS threads. This has the effect of confusing the ZFS zfetch (prefetch) code and makes sequential reads significantly slower with clients like Linux that do a lot of prefetching. The FHA code has also been updated to direct write requests to nearby file offsets to the same thread in the same way it batches reads, and the FHA code will now also send writes to multiple threads when needed. This improves sequential write performance in ZFS, because writes to a file are now more ordered. Since NFS writes (generally less than 64K) are smaller than the typical ZFS record size (usually 128K), out of order NFS writes to the same block can trigger a read in ZFS. Sending them down the same thread increases the odds of their being in order. In order for multiple write threads per file in the FHA code to be useful, writes in the NFS server have been changed to use a LK_SHARED vnode lock, and upgrade that to LK_EXCLUSIVE if the filesystem doesn't allow multiple writers to a file at once. ZFS is currently the only filesystem that allows multiple writers to a file, because it has internal file range locking. This change does not affect the NFSv4 code. This improves random write performance to a single file in ZFS, since we can now have multiple writers inside ZFS at one time. I have changed the default tuning parameters to a 22 bit (4MB) window size (from 256K) and unlimited commands per thread as a result of my benchmarking with ZFS. The FHA code has been updated to allow configuring the tuning parameters from loader tunable variables in addition to sysctl variables. The read offset window calculation has been slightly modified as well. Instead of having separate bins, each file handle has a rolling window of bin_shift size. This minimizes glitches in throughput when shifting from one bin to another. sys/conf/files: Add nfs_fha_new.c and nfs_fha_old.c. Compile nfs_fha.c when either the old or the new NFS server is built. sys/fs/nfs/nfsport.h, sys/fs/nfs/nfs_commonport.c: Bring in changes from Rick Macklem to newnfs_realign that allow it to operate in blocking (M_WAITOK) or non-blocking (M_NOWAIT) mode. sys/fs/nfs/nfs_commonsubs.c, sys/fs/nfs/nfs_var.h: Bring in a change from Rick Macklem to allow telling nfsm_dissect() whether or not to wait for mallocs. sys/fs/nfs/nfsm_subs.h: Bring in changes from Rick Macklem to create a new nfsm_dissect_nonblock() inline function and NFSM_DISSECT_NONBLOCK() macro. sys/fs/nfs/nfs_commonkrpc.c, sys/fs/nfsclient/nfs_clkrpc.c: Add the malloc wait flag to a newnfs_realign() call. sys/fs/nfsserver/nfs_nfsdkrpc.c: Setup the new NFS server's RPC thread pool so that it will call the FHA code. Add the malloc flag argument to newnfs_realign(). Unstaticize newnfs_nfsv3_procid[] so that we can use it in the FHA code. sys/fs/nfsserver/nfs_nfsdsocket.c: In nfsrvd_dorpc(), add NFSPROC_WRITE to the list of RPC types that use the LK_SHARED lock type. sys/fs/nfsserver/nfs_nfsdport.c: In nfsd_fhtovp(), if we're starting a write, check to see whether the underlying filesystem supports shared writes. If not, upgrade the lock type from LK_SHARED to LK_EXCLUSIVE. sys/nfsserver/nfs_fha.c: Remove all code that is specific to the NFS server implementation. Anything that is server-specific is now accessed through a callback supplied by that server's FHA shim in the new softc. There are now separate sysctls and tunables for the FHA implementations for the old and new NFS servers. The new NFS server has its tunables under vfs.nfsd.fha, the old NFS server's tunables are under vfs.nfsrv.fha as before. In fha_extract_info(), use callouts for all server-specific code. Getting file handles and offsets is now done in the individual server's shim module. In fha_hash_entry_choose_thread(), change the way we decide whether two reads are in proximity to each other. Previously, the calculation was a simple shift operation to see whether the offsets were in the same power of 2 bucket. The issue was that there would be a bucket (and therefore thread) transition, even if the reads were in close proximity. When there is a thread transition, reads wind up going somewhat out of order, and ZFS gets confused. The new calculation simply tries to see whether the offsets are within 1 << bin_shift of each other. If they are, the reads will be sent to the same thread. The effect of this change is that for sequential reads, if the client doesn't exceed the max_reqs_per_nfsd parameter and the bin_shift is set to a reasonable value (22, or 4MB works well in my tests), the reads in any sequential stream will largely be confined to a single thread. Change fha_assign() so that it takes a softc argument. It is now called from the individual server's shim code, which will pass in the softc. Change fhe_stats_sysctl() so that it takes a softc parameter. It is now called from the individual server's shim code. Add the current offset to the list of things printed out about each active thread. Change the num_reads and num_writes counters in the fha_hash_entry structure to 32-bit values, and rename them num_rw and num_exclusive, respectively, to reflect their changed usage. Add an enable sysctl and tunable that allows the user to disable the FHA code (when vfs.XXX.fha.enable = 0). This is useful for before/after performance comparisons. nfs_fha.h: Move most structure definitions out of nfs_fha.c and into the header file, so that the individual server shims can see them. Change the default bin_shift to 22 (4MB) instead of 18 (256K). Allow unlimited commands per thread. sys/nfsserver/nfs_fha_old.c, sys/nfsserver/nfs_fha_old.h, sys/fs/nfsserver/nfs_fha_new.c, sys/fs/nfsserver/nfs_fha_new.h: Add shims for the old and new NFS servers to interface with the FHA code, and callbacks for the The shims contain all of the code and definitions that are specific to the NFS servers. They setup the server-specific callbacks and set the server name for the sysctl and loader tunable variables. sys/nfsserver/nfs_srvkrpc.c: Configure the RPC code to call fhaold_assign() instead of fha_assign(). sys/modules/nfsd/Makefile: Add nfs_fha.c and nfs_fha_new.c. sys/modules/nfsserver/Makefile: Add nfs_fha_old.c. Reviewed by: rmacklem Sponsored by: Spectra Logic MFC after: 2 weeks
2013-04-17 21:00:22 +00:00
int (*is_read)(rpcproc_t procnum);
int (*is_write)(rpcproc_t procnum);
int (*get_offset)(struct mbuf **md, caddr_t *dpos, int v3, struct
fha_info *info);
int (*no_offset)(rpcproc_t procnum);
void (*set_locktype)(rpcproc_t procnum, struct fha_info *info);
int (*fhe_stats_sysctl)(SYSCTL_HANDLER_ARGS);
};
struct fha_params {
struct fha_hash_slot fha_hash[FHA_HASH_SIZE];
Revamp the old NFS server's File Handle Affinity (FHA) code so that it will work with either the old or new server. The FHA code keeps a cache of currently active file handles for NFSv2 and v3 requests, so that read and write requests for the same file are directed to the same group of threads (reads) or thread (writes). It does not currently work for NFSv4 requests. They are more complex, and will take more work to support. This improves read-ahead performance, especially with ZFS, if the FHA tuning parameters are configured appropriately. Without the FHA code, concurrent reads that are part of a sequential read from a file will be directed to separate NFS threads. This has the effect of confusing the ZFS zfetch (prefetch) code and makes sequential reads significantly slower with clients like Linux that do a lot of prefetching. The FHA code has also been updated to direct write requests to nearby file offsets to the same thread in the same way it batches reads, and the FHA code will now also send writes to multiple threads when needed. This improves sequential write performance in ZFS, because writes to a file are now more ordered. Since NFS writes (generally less than 64K) are smaller than the typical ZFS record size (usually 128K), out of order NFS writes to the same block can trigger a read in ZFS. Sending them down the same thread increases the odds of their being in order. In order for multiple write threads per file in the FHA code to be useful, writes in the NFS server have been changed to use a LK_SHARED vnode lock, and upgrade that to LK_EXCLUSIVE if the filesystem doesn't allow multiple writers to a file at once. ZFS is currently the only filesystem that allows multiple writers to a file, because it has internal file range locking. This change does not affect the NFSv4 code. This improves random write performance to a single file in ZFS, since we can now have multiple writers inside ZFS at one time. I have changed the default tuning parameters to a 22 bit (4MB) window size (from 256K) and unlimited commands per thread as a result of my benchmarking with ZFS. The FHA code has been updated to allow configuring the tuning parameters from loader tunable variables in addition to sysctl variables. The read offset window calculation has been slightly modified as well. Instead of having separate bins, each file handle has a rolling window of bin_shift size. This minimizes glitches in throughput when shifting from one bin to another. sys/conf/files: Add nfs_fha_new.c and nfs_fha_old.c. Compile nfs_fha.c when either the old or the new NFS server is built. sys/fs/nfs/nfsport.h, sys/fs/nfs/nfs_commonport.c: Bring in changes from Rick Macklem to newnfs_realign that allow it to operate in blocking (M_WAITOK) or non-blocking (M_NOWAIT) mode. sys/fs/nfs/nfs_commonsubs.c, sys/fs/nfs/nfs_var.h: Bring in a change from Rick Macklem to allow telling nfsm_dissect() whether or not to wait for mallocs. sys/fs/nfs/nfsm_subs.h: Bring in changes from Rick Macklem to create a new nfsm_dissect_nonblock() inline function and NFSM_DISSECT_NONBLOCK() macro. sys/fs/nfs/nfs_commonkrpc.c, sys/fs/nfsclient/nfs_clkrpc.c: Add the malloc wait flag to a newnfs_realign() call. sys/fs/nfsserver/nfs_nfsdkrpc.c: Setup the new NFS server's RPC thread pool so that it will call the FHA code. Add the malloc flag argument to newnfs_realign(). Unstaticize newnfs_nfsv3_procid[] so that we can use it in the FHA code. sys/fs/nfsserver/nfs_nfsdsocket.c: In nfsrvd_dorpc(), add NFSPROC_WRITE to the list of RPC types that use the LK_SHARED lock type. sys/fs/nfsserver/nfs_nfsdport.c: In nfsd_fhtovp(), if we're starting a write, check to see whether the underlying filesystem supports shared writes. If not, upgrade the lock type from LK_SHARED to LK_EXCLUSIVE. sys/nfsserver/nfs_fha.c: Remove all code that is specific to the NFS server implementation. Anything that is server-specific is now accessed through a callback supplied by that server's FHA shim in the new softc. There are now separate sysctls and tunables for the FHA implementations for the old and new NFS servers. The new NFS server has its tunables under vfs.nfsd.fha, the old NFS server's tunables are under vfs.nfsrv.fha as before. In fha_extract_info(), use callouts for all server-specific code. Getting file handles and offsets is now done in the individual server's shim module. In fha_hash_entry_choose_thread(), change the way we decide whether two reads are in proximity to each other. Previously, the calculation was a simple shift operation to see whether the offsets were in the same power of 2 bucket. The issue was that there would be a bucket (and therefore thread) transition, even if the reads were in close proximity. When there is a thread transition, reads wind up going somewhat out of order, and ZFS gets confused. The new calculation simply tries to see whether the offsets are within 1 << bin_shift of each other. If they are, the reads will be sent to the same thread. The effect of this change is that for sequential reads, if the client doesn't exceed the max_reqs_per_nfsd parameter and the bin_shift is set to a reasonable value (22, or 4MB works well in my tests), the reads in any sequential stream will largely be confined to a single thread. Change fha_assign() so that it takes a softc argument. It is now called from the individual server's shim code, which will pass in the softc. Change fhe_stats_sysctl() so that it takes a softc parameter. It is now called from the individual server's shim code. Add the current offset to the list of things printed out about each active thread. Change the num_reads and num_writes counters in the fha_hash_entry structure to 32-bit values, and rename them num_rw and num_exclusive, respectively, to reflect their changed usage. Add an enable sysctl and tunable that allows the user to disable the FHA code (when vfs.XXX.fha.enable = 0). This is useful for before/after performance comparisons. nfs_fha.h: Move most structure definitions out of nfs_fha.c and into the header file, so that the individual server shims can see them. Change the default bin_shift to 22 (4MB) instead of 18 (256K). Allow unlimited commands per thread. sys/nfsserver/nfs_fha_old.c, sys/nfsserver/nfs_fha_old.h, sys/fs/nfsserver/nfs_fha_new.c, sys/fs/nfsserver/nfs_fha_new.h: Add shims for the old and new NFS servers to interface with the FHA code, and callbacks for the The shims contain all of the code and definitions that are specific to the NFS servers. They setup the server-specific callbacks and set the server name for the sysctl and loader tunable variables. sys/nfsserver/nfs_srvkrpc.c: Configure the RPC code to call fhaold_assign() instead of fha_assign(). sys/modules/nfsd/Makefile: Add nfs_fha.c and nfs_fha_new.c. sys/modules/nfsserver/Makefile: Add nfs_fha_old.c. Reviewed by: rmacklem Sponsored by: Spectra Logic MFC after: 2 weeks
2013-04-17 21:00:22 +00:00
struct sysctl_ctx_list sysctl_ctx;
struct sysctl_oid *sysctl_tree;
struct fha_ctls ctls;
struct fha_callbacks callbacks;
char server_name[32];
SVCPOOL **pool;
};
Implement support for RPCSEC_GSS authentication to both the NFS client and server. This replaces the RPC implementation of the NFS client and server with the newer RPC implementation originally developed (actually ported from the userland sunrpc code) to support the NFS Lock Manager. I have tested this code extensively and I believe it is stable and that performance is at least equal to the legacy RPC implementation. The NFS code currently contains support for both the new RPC implementation and the older legacy implementation inherited from the original NFS codebase. The default is to use the new implementation - add the NFS_LEGACYRPC option to fall back to the old code. When I merge this support back to RELENG_7, I will probably change this so that users have to 'opt in' to get the new code. To use RPCSEC_GSS on either client or server, you must build a kernel which includes the KGSSAPI option and the crypto device. On the userland side, you must build at least a new libc, mountd, mount_nfs and gssd. You must install new versions of /etc/rc.d/gssd and /etc/rc.d/nfsd and add 'gssd_enable=YES' to /etc/rc.conf. As long as gssd is running, you should be able to mount an NFS filesystem from a server that requires RPCSEC_GSS authentication. The mount itself can happen without any kerberos credentials but all access to the filesystem will be denied unless the accessing user has a valid ticket file in the standard place (/tmp/krb5cc_<uid>). There is currently no support for situations where the ticket file is in a different place, such as when the user logged in via SSH and has delegated credentials from that login. This restriction is also present in Solaris and Linux. In theory, we could improve this in future, possibly using Brooks Davis' implementation of variant symlinks. Supporting RPCSEC_GSS on a server is nearly as simple. You must create service creds for the server in the form 'nfs/<fqdn>@<REALM>' and install them in /etc/krb5.keytab. The standard heimdal utility ktutil makes this fairly easy. After the service creds have been created, you can add a '-sec=krb5' option to /etc/exports and restart both mountd and nfsd. The only other difference an administrator should notice is that nfsd doesn't fork to create service threads any more. In normal operation, there will be two nfsd processes, one in userland waiting for TCP connections and one in the kernel handling requests. The latter process will create as many kthreads as required - these should be visible via 'top -H'. The code has some support for varying the number of service threads according to load but initially at least, nfsd uses a fixed number of threads according to the value supplied to its '-n' option. Sponsored by: Isilon Systems MFC after: 1 month
2008-11-03 10:38:00 +00:00
void fha_nd_complete(SVCTHREAD *, struct svc_req *);
Revamp the old NFS server's File Handle Affinity (FHA) code so that it will work with either the old or new server. The FHA code keeps a cache of currently active file handles for NFSv2 and v3 requests, so that read and write requests for the same file are directed to the same group of threads (reads) or thread (writes). It does not currently work for NFSv4 requests. They are more complex, and will take more work to support. This improves read-ahead performance, especially with ZFS, if the FHA tuning parameters are configured appropriately. Without the FHA code, concurrent reads that are part of a sequential read from a file will be directed to separate NFS threads. This has the effect of confusing the ZFS zfetch (prefetch) code and makes sequential reads significantly slower with clients like Linux that do a lot of prefetching. The FHA code has also been updated to direct write requests to nearby file offsets to the same thread in the same way it batches reads, and the FHA code will now also send writes to multiple threads when needed. This improves sequential write performance in ZFS, because writes to a file are now more ordered. Since NFS writes (generally less than 64K) are smaller than the typical ZFS record size (usually 128K), out of order NFS writes to the same block can trigger a read in ZFS. Sending them down the same thread increases the odds of their being in order. In order for multiple write threads per file in the FHA code to be useful, writes in the NFS server have been changed to use a LK_SHARED vnode lock, and upgrade that to LK_EXCLUSIVE if the filesystem doesn't allow multiple writers to a file at once. ZFS is currently the only filesystem that allows multiple writers to a file, because it has internal file range locking. This change does not affect the NFSv4 code. This improves random write performance to a single file in ZFS, since we can now have multiple writers inside ZFS at one time. I have changed the default tuning parameters to a 22 bit (4MB) window size (from 256K) and unlimited commands per thread as a result of my benchmarking with ZFS. The FHA code has been updated to allow configuring the tuning parameters from loader tunable variables in addition to sysctl variables. The read offset window calculation has been slightly modified as well. Instead of having separate bins, each file handle has a rolling window of bin_shift size. This minimizes glitches in throughput when shifting from one bin to another. sys/conf/files: Add nfs_fha_new.c and nfs_fha_old.c. Compile nfs_fha.c when either the old or the new NFS server is built. sys/fs/nfs/nfsport.h, sys/fs/nfs/nfs_commonport.c: Bring in changes from Rick Macklem to newnfs_realign that allow it to operate in blocking (M_WAITOK) or non-blocking (M_NOWAIT) mode. sys/fs/nfs/nfs_commonsubs.c, sys/fs/nfs/nfs_var.h: Bring in a change from Rick Macklem to allow telling nfsm_dissect() whether or not to wait for mallocs. sys/fs/nfs/nfsm_subs.h: Bring in changes from Rick Macklem to create a new nfsm_dissect_nonblock() inline function and NFSM_DISSECT_NONBLOCK() macro. sys/fs/nfs/nfs_commonkrpc.c, sys/fs/nfsclient/nfs_clkrpc.c: Add the malloc wait flag to a newnfs_realign() call. sys/fs/nfsserver/nfs_nfsdkrpc.c: Setup the new NFS server's RPC thread pool so that it will call the FHA code. Add the malloc flag argument to newnfs_realign(). Unstaticize newnfs_nfsv3_procid[] so that we can use it in the FHA code. sys/fs/nfsserver/nfs_nfsdsocket.c: In nfsrvd_dorpc(), add NFSPROC_WRITE to the list of RPC types that use the LK_SHARED lock type. sys/fs/nfsserver/nfs_nfsdport.c: In nfsd_fhtovp(), if we're starting a write, check to see whether the underlying filesystem supports shared writes. If not, upgrade the lock type from LK_SHARED to LK_EXCLUSIVE. sys/nfsserver/nfs_fha.c: Remove all code that is specific to the NFS server implementation. Anything that is server-specific is now accessed through a callback supplied by that server's FHA shim in the new softc. There are now separate sysctls and tunables for the FHA implementations for the old and new NFS servers. The new NFS server has its tunables under vfs.nfsd.fha, the old NFS server's tunables are under vfs.nfsrv.fha as before. In fha_extract_info(), use callouts for all server-specific code. Getting file handles and offsets is now done in the individual server's shim module. In fha_hash_entry_choose_thread(), change the way we decide whether two reads are in proximity to each other. Previously, the calculation was a simple shift operation to see whether the offsets were in the same power of 2 bucket. The issue was that there would be a bucket (and therefore thread) transition, even if the reads were in close proximity. When there is a thread transition, reads wind up going somewhat out of order, and ZFS gets confused. The new calculation simply tries to see whether the offsets are within 1 << bin_shift of each other. If they are, the reads will be sent to the same thread. The effect of this change is that for sequential reads, if the client doesn't exceed the max_reqs_per_nfsd parameter and the bin_shift is set to a reasonable value (22, or 4MB works well in my tests), the reads in any sequential stream will largely be confined to a single thread. Change fha_assign() so that it takes a softc argument. It is now called from the individual server's shim code, which will pass in the softc. Change fhe_stats_sysctl() so that it takes a softc parameter. It is now called from the individual server's shim code. Add the current offset to the list of things printed out about each active thread. Change the num_reads and num_writes counters in the fha_hash_entry structure to 32-bit values, and rename them num_rw and num_exclusive, respectively, to reflect their changed usage. Add an enable sysctl and tunable that allows the user to disable the FHA code (when vfs.XXX.fha.enable = 0). This is useful for before/after performance comparisons. nfs_fha.h: Move most structure definitions out of nfs_fha.c and into the header file, so that the individual server shims can see them. Change the default bin_shift to 22 (4MB) instead of 18 (256K). Allow unlimited commands per thread. sys/nfsserver/nfs_fha_old.c, sys/nfsserver/nfs_fha_old.h, sys/fs/nfsserver/nfs_fha_new.c, sys/fs/nfsserver/nfs_fha_new.h: Add shims for the old and new NFS servers to interface with the FHA code, and callbacks for the The shims contain all of the code and definitions that are specific to the NFS servers. They setup the server-specific callbacks and set the server name for the sysctl and loader tunable variables. sys/nfsserver/nfs_srvkrpc.c: Configure the RPC code to call fhaold_assign() instead of fha_assign(). sys/modules/nfsd/Makefile: Add nfs_fha.c and nfs_fha_new.c. sys/modules/nfsserver/Makefile: Add nfs_fha_old.c. Reviewed by: rmacklem Sponsored by: Spectra Logic MFC after: 2 weeks
2013-04-17 21:00:22 +00:00
SVCTHREAD *fha_assign(SVCTHREAD *, struct svc_req *, struct fha_params *);
void fha_init(struct fha_params *softc);
void fha_uninit(struct fha_params *softc);
int fhe_stats_sysctl(SYSCTL_HANDLER_ARGS, struct fha_params *softc);
#endif /* _KERNEL */
#endif /* _NFS_FHA_H_ */