1947 lines
49 KiB
C
Raw Normal View History

/*-
* Copyright (c) 1982, 1986, 1991, 1993, 1995
* The Regents of the University of California.
* Copyright (c) 2007-2009 Robert N. M. Watson
* All rights reserved.
1994-05-24 10:09:53 +00:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
1994-05-24 10:09:53 +00:00
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_inet.h"
#include "opt_ipsec.h"
#include "opt_inet6.h"
#include "opt_mac.h"
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
1994-05-24 10:09:53 +00:00
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/priv.h>
1994-05-24 10:09:53 +00:00
#include <sys/proc.h>
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/vimage.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <vm/uma.h>
1994-05-24 10:09:53 +00:00
#include <net/if.h>
#include <net/if_types.h>
1994-05-24 10:09:53 +00:00
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/tcp_var.h>
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#include <netinet/vinet.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/vinet6.h>
#endif /* INET6 */
1994-05-24 10:09:53 +00:00
#ifdef IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/key.h>
#endif /* IPSEC */
#include <security/mac/mac_framework.h>
#ifdef VIMAGE_GLOBALS
/*
* These configure the range of local port addresses assigned to
* "unspecified" outgoing connections/packets/whatever.
*/
int ipport_lowfirstauto;
int ipport_lowlastauto;
int ipport_firstauto;
int ipport_lastauto;
int ipport_hifirstauto;
int ipport_hilastauto;
/*
* Reserved ports accessible only to root. There are significant
* security considerations that must be accounted for when changing these,
* but the security benefits can be great. Please be careful.
*/
int ipport_reservedhigh;
int ipport_reservedlow;
/* Variables dealing with random ephemeral port allocation. */
int ipport_randomized;
int ipport_randomcps;
int ipport_randomtime;
int ipport_stoprandom;
int ipport_tcpallocs;
int ipport_tcplastcount;
#endif
#define RANGECHK(var, min, max) \
if ((var) < (min)) { (var) = (min); } \
else if ((var) > (max)) { (var) = (max); }
static int
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
{
INIT_VNET_INET(curvnet);
int error;
error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
if (error == 0) {
RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
}
return (error);
}
#undef RANGECHK
SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
lowfirst, CTLTYPE_INT|CTLFLAG_RW, ipport_lowfirstauto, 0,
&sysctl_net_ipport_check, "I", "");
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
lowlast, CTLTYPE_INT|CTLFLAG_RW, ipport_lowlastauto, 0,
&sysctl_net_ipport_check, "I", "");
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
first, CTLTYPE_INT|CTLFLAG_RW, ipport_firstauto, 0,
&sysctl_net_ipport_check, "I", "");
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
last, CTLTYPE_INT|CTLFLAG_RW, ipport_lastauto, 0,
&sysctl_net_ipport_check, "I", "");
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
hifirst, CTLTYPE_INT|CTLFLAG_RW, ipport_hifirstauto, 0,
&sysctl_net_ipport_check, "I", "");
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
hilast, CTLTYPE_INT|CTLFLAG_RW, ipport_hilastauto, 0,
&sysctl_net_ipport_check, "I", "");
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
reservedhigh, CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedhigh, 0, "");
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, reservedlow,
CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedlow, 0, "");
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomized,
CTLFLAG_RW, ipport_randomized, 0, "Enable random port allocation");
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomcps,
CTLFLAG_RW, ipport_randomcps, 0, "Maximum number of random port "
"allocations before switching to a sequental one");
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomtime,
CTLFLAG_RW, ipport_randomtime, 0,
"Minimum time to keep sequental port "
"allocation before switching to a random one");
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
/*
* in_pcb.c: manage the Protocol Control Blocks.
*
* NOTE: It is assumed that most of these functions will be called with
* the pcbinfo lock held, and often, the inpcb lock held, as these utility
* functions often modify hash chains or addresses in pcbs.
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
*/
/*
* Allocate a PCB and associate it with the socket.
* On success return with the PCB locked.
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
*/
1994-05-24 10:09:53 +00:00
int
in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
1994-05-24 10:09:53 +00:00
{
#ifdef INET6
INIT_VNET_INET6(curvnet);
#endif
struct inpcb *inp;
int error;
INP_INFO_WLOCK_ASSERT(pcbinfo);
error = 0;
inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
1994-05-24 10:09:53 +00:00
if (inp == NULL)
return (ENOBUFS);
bzero(inp, inp_zero_size);
inp->inp_pcbinfo = pcbinfo;
1994-05-24 10:09:53 +00:00
inp->inp_socket = so;
inp->inp_cred = crhold(so->so_cred);
Add code to allow the system to handle multiple routing tables. This particular implementation is designed to be fully backwards compatible and to be MFC-able to 7.x (and 6.x) Currently the only protocol that can make use of the multiple tables is IPv4 Similar functionality exists in OpenBSD and Linux. From my notes: ----- One thing where FreeBSD has been falling behind, and which by chance I have some time to work on is "policy based routing", which allows different packet streams to be routed by more than just the destination address. Constraints: ------------ I want to make some form of this available in the 6.x tree (and by extension 7.x) , but FreeBSD in general needs it so I might as well do it in -current and back port the portions I need. One of the ways that this can be done is to have the ability to instantiate multiple kernel routing tables (which I will now refer to as "Forwarding Information Bases" or "FIBs" for political correctness reasons). Which FIB a particular packet uses to make the next hop decision can be decided by a number of mechanisms. The policies these mechanisms implement are the "Policies" referred to in "Policy based routing". One of the constraints I have if I try to back port this work to 6.x is that it must be implemented as a EXTENSION to the existing ABIs in 6.x so that third party applications do not need to be recompiled in timespan of the branch. This first version will not have some of the bells and whistles that will come with later versions. It will, for example, be limited to 16 tables in the first commit. Implementation method, Compatible version. (part 1) ------------------------------- For this reason I have implemented a "sufficient subset" of a multiple routing table solution in Perforce, and back-ported it to 6.x. (also in Perforce though not always caught up with what I have done in -current/P4). The subset allows a number of FIBs to be defined at compile time (8 is sufficient for my purposes in 6.x) and implements the changes needed to allow IPV4 to use them. I have not done the changes for ipv6 simply because I do not need it, and I do not have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it. Other protocol families are left untouched and should there be users with proprietary protocol families, they should continue to work and be oblivious to the existence of the extra FIBs. To understand how this is done, one must know that the current FIB code starts everything off with a single dimensional array of pointers to FIB head structures (One per protocol family), each of which in turn points to the trie of routes available to that family. The basic change in the ABI compatible version of the change is to extent that array to be a 2 dimensional array, so that instead of protocol family X looking at rt_tables[X] for the table it needs, it looks at rt_tables[Y][X] when for all protocol families except ipv4 Y is always 0. Code that is unaware of the change always just sees the first row of the table, which of course looks just like the one dimensional array that existed before. The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign() are all maintained, but refer only to the first row of the array, so that existing callers in proprietary protocols can continue to do the "right thing". Some new entry points are added, for the exclusive use of ipv4 code called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(), which have an extra argument which refers the code to the correct row. In addition, there are some new entry points (currently called rtalloc_fib() and friends) that check the Address family being looked up and call either rtalloc() (and friends) if the protocol is not IPv4 forcing the action to row 0 or to the appropriate row if it IS IPv4 (and that info is available). These are for calling from code that is not specific to any particular protocol. The way these are implemented would change in the non ABI preserving code to be added later. One feature of the first version of the code is that for ipv4, the interface routes show up automatically on all the FIBs, so that no matter what FIB you select you always have the basic direct attached hosts available to you. (rtinit() does this automatically). You CAN delete an interface route from one FIB should you want to but by default it's there. ARP information is also available in each FIB. It's assumed that the same machine would have the same MAC address, regardless of which FIB you are using to get to it. This brings us as to how the correct FIB is selected for an outgoing IPV4 packet. Firstly, all packets have a FIB associated with them. if nothing has been done to change it, it will be FIB 0. The FIB is changed in the following ways. Packets fall into one of a number of classes. 1/ locally generated packets, coming from a socket/PCB. Such packets select a FIB from a number associated with the socket/PCB. This in turn is inherited from the process, but can be changed by a socket option. The process in turn inherits it on fork. I have written a utility call setfib that acts a bit like nice.. setfib -3 ping target.example.com # will use fib 3 for ping. It is an obvious extension to make it a property of a jail but I have not done so. It can be achieved by combining the setfib and jail commands. 2/ packets received on an interface for forwarding. By default these packets would use table 0, (or possibly a number settable in a sysctl(not yet)). but prior to routing the firewall can inspect them (see below). (possibly in the future you may be able to associate a FIB with packets received on an interface.. An ifconfig arg, but not yet.) 3/ packets inspected by a packet classifier, which can arbitrarily associate a fib with it on a packet by packet basis. A fib assigned to a packet by a packet classifier (such as ipfw) would over-ride a fib associated by a more default source. (such as cases 1 or 2). 4/ a tcp listen socket associated with a fib will generate accept sockets that are associated with that same fib. 5/ Packets generated in response to some other packet (e.g. reset or icmp packets). These should use the FIB associated with the packet being reponded to. 6/ Packets generated during encapsulation. gif, tun and other tunnel interfaces will encapsulate using the FIB that was in effect withthe proces that set up the tunnel. thus setfib 1 ifconfig gif0 [tunnel instructions] will set the fib for the tunnel to use to be fib 1. Routing messages would be associated with their process, and thus select one FIB or another. messages from the kernel would be associated with the fib they refer to and would only be received by a routing socket associated with that fib. (not yet implemented) In addition Netstat has been edited to be able to cope with the fact that the array is now 2 dimensional. (It looks in system memory using libkvm (!)). Old versions of netstat see only the first FIB. In addition two sysctls are added to give: a) the number of FIBs compiled in (active) b) the default FIB of the calling process. Early testing experience: ------------------------- Basically our (IronPort's) appliance does this functionality already using ipfw fwd but that method has some drawbacks. For example, It can't fully simulate a routing table because it can't influence the socket's choice of local address when a connect() is done. Testing during the generating of these changes has been remarkably smooth so far. Multiple tables have co-existed with no notable side effects, and packets have been routes accordingly. ipfw has grown 2 new keywords: setfib N ip from anay to any count ip from any to any fib N In pf there seems to be a requirement to be able to give symbolic names to the fibs but I do not have that capacity. I am not sure if it is required. SCTP has interestingly enough built in support for this, called VRFs in Cisco parlance. it will be interesting to see how that handles it when it suddenly actually does something. Where to next: -------------------- After committing the ABI compatible version and MFCing it, I'd like to proceed in a forward direction in -current. this will result in some roto-tilling in the routing code. Firstly: the current code's idea of having a separate tree per protocol family, all of the same format, and pointed to by the 1 dimensional array is a bit silly. Especially when one considers that there is code that makes assumptions about every protocol having the same internal structures there. Some protocols don't WANT that sort of structure. (for example the whole idea of a netmask is foreign to appletalk). This needs to be made opaque to the external code. My suggested first change is to add routing method pointers to the 'domain' structure, along with information pointing the data. instead of having an array of pointers to uniform structures, there would be an array pointing to the 'domain' structures for each protocol address domain (protocol family), and the methods this reached would be called. The methods would have an argument that gives FIB number, but the protocol would be free to ignore it. When the ABI can be changed it raises the possibilty of the addition of a fib entry into the "struct route". Currently, the structure contains the sockaddr of the desination, and the resulting fib entry. To make this work fully, one could add a fib number so that given an address and a fib, one can find the third element, the fib entry. Interaction with the ARP layer/ LL layer would need to be revisited as well. Qing Li has been working on this already. This work was sponsored by Ironport Systems/Cisco Reviewed by: several including rwatson, bz and mlair (parts each) Obtained from: Ironport systems/Cisco
2008-05-09 23:03:00 +00:00
inp->inp_inc.inc_fibnum = so->so_fibnum;
#ifdef MAC
error = mac_inpcb_init(inp, M_NOWAIT);
if (error != 0)
goto out;
SOCK_LOCK(so);
mac_inpcb_create(so, inp);
SOCK_UNLOCK(so);
#endif
#ifdef IPSEC
error = ipsec_init_policy(so, &inp->inp_sp);
if (error != 0) {
#ifdef MAC
mac_inpcb_destroy(inp);
#endif
goto out;
}
#endif /*IPSEC*/
#ifdef INET6
if (INP_SOCKAF(so) == AF_INET6) {
inp->inp_vflag |= INP_IPV6PROTO;
if (V_ip6_v6only)
inp->inp_flags |= IN6P_IPV6_V6ONLY;
}
#endif
LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
pcbinfo->ipi_count++;
1994-05-24 10:09:53 +00:00
so->so_pcb = (caddr_t)inp;
#ifdef INET6
if (V_ip6_auto_flowlabel)
inp->inp_flags |= IN6P_AUTOFLOWLABEL;
#endif
INP_WLOCK(inp);
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
inp->inp_refcount = 1; /* Reference from the inpcbinfo */
#if defined(IPSEC) || defined(MAC)
out:
if (error != 0) {
crfree(inp->inp_cred);
uma_zfree(pcbinfo->ipi_zone, inp);
}
#endif
return (error);
1994-05-24 10:09:53 +00:00
}
int
in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
1994-05-24 10:09:53 +00:00
{
int anonport, error;
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_WLOCK_ASSERT(inp);
if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
return (EINVAL);
anonport = inp->inp_lport == 0 && (nam == NULL ||
((struct sockaddr_in *)nam)->sin_port == 0);
error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
&inp->inp_lport, cred);
if (error)
return (error);
if (in_pcbinshash(inp) != 0) {
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_lport = 0;
return (EAGAIN);
}
if (anonport)
inp->inp_flags |= INP_ANONPORT;
return (0);
}
/*
* Set up a bind operation on a PCB, performing port allocation
* as required, but do not actually modify the PCB. Callers can
* either complete the bind by setting inp_laddr/inp_lport and
* calling in_pcbinshash(), or they can just use the resulting
* port and address to authorise the sending of a once-off packet.
*
* On error, the values of *laddrp and *lportp are not changed.
*/
int
in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
u_short *lportp, struct ucred *cred)
{
INIT_VNET_INET(inp->inp_vnet);
struct socket *so = inp->inp_socket;
unsigned short *lastport;
struct sockaddr_in *sin;
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct in_addr laddr;
1994-05-24 10:09:53 +00:00
u_short lport = 0;
int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
int error;
int dorandom;
1994-05-24 10:09:53 +00:00
/*
* Because no actual state changes occur here, a global write lock on
* the pcbinfo isn't required.
*/
INP_INFO_LOCK_ASSERT(pcbinfo);
INP_LOCK_ASSERT(inp);
if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
1994-05-24 10:09:53 +00:00
return (EADDRNOTAVAIL);
laddr.s_addr = *laddrp;
if (nam != NULL && laddr.s_addr != INADDR_ANY)
1994-05-24 10:09:53 +00:00
return (EINVAL);
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
wild = INPLOOKUP_WILDCARD;
if (nam == NULL) {
if ((error = prison_local_ip4(cred, &laddr)) != 0)
return (error);
} else {
sin = (struct sockaddr_in *)nam;
if (nam->sa_len != sizeof (*sin))
1994-05-24 10:09:53 +00:00
return (EINVAL);
#ifdef notdef
/*
* We should check the family, but old programs
* incorrectly fail to initialize it.
*/
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
#endif
error = prison_local_ip4(cred, &sin->sin_addr);
if (error)
return (error);
if (sin->sin_port != *lportp) {
/* Don't allow the port to change. */
if (*lportp != 0)
return (EINVAL);
lport = sin->sin_port;
}
/* NB: lport is left as 0 if the port isn't being changed. */
1994-05-24 10:09:53 +00:00
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
/*
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
* allow complete duplication of binding if
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
* and a multicast address is bound on both
* new and duplicated sockets.
*/
if (so->so_options & SO_REUSEADDR)
reuseport = SO_REUSEADDR|SO_REUSEPORT;
} else if (sin->sin_addr.s_addr != INADDR_ANY) {
sin->sin_port = 0; /* yech... */
bzero(&sin->sin_zero, sizeof(sin->sin_zero));
/*
* Is the address a local IP address?
* If INP_NONLOCALOK is set, then the socket may be bound
* to any endpoint address, local or not.
*/
if (
#if defined(IP_NONLOCALBIND)
((inp->inp_flags & INP_NONLOCALOK) == 0) &&
#endif
(ifa_ifwithaddr((struct sockaddr *)sin) == 0))
1994-05-24 10:09:53 +00:00
return (EADDRNOTAVAIL);
}
laddr = sin->sin_addr;
1994-05-24 10:09:53 +00:00
if (lport) {
struct inpcb *t;
struct tcptw *tw;
1994-05-24 10:09:53 +00:00
/* GROSS */
if (ntohs(lport) <= V_ipport_reservedhigh &&
ntohs(lport) >= V_ipport_reservedlow &&
priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
0))
return (EACCES);
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
priv_check_cred(inp->inp_cred,
PRIV_NETINET_REUSEPORT, 0) != 0) {
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
lport, INPLOOKUP_WILDCARD, cred);
/*
* XXX
* This entire block sorely needs a rewrite.
*/
if (t &&
((t->inp_flags & INP_TIMEWAIT) == 0) &&
(so->so_type != SOCK_STREAM ||
ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
(ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
(t->inp_socket->so_options &
SO_REUSEPORT) == 0) &&
(inp->inp_cred->cr_uid !=
t->inp_cred->cr_uid))
return (EADDRINUSE);
}
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
lport, wild, cred);
if (t && (t->inp_flags & INP_TIMEWAIT)) {
/*
* XXXRW: If an incpb has had its timewait
* state recycled, we treat the address as
* being in use (for now). This is better
* than a panic, but not desirable.
*/
tw = intotw(inp);
if (tw == NULL ||
(reuseport & tw->tw_so_options) == 0)
return (EADDRINUSE);
} else if (t &&
(reuseport & t->inp_socket->so_options) == 0) {
#ifdef INET6
if (ntohl(sin->sin_addr.s_addr) !=
INADDR_ANY ||
ntohl(t->inp_laddr.s_addr) !=
INADDR_ANY ||
INP_SOCKAF(so) ==
INP_SOCKAF(t->inp_socket))
#endif
return (EADDRINUSE);
}
1994-05-24 10:09:53 +00:00
}
}
if (*lportp != 0)
lport = *lportp;
if (lport == 0) {
u_short first, last, aux;
int count;
if (inp->inp_flags & INP_HIGHPORT) {
first = V_ipport_hifirstauto; /* sysctl */
last = V_ipport_hilastauto;
lastport = &pcbinfo->ipi_lasthi;
} else if (inp->inp_flags & INP_LOWPORT) {
error = priv_check_cred(cred,
PRIV_NETINET_RESERVEDPORT, 0);
if (error)
return error;
first = V_ipport_lowfirstauto; /* 1023 */
last = V_ipport_lowlastauto; /* 600 */
lastport = &pcbinfo->ipi_lastlow;
} else {
first = V_ipport_firstauto; /* sysctl */
last = V_ipport_lastauto;
lastport = &pcbinfo->ipi_lastport;
}
/*
* For UDP, use random port allocation as long as the user
* allows it. For TCP (and as of yet unknown) connections,
* use random port allocation only if the user allows it AND
2005-04-08 08:43:21 +00:00
* ipport_tick() allows it.
*/
if (V_ipport_randomized &&
(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
dorandom = 1;
else
dorandom = 0;
/*
* It makes no sense to do random port allocation if
* we have the only port available.
*/
if (first == last)
dorandom = 0;
/* Make sure to not include UDP packets in the count. */
if (pcbinfo != &V_udbinfo)
V_ipport_tcpallocs++;
/*
* Instead of having two loops further down counting up or down
* make sure that first is always <= last and go with only one
* code path implementing all logic.
*/
if (first > last) {
aux = first;
first = last;
last = aux;
}
if (dorandom)
*lastport = first +
(arc4random() % (last - first));
count = last - first;
do {
if (count-- < 0) /* completely used? */
return (EADDRNOTAVAIL);
++*lastport;
if (*lastport < first || *lastport > last)
*lastport = first;
lport = htons(*lastport);
} while (in_pcblookup_local(pcbinfo, laddr,
lport, wild, cred));
}
*laddrp = laddr.s_addr;
*lportp = lport;
1994-05-24 10:09:53 +00:00
return (0);
}
/*
* Connect from a socket to a specified address.
* Both address and port must be specified in argument sin.
* If don't have a local address for this socket yet,
* then pick one.
*/
int
in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
{
u_short lport, fport;
in_addr_t laddr, faddr;
int anonport, error;
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_WLOCK_ASSERT(inp);
lport = inp->inp_lport;
laddr = inp->inp_laddr.s_addr;
anonport = (lport == 0);
error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
NULL, cred);
if (error)
return (error);
/* Do the initial binding of the local address if required. */
if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
inp->inp_lport = lport;
inp->inp_laddr.s_addr = laddr;
if (in_pcbinshash(inp) != 0) {
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_lport = 0;
return (EAGAIN);
}
}
/* Commit the remaining changes. */
inp->inp_lport = lport;
inp->inp_laddr.s_addr = laddr;
inp->inp_faddr.s_addr = faddr;
inp->inp_fport = fport;
in_pcbrehash(inp);
if (anonport)
inp->inp_flags |= INP_ANONPORT;
return (0);
}
/*
* Do proper source address selection on an unbound socket in case
* of connect. Take jails into account as well.
*/
static int
in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
struct ucred *cred)
{
struct in_ifaddr *ia;
struct ifaddr *ifa;
struct sockaddr *sa;
struct sockaddr_in *sin;
struct route sro;
int error;
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
error = 0;
ia = NULL;
bzero(&sro, sizeof(sro));
sin = (struct sockaddr_in *)&sro.ro_dst;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(struct sockaddr_in);
sin->sin_addr.s_addr = faddr->s_addr;
/*
* If route is known our src addr is taken from the i/f,
* else punt.
*
* Find out route to destination.
*/
if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
/*
* If we found a route, use the address corresponding to
* the outgoing interface.
*
* Otherwise assume faddr is reachable on a directly connected
* network and try to find a corresponding interface to take
* the source address from.
*/
if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
struct ifnet *ifp;
ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
if (ia == NULL)
ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin));
if (ia == NULL) {
error = ENETUNREACH;
goto done;
}
if (cred == NULL || !jailed(cred)) {
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
goto done;
}
ifp = ia->ia_ifp;
ia = NULL;
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET)
continue;
sin = (struct sockaddr_in *)sa;
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
ia = (struct in_ifaddr *)ifa;
break;
}
}
if (ia != NULL) {
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
IF_ADDR_UNLOCK(ifp);
goto done;
}
IF_ADDR_UNLOCK(ifp);
/* 3. As a last resort return the 'default' jail address. */
error = prison_get_ip4(cred, laddr);
goto done;
}
/*
* If the outgoing interface on the route found is not
* a loopback interface, use the address from that interface.
* In case of jails do those three steps:
* 1. check if the interface address belongs to the jail. If so use it.
* 2. check if we have any address on the outgoing interface
* belonging to this jail. If so use it.
* 3. as a last resort return the 'default' jail address.
*/
if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
struct ifnet *ifp;
/* If not jailed, use the default returned. */
if (cred == NULL || !jailed(cred)) {
ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
goto done;
}
/* Jailed. */
/* 1. Check if the iface address belongs to the jail. */
sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
goto done;
}
/*
* 2. Check if we have any address on the outgoing interface
* belonging to this jail.
*/
ifp = sro.ro_rt->rt_ifp;
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET)
continue;
sin = (struct sockaddr_in *)sa;
if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
ia = (struct in_ifaddr *)ifa;
break;
}
}
if (ia != NULL) {
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
IF_ADDR_UNLOCK(ifp);
goto done;
}
IF_ADDR_UNLOCK(ifp);
/* 3. As a last resort return the 'default' jail address. */
error = prison_get_ip4(cred, laddr);
goto done;
}
/*
* The outgoing interface is marked with 'loopback net', so a route
* to ourselves is here.
* Try to find the interface of the destination address and then
* take the address from there. That interface is not necessarily
* a loopback interface.
* In case of jails, check that it is an address of the jail
* and if we cannot find, fall back to the 'default' jail address.
*/
if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
struct sockaddr_in sain;
bzero(&sain, sizeof(struct sockaddr_in));
sain.sin_family = AF_INET;
sain.sin_len = sizeof(struct sockaddr_in);
sain.sin_addr.s_addr = faddr->s_addr;
ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
if (ia == NULL)
ia = ifatoia(ifa_ifwithnet(sintosa(&sain)));
if (cred == NULL || !jailed(cred)) {
#if __FreeBSD_version < 800000
if (ia == NULL)
ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
#endif
if (ia == NULL) {
error = ENETUNREACH;
goto done;
}
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
goto done;
}
/* Jailed. */
if (ia != NULL) {
struct ifnet *ifp;
ifp = ia->ia_ifp;
ia = NULL;
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET)
continue;
sin = (struct sockaddr_in *)sa;
if (prison_check_ip4(cred,
&sin->sin_addr) == 0) {
ia = (struct in_ifaddr *)ifa;
break;
}
}
if (ia != NULL) {
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
IF_ADDR_UNLOCK(ifp);
goto done;
}
IF_ADDR_UNLOCK(ifp);
}
/* 3. As a last resort return the 'default' jail address. */
error = prison_get_ip4(cred, laddr);
goto done;
}
done:
if (sro.ro_rt != NULL)
RTFREE(sro.ro_rt);
return (error);
}
/*
* Set up for a connect from a socket to the specified address.
* On entry, *laddrp and *lportp should contain the current local
* address and port for the PCB; these are updated to the values
* that should be placed in inp_laddr and inp_lport to complete
* the connect.
*
* On success, *faddrp and *fportp will be set to the remote address
* and port. These are not updated in the error case.
*
* If the operation fails because the connection already exists,
* *oinpp will be set to the PCB of that connection so that the
* caller can decide to override it. In all other cases, *oinpp
* is set to NULL.
*/
int
in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
struct inpcb **oinpp, struct ucred *cred)
{
INIT_VNET_INET(inp->inp_vnet);
struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1994-05-24 10:09:53 +00:00
struct in_ifaddr *ia;
struct inpcb *oinp;
struct in_addr laddr, faddr;
u_short lport, fport;
int error;
1994-05-24 10:09:53 +00:00
/*
* Because a global state change doesn't actually occur here, a read
* lock is sufficient.
*/
INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo);
INP_LOCK_ASSERT(inp);
if (oinpp != NULL)
*oinpp = NULL;
if (nam->sa_len != sizeof (*sin))
1994-05-24 10:09:53 +00:00
return (EINVAL);
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
if (sin->sin_port == 0)
return (EADDRNOTAVAIL);
laddr.s_addr = *laddrp;
lport = *lportp;
faddr = sin->sin_addr;
fport = sin->sin_port;
if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
1994-05-24 10:09:53 +00:00
/*
* If the destination address is INADDR_ANY,
* use the primary local address.
* If the supplied address is INADDR_BROADCAST,
* and the primary interface supports broadcast,
* choose the broadcast address for that interface.
*/
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
if (faddr.s_addr == INADDR_ANY) {
faddr =
IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
if (cred != NULL &&
(error = prison_get_ip4(cred, &faddr)) != 0)
return (error);
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
} else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
(TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
IFF_BROADCAST))
faddr = satosin(&TAILQ_FIRST(
&V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1994-05-24 10:09:53 +00:00
}
if (laddr.s_addr == INADDR_ANY) {
error = in_pcbladdr(inp, &faddr, &laddr, cred);
if (error)
return (error);
1994-05-24 10:09:53 +00:00
/*
* If the destination address is multicast and an outgoing
* interface has been set as a multicast option, use the
* address of that interface as our source address.
*/
if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1994-05-24 10:09:53 +00:00
inp->inp_moptions != NULL) {
struct ip_moptions *imo;
struct ifnet *ifp;
imo = inp->inp_moptions;
if (imo->imo_multicast_ifp != NULL) {
ifp = imo->imo_multicast_ifp;
TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
1994-05-24 10:09:53 +00:00
if (ia->ia_ifp == ifp)
break;
if (ia == NULL)
1994-05-24 10:09:53 +00:00
return (EADDRNOTAVAIL);
laddr = ia->ia_addr.sin_addr;
1994-05-24 10:09:53 +00:00
}
}
}
oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
0, NULL);
if (oinp != NULL) {
if (oinpp != NULL)
*oinpp = oinp;
1994-05-24 10:09:53 +00:00
return (EADDRINUSE);
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
}
if (lport == 0) {
error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
cred);
if (error)
return (error);
1994-05-24 10:09:53 +00:00
}
*laddrp = laddr.s_addr;
*lportp = lport;
*faddrp = faddr.s_addr;
*fportp = fport;
1994-05-24 10:09:53 +00:00
return (0);
}
void
in_pcbdisconnect(struct inpcb *inp)
1994-05-24 10:09:53 +00:00
{
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_WLOCK_ASSERT(inp);
1994-05-24 10:09:53 +00:00
inp->inp_faddr.s_addr = INADDR_ANY;
inp->inp_fport = 0;
in_pcbrehash(inp);
1994-05-24 10:09:53 +00:00
}
/*
* in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
* For most protocols, this will be invoked immediately prior to calling
* in_pcbfree(). However, with TCP the inpcb may significantly outlive the
* socket, in which case in_pcbfree() is deferred.
*/
void
in_pcbdetach(struct inpcb *inp)
1994-05-24 10:09:53 +00:00
{
KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
inp->inp_socket->so_pcb = NULL;
inp->inp_socket = NULL;
}
/*
* in_pcbfree_internal() frees an inpcb that has been detached from its
* socket, and whose reference count has reached 0. It will also remove the
* inpcb from any global lists it might remain on.
*/
static void
in_pcbfree_internal(struct inpcb *inp)
{
struct inpcbinfo *ipi = inp->inp_pcbinfo;
1994-05-24 10:09:53 +00:00
KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
KASSERT(inp->inp_refcount == 0, ("%s: refcount !0", __func__));
INP_INFO_WLOCK_ASSERT(ipi);
INP_WLOCK_ASSERT(inp);
#ifdef IPSEC
if (inp->inp_sp != NULL)
ipsec_delete_pcbpolicy(inp);
#endif /* IPSEC */
inp->inp_gencnt = ++ipi->ipi_gencnt;
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
in_pcbremlists(inp);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6PROTO) {
ip6_freepcbopts(inp->in6p_outputopts);
ip6_freemoptions(inp->in6p_moptions);
}
#endif
1994-05-24 10:09:53 +00:00
if (inp->inp_options)
(void)m_free(inp->inp_options);
Import rewrite of IPv4 socket multicast layer to support source-specific and protocol-independent host mode multicast. The code is written to accomodate IPv6, IGMPv3 and MLDv2 with only a little additional work. This change only pertains to FreeBSD's use as a multicast end-station and does not concern multicast routing; for an IGMPv3/MLDv2 router implementation, consider the XORP project. The work is based on Wilbert de Graaf's IGMPv3 code drop for FreeBSD 4.6, which is available at: http://www.kloosterhof.com/wilbert/igmpv3.html Summary * IPv4 multicast socket processing is now moved out of ip_output.c into a new module, in_mcast.c. * The in_mcast.c module implements the IPv4 legacy any-source API in terms of the protocol-independent source-specific API. * Source filters are lazy allocated as the common case does not use them. They are part of per inpcb state and are covered by the inpcb lock. * struct ip_mreqn is now supported to allow applications to specify multicast joins by interface index in the legacy IPv4 any-source API. * In UDP, an incoming multicast datagram only requires that the source port matches the 4-tuple if the socket was already bound by source port. An unbound socket SHOULD be able to receive multicasts sent from an ephemeral source port. * The UDP socket multicast filter mode defaults to exclusive, that is, sources present in the per-socket list will be blocked from delivery. * The RFC 3678 userland functions have been added to libc: setsourcefilter, getsourcefilter, setipv4sourcefilter, getipv4sourcefilter. * Definitions for IGMPv3 are merged but not yet used. * struct sockaddr_storage is now referenced from <netinet/in.h>. It is therefore defined there if not already declared in the same way as for the C99 types. * The RFC 1724 hack (specify 0.0.0.0/8 addresses to IP_MULTICAST_IF which are then interpreted as interface indexes) is now deprecated. * A patch for the Rhyolite.com routed in the FreeBSD base system is available in the -net archives. This only affects individuals running RIPv1 or RIPv2 via point-to-point and/or unnumbered interfaces. * Make IPv6 detach path similar to IPv4's in code flow; functionally same. * Bump __FreeBSD_version to 700048; see UPDATING. This work was financially supported by another FreeBSD committer. Obtained from: p4://bms_netdev Submitted by: Wilbert de Graaf (original work) Reviewed by: rwatson (locking), silence from fenner, net@ (but with encouragement)
2007-06-12 16:24:56 +00:00
if (inp->inp_moptions != NULL)
inp_freemoptions(inp->inp_moptions);
inp->inp_vflag = 0;
crfree(inp->inp_cred);
#ifdef MAC
mac_inpcb_destroy(inp);
#endif
INP_WUNLOCK(inp);
uma_zfree(ipi->ipi_zone, inp);
1994-05-24 10:09:53 +00:00
}
/*
* in_pcbref() bumps the reference count on an inpcb in order to maintain
* stability of an inpcb pointer despite the inpcb lock being released. This
* is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
* but where the inpcb lock is already held.
*
* While the inpcb will not be freed, releasing the inpcb lock means that the
* connection's state may change, so the caller should be careful to
* revalidate any cached state on reacquiring the lock. Drop the reference
* using in_pcbrele().
*/
void
in_pcbref(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
inp->inp_refcount++;
}
/*
* Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
* in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
* return a flag indicating whether or not the inpcb remains valid. If it is
* valid, we return with the inpcb lock held.
*/
int
in_pcbrele(struct inpcb *inp)
{
#ifdef INVARIANTS
struct inpcbinfo *ipi = inp->inp_pcbinfo;
#endif
KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
INP_INFO_WLOCK_ASSERT(ipi);
INP_WLOCK_ASSERT(inp);
inp->inp_refcount--;
if (inp->inp_refcount > 0)
return (0);
in_pcbfree_internal(inp);
return (1);
}
/*
* Unconditionally schedule an inpcb to be freed by decrementing its
* reference count, which should occur only after the inpcb has been detached
* from its socket. If another thread holds a temporary reference (acquired
* using in_pcbref()) then the free is deferred until that reference is
* released using in_pcbrele(), but the inpcb is still unlocked.
*/
void
in_pcbfree(struct inpcb *inp)
{
#ifdef INVARIANTS
struct inpcbinfo *ipi = inp->inp_pcbinfo;
#endif
KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL",
__func__));
INP_INFO_WLOCK_ASSERT(ipi);
INP_WLOCK_ASSERT(inp);
if (!in_pcbrele(inp))
INP_WUNLOCK(inp);
}
/*
* in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
* port reservation, and preventing it from being returned by inpcb lookups.
*
* It is used by TCP to mark an inpcb as unused and avoid future packet
* delivery or event notification when a socket remains open but TCP has
* closed. This might occur as a result of a shutdown()-initiated TCP close
* or a RST on the wire, and allows the port binding to be reused while still
* maintaining the invariant that so_pcb always points to a valid inpcb until
* in_pcbdetach().
*
* XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash
* lists, but can lead to confusing netstat output, as open sockets with
* closed TCP connections will no longer appear to have their bound port
* number. An explicit flag would be better, as it would allow us to leave
* the port number intact after the connection is dropped.
*
* XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
* in_pcbnotifyall() and in_pcbpurgeif0()?
*/
void
in_pcbdrop(struct inpcb *inp)
{
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_WLOCK_ASSERT(inp);
inp->inp_flags |= INP_DROPPED;
if (inp->inp_flags & INP_INHASHLIST) {
struct inpcbport *phd = inp->inp_phd;
LIST_REMOVE(inp, inp_hash);
LIST_REMOVE(inp, inp_portlist);
if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
LIST_REMOVE(phd, phd_hash);
free(phd, M_PCB);
}
inp->inp_flags &= ~INP_INHASHLIST;
}
}
/*
* Common routines to return the socket addresses associated with inpcbs.
*/
struct sockaddr *
in_sockaddr(in_port_t port, struct in_addr *addr_p)
{
struct sockaddr_in *sin;
sin = malloc(sizeof *sin, M_SONAME,
M_WAITOK | M_ZERO);
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = *addr_p;
sin->sin_port = port;
return (struct sockaddr *)sin;
}
int
in_getsockaddr(struct socket *so, struct sockaddr **nam)
1994-05-24 10:09:53 +00:00
{
struct inpcb *inp;
struct in_addr addr;
in_port_t port;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
INP_RLOCK(inp);
port = inp->inp_lport;
addr = inp->inp_laddr;
INP_RUNLOCK(inp);
*nam = in_sockaddr(port, &addr);
return 0;
1994-05-24 10:09:53 +00:00
}
int
in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1994-05-24 10:09:53 +00:00
{
struct inpcb *inp;
struct in_addr addr;
in_port_t port;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
INP_RLOCK(inp);
port = inp->inp_fport;
addr = inp->inp_faddr;
INP_RUNLOCK(inp);
*nam = in_sockaddr(port, &addr);
return 0;
1994-05-24 10:09:53 +00:00
}
void
in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
struct inpcb *(*notify)(struct inpcb *, int))
{
struct inpcb *inp, *inp_temp;
INP_INFO_WLOCK(pcbinfo);
LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
INP_WLOCK(inp);
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0) {
INP_WUNLOCK(inp);
continue;
}
#endif
if (inp->inp_faddr.s_addr != faddr.s_addr ||
inp->inp_socket == NULL) {
INP_WUNLOCK(inp);
continue;
}
if ((*notify)(inp, errno))
INP_WUNLOCK(inp);
}
INP_INFO_WUNLOCK(pcbinfo);
}
void
in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
{
struct inpcb *inp;
struct ip_moptions *imo;
int i, gap;
INP_INFO_RLOCK(pcbinfo);
LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
INP_WLOCK(inp);
imo = inp->inp_moptions;
if ((inp->inp_vflag & INP_IPV4) &&
imo != NULL) {
/*
* Unselect the outgoing interface if it is being
* detached.
*/
if (imo->imo_multicast_ifp == ifp)
imo->imo_multicast_ifp = NULL;
/*
* Drop multicast group membership if we joined
* through the interface being detached.
*/
for (i = 0, gap = 0; i < imo->imo_num_memberships;
i++) {
if (imo->imo_membership[i]->inm_ifp == ifp) {
in_delmulti(imo->imo_membership[i]);
gap++;
} else if (gap != 0)
imo->imo_membership[i - gap] =
imo->imo_membership[i];
}
imo->imo_num_memberships -= gap;
}
INP_WUNLOCK(inp);
}
INP_INFO_RUNLOCK(pcbinfo);
}
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
/*
* Lookup a PCB based on the local address and port.
*/
#define INP_LOOKUP_MAPPED_PCB_COST 3
1994-05-24 10:09:53 +00:00
struct inpcb *
in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
u_short lport, int wild_okay, struct ucred *cred)
1994-05-24 10:09:53 +00:00
{
struct inpcb *inp;
#ifdef INET6
int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
#else
int matchwild = 3;
#endif
int wildcard;
INP_INFO_LOCK_ASSERT(pcbinfo);
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if (!wild_okay) {
struct inpcbhead *head;
/*
* Look for an unconnected (wildcard foreign addr) PCB that
* matches the local address and port we're looking for.
*/
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
0, pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
/* XXX inp locking */
1999-12-21 11:14:12 +00:00
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if (inp->inp_faddr.s_addr == INADDR_ANY &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_lport == lport) {
/*
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
* Found?
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
*/
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
if (cred == NULL ||
inp->inp_cred->cr_prison == cred->cr_prison)
return (inp);
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
}
}
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
/*
* Not found.
*/
return (NULL);
} else {
struct inpcbporthead *porthash;
struct inpcbport *phd;
struct inpcb *match = NULL;
/*
* Best fit PCB lookup.
*
* First see if this local port is in use by looking on the
* port hash list.
*/
porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
pcbinfo->ipi_porthashmask)];
LIST_FOREACH(phd, porthash, phd_hash) {
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if (phd->phd_port == lport)
1994-05-24 10:09:53 +00:00
break;
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
}
if (phd != NULL) {
/*
* Port is in use by one or more PCBs. Look for best
* fit.
*/
LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
wildcard = 0;
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
if (cred != NULL &&
inp->inp_cred->cr_prison != cred->cr_prison)
continue;
#ifdef INET6
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
/* XXX inp locking */
1999-12-21 11:14:12 +00:00
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
/*
* We never select the PCB that has
* INP_IPV6 flag and is bound to :: if
* we have another PCB which is bound
* to 0.0.0.0. If a PCB has the
* INP_IPV6 flag, then we set its cost
* higher than IPv4 only PCBs.
*
* Note that the case only happens
* when a socket is bound to ::, under
* the condition that the use of the
* mapped address is allowed.
*/
if ((inp->inp_vflag & INP_IPV6) != 0)
wildcard += INP_LOOKUP_MAPPED_PCB_COST;
#endif
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if (inp->inp_faddr.s_addr != INADDR_ANY)
wildcard++;
if (inp->inp_laddr.s_addr != INADDR_ANY) {
if (laddr.s_addr == INADDR_ANY)
wildcard++;
else if (inp->inp_laddr.s_addr != laddr.s_addr)
continue;
} else {
if (laddr.s_addr != INADDR_ANY)
wildcard++;
}
if (wildcard < matchwild) {
match = inp;
matchwild = wildcard;
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
if (matchwild == 0)
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
break;
}
}
1994-05-24 10:09:53 +00:00
}
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
return (match);
1994-05-24 10:09:53 +00:00
}
}
#undef INP_LOOKUP_MAPPED_PCB_COST
/*
* Lookup PCB in hash list.
*/
struct inpcb *
in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
struct ifnet *ifp)
{
struct inpcbhead *head;
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
struct inpcb *inp, *tmpinp;
u_short fport = fport_arg, lport = lport_arg;
INP_INFO_LOCK_ASSERT(pcbinfo);
/*
* First look for an exact match.
*/
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
tmpinp = NULL;
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
/* XXX inp locking */
1999-12-21 11:14:12 +00:00
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_faddr.s_addr == faddr.s_addr &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_fport == fport &&
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
inp->inp_lport == lport) {
/*
* XXX We should be able to directly return
* the inp here, without any checks.
* Well unless both bound with SO_REUSEPORT?
*/
if (jailed(inp->inp_cred))
return (inp);
if (tmpinp == NULL)
tmpinp = inp;
}
}
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
if (tmpinp != NULL)
return (tmpinp);
/*
* Then look for a wildcard match, if requested.
*/
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
if (wildcard == INPLOOKUP_WILDCARD) {
struct inpcb *local_wild = NULL, *local_exact = NULL;
#ifdef INET6
struct inpcb *local_wild_mapped = NULL;
#endif
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
struct inpcb *jail_wild = NULL;
int injail;
/*
* Order of socket selection - we always prefer jails.
* 1. jailed, non-wild.
* 2. jailed, wild.
* 3. non-jailed, non-wild.
* 4. non-jailed, wild.
*/
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
0, pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
#ifdef INET6
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
/* XXX inp locking */
1999-12-21 11:14:12 +00:00
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
if (inp->inp_faddr.s_addr != INADDR_ANY ||
inp->inp_lport != lport)
continue;
/* XXX inp locking */
if (ifp && ifp->if_type == IFT_FAITH &&
(inp->inp_flags & INP_FAITH) == 0)
continue;
injail = jailed(inp->inp_cred);
if (injail) {
if (prison_check_ip4(inp->inp_cred,
&laddr) != 0)
continue;
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
} else {
if (local_exact != NULL)
continue;
}
if (inp->inp_laddr.s_addr == laddr.s_addr) {
if (injail)
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
return (inp);
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
else
local_exact = inp;
} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
#ifdef INET6
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
/* XXX inp locking, NULL check */
if (inp->inp_vflag & INP_IPV6PROTO)
local_wild_mapped = inp;
else
#endif /* INET6 */
if (injail)
jail_wild = inp;
else
local_wild = inp;
}
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
} /* LIST_FOREACH */
if (jail_wild != NULL)
return (jail_wild);
if (local_exact != NULL)
return (local_exact);
if (local_wild != NULL)
return (local_wild);
#ifdef INET6
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
if (local_wild_mapped != NULL)
return (local_wild_mapped);
MFp4: Bring in updated jail support from bz_jail branch. This enhances the current jail implementation to permit multiple addresses per jail. In addtion to IPv4, IPv6 is supported as well. Due to updated checks it is even possible to have jails without an IP address at all, which basically gives one a chroot with restricted process view, no networking,.. SCTP support was updated and supports IPv6 in jails as well. Cpuset support permits jails to be bound to specific processor sets after creation. Jails can have an unrestricted (no duplicate protection, etc.) name in addition to the hostname. The jail name cannot be changed from within a jail and is considered to be used for management purposes or as audit-token in the future. DDB 'show jails' command was added to aid debugging. Proper compat support permits 32bit jail binaries to be used on 64bit systems to manage jails. Also backward compatibility was preserved where possible: for jail v1 syscalls, as well as with user space management utilities. Both jail as well as prison version were updated for the new features. A gap was intentionally left as the intermediate versions had been used by various patches floating around the last years. Bump __FreeBSD_version for the afore mentioned and in kernel changes. Special thanks to: - Pawel Jakub Dawidek (pjd) for his multi-IPv4 patches and Olivier Houchard (cognet) for initial single-IPv6 patches. - Jeff Roberson (jeff) and Randall Stewart (rrs) for their help, ideas and review on cpuset and SCTP support. - Robert Watson (rwatson) for lots and lots of help, discussions, suggestions and review of most of the patch at various stages. - John Baldwin (jhb) for his help. - Simon L. Nielsen (simon) as early adopter testing changes on cluster machines as well as all the testers and people who provided feedback the last months on freebsd-jail and other channels. - My employer, CK Software GmbH, for the support so I could work on this. Reviewed by: (see above) MFC after: 3 months (this is just so that I get the mail) X-MFC Before: 7.2-RELEASE if possible
2008-11-29 14:32:14 +00:00
#endif /* defined(INET6) */
} /* if (wildcard == INPLOOKUP_WILDCARD) */
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
return (NULL);
}
/*
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
* Insert PCB onto various hash lists.
*/
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
int
in_pcbinshash(struct inpcb *inp)
{
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
struct inpcbhead *pcbhash;
struct inpcbporthead *pcbporthash;
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbport *phd;
u_int32_t hashkey_faddr;
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_WLOCK_ASSERT(inp);
KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
("in_pcbinshash: INP_INHASHLIST"));
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
else
#endif /* INET6 */
hashkey_faddr = inp->inp_faddr.s_addr;
pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
pcbporthash = &pcbinfo->ipi_porthashbase[
INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
/*
* Go through port list and look for a head for this lport.
*/
LIST_FOREACH(phd, pcbporthash, phd_hash) {
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if (phd->phd_port == inp->inp_lport)
break;
}
/*
* If none exists, malloc one and tack it on.
*/
if (phd == NULL) {
phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
if (phd == NULL) {
return (ENOBUFS); /* XXX */
}
phd->phd_port = inp->inp_lport;
LIST_INIT(&phd->phd_pcblist);
LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
}
inp->inp_phd = phd;
LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
inp->inp_flags |= INP_INHASHLIST;
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
return (0);
}
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
/*
* Move PCB to the proper hash bucket when { faddr, fport } have been
* changed. NOTE: This does not handle the case of the lport changing (the
* hashed port list would have to be updated as well), so the lport must
* not change after in_pcbinshash() has been called.
*/
void
in_pcbrehash(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbhead *head;
u_int32_t hashkey_faddr;
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_WLOCK_ASSERT(inp);
KASSERT(inp->inp_flags & INP_INHASHLIST,
("in_pcbrehash: !INP_INHASHLIST"));
#ifdef INET6
if (inp->inp_vflag & INP_IPV6)
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
else
#endif /* INET6 */
hashkey_faddr = inp->inp_faddr.s_addr;
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
LIST_REMOVE(inp, inp_hash);
LIST_INSERT_HEAD(head, inp, inp_hash);
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
}
/*
* Remove PCB from various lists.
*/
void
in_pcbremlists(struct inpcb *inp)
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_WLOCK_ASSERT(inp);
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
if (inp->inp_flags & INP_INHASHLIST) {
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
struct inpcbport *phd = inp->inp_phd;
LIST_REMOVE(inp, inp_hash);
LIST_REMOVE(inp, inp_portlist);
if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
LIST_REMOVE(phd, phd_hash);
free(phd, M_PCB);
}
inp->inp_flags &= ~INP_INHASHLIST;
Improved connection establishment performance by doing local port lookups via a hashed port list. In the new scheme, in_pcblookup() goes away and is replaced by a new routine, in_pcblookup_local() for doing the local port check. Note that this implementation is space inefficient in that the PCB struct is now too large to fit into 128 bytes. I might deal with this in the future by using the new zone allocator, but I wanted these changes to be extensively tested in their current form first. Also: 1) Fixed off-by-one errors in the port lookup loops in in_pcbbind(). 2) Got rid of some unneeded rehashing. Adding a new routine, in_pcbinshash() to do the initialial hash insertion. 3) Renamed in_pcblookuphash() to in_pcblookup_hash() for easier readability. 4) Added a new routine, in_pcbremlists() to remove the PCB from the various hash lists. 5) Added/deleted comments where appropriate. 6) Removed unnecessary splnet() locking. In general, the PCB functions should be called at splnet()...there are unfortunately a few exceptions, however. 7) Reorganized a few structs for better cache line behavior. 8) Killed my TCP_ACK_HACK kludge. It may come back in a different form in the future, however. These changes have been tested on wcarchive for more than a month. In tests done here, connection establishment overhead is reduced by more than 50 times, thus getting rid of one of the major networking scalability problems. Still to do: make tcp_fastimo/tcp_slowtimo scale well for systems with a large number of connections. tcp_fastimo is easy; tcp_slowtimo is difficult. WARNING: Anything that knows about inpcb and tcpcb structs will have to be recompiled; at the very least, this includes netstat(1).
1998-01-27 09:15:13 +00:00
}
LIST_REMOVE(inp, inp_list);
pcbinfo->ipi_count--;
}
This Implements the mumbled about "Jail" feature. This is a seriously beefed up chroot kind of thing. The process is jailed along the same lines as a chroot does it, but with additional tough restrictions imposed on what the superuser can do. For all I know, it is safe to hand over the root bit inside a prison to the customer living in that prison, this is what it was developed for in fact: "real virtual servers". Each prison has an ip number associated with it, which all IP communications will be coerced to use and each prison has its own hostname. Needless to say, you need more RAM this way, but the advantage is that each customer can run their own particular version of apache and not stomp on the toes of their neighbors. It generally does what one would expect, but setting up a jail still takes a little knowledge. A few notes: I have no scripts for setting up a jail, don't ask me for them. The IP number should be an alias on one of the interfaces. mount a /proc in each jail, it will make ps more useable. /proc/<pid>/status tells the hostname of the prison for jailed processes. Quotas are only sensible if you have a mountpoint per prison. There are no privisions for stopping resource-hogging. Some "#ifdef INET" and similar may be missing (send patches!) If somebody wants to take it from here and develop it into more of a "virtual machine" they should be most welcome! Tools, comments, patches & documentation most welcome. Have fun... Sponsored by: http://www.rndassociates.com/ Run for almost a year by: http://www.servetheweb.com/
1999-04-28 11:38:52 +00:00
/*
* A set label operation has occurred at the socket layer, propagate the
* label change into the in_pcb for the socket.
*/
void
in_pcbsosetlabel(struct socket *so)
{
#ifdef MAC
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
INP_WLOCK(inp);
SOCK_LOCK(so);
mac_inpcb_sosetlabel(so, inp);
SOCK_UNLOCK(so);
INP_WUNLOCK(inp);
#endif
}
/*
* ipport_tick runs once per second, determining if random port allocation
* should be continued. If more than ipport_randomcps ports have been
* allocated in the last second, then we return to sequential port
* allocation. We return to random allocation only once we drop below
* ipport_randomcps for at least ipport_randomtime seconds.
*/
void
ipport_tick(void *xtp)
{
VNET_ITERATOR_DECL(vnet_iter);
VNET_LIST_RLOCK();
VNET_FOREACH(vnet_iter) {
CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
INIT_VNET_INET(vnet_iter);
if (V_ipport_tcpallocs <=
V_ipport_tcplastcount + V_ipport_randomcps) {
if (V_ipport_stoprandom > 0)
V_ipport_stoprandom--;
} else
V_ipport_stoprandom = V_ipport_randomtime;
V_ipport_tcplastcount = V_ipport_tcpallocs;
CURVNET_RESTORE();
}
VNET_LIST_RUNLOCK();
callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
}
void
inp_wlock(struct inpcb *inp)
{
INP_WLOCK(inp);
}
void
inp_wunlock(struct inpcb *inp)
{
INP_WUNLOCK(inp);
}
void
inp_rlock(struct inpcb *inp)
{
INP_RLOCK(inp);
}
void
inp_runlock(struct inpcb *inp)
{
INP_RUNLOCK(inp);
}
#ifdef INVARIANTS
void
inp_lock_assert(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
}
void
inp_unlock_assert(struct inpcb *inp)
{
INP_UNLOCK_ASSERT(inp);
}
#endif
void
inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
{
INIT_VNET_INET(curvnet);
struct inpcb *inp;
INP_INFO_RLOCK(&V_tcbinfo);
LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
INP_WLOCK(inp);
func(inp, arg);
INP_WUNLOCK(inp);
}
INP_INFO_RUNLOCK(&V_tcbinfo);
}
struct socket *
inp_inpcbtosocket(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
return (inp->inp_socket);
}
struct tcpcb *
inp_inpcbtotcpcb(struct inpcb *inp)
{
INP_WLOCK_ASSERT(inp);
return ((struct tcpcb *)inp->inp_ppcb);
}
int
inp_ip_tos_get(const struct inpcb *inp)
{
return (inp->inp_ip_tos);
}
void
inp_ip_tos_set(struct inpcb *inp, int val)
{
inp->inp_ip_tos = val;
}
void
inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
uint32_t *faddr, uint16_t *fp)
{
INP_LOCK_ASSERT(inp);
*laddr = inp->inp_laddr.s_addr;
*faddr = inp->inp_faddr.s_addr;
*lp = inp->inp_lport;
*fp = inp->inp_fport;
}
struct inpcb *
so_sotoinpcb(struct socket *so)
{
return (sotoinpcb(so));
}
struct tcpcb *
so_sototcpcb(struct socket *so)
{
return (sototcpcb(so));
}
#ifdef DDB
static void
db_print_indent(int indent)
{
int i;
for (i = 0; i < indent; i++)
db_printf(" ");
}
static void
db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
{
char faddr_str[48], laddr_str[48];
db_print_indent(indent);
db_printf("%s at %p\n", name, inc);
indent += 2;
#ifdef INET6
if (inc->inc_flags & INC_ISIPV6) {
/* IPv6. */
ip6_sprintf(laddr_str, &inc->inc6_laddr);
ip6_sprintf(faddr_str, &inc->inc6_faddr);
} else {
#endif
/* IPv4. */
inet_ntoa_r(inc->inc_laddr, laddr_str);
inet_ntoa_r(inc->inc_faddr, faddr_str);
#ifdef INET6
}
#endif
db_print_indent(indent);
db_printf("inc_laddr %s inc_lport %u\n", laddr_str,
ntohs(inc->inc_lport));
db_print_indent(indent);
db_printf("inc_faddr %s inc_fport %u\n", faddr_str,
ntohs(inc->inc_fport));
}
static void
db_print_inpflags(int inp_flags)
{
int comma;
comma = 0;
if (inp_flags & INP_RECVOPTS) {
db_printf("%sINP_RECVOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVRETOPTS) {
db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVDSTADDR) {
db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_HDRINCL) {
db_printf("%sINP_HDRINCL", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_HIGHPORT) {
db_printf("%sINP_HIGHPORT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_LOWPORT) {
db_printf("%sINP_LOWPORT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_ANONPORT) {
db_printf("%sINP_ANONPORT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVIF) {
db_printf("%sINP_RECVIF", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_MTUDISC) {
db_printf("%sINP_MTUDISC", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_FAITH) {
db_printf("%sINP_FAITH", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_RECVTTL) {
db_printf("%sINP_RECVTTL", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_DONTFRAG) {
db_printf("%sINP_DONTFRAG", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_IPV6_V6ONLY) {
db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_PKTINFO) {
db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_HOPLIMIT) {
db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_HOPOPTS) {
db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_DSTOPTS) {
db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_RTHDR) {
db_printf("%sIN6P_RTHDR", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_RTHDRDSTOPTS) {
db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_TCLASS) {
db_printf("%sIN6P_TCLASS", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_AUTOFLOWLABEL) {
db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_TIMEWAIT) {
db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_ONESBCAST) {
db_printf("%sINP_ONESBCAST", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_DROPPED) {
db_printf("%sINP_DROPPED", comma ? ", " : "");
comma = 1;
}
if (inp_flags & INP_SOCKREF) {
db_printf("%sINP_SOCKREF", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_RFC2292) {
db_printf("%sIN6P_RFC2292", comma ? ", " : "");
comma = 1;
}
if (inp_flags & IN6P_MTU) {
db_printf("IN6P_MTU%s", comma ? ", " : "");
comma = 1;
}
}
static void
db_print_inpvflag(u_char inp_vflag)
{
int comma;
comma = 0;
if (inp_vflag & INP_IPV4) {
db_printf("%sINP_IPV4", comma ? ", " : "");
comma = 1;
}
if (inp_vflag & INP_IPV6) {
db_printf("%sINP_IPV6", comma ? ", " : "");
comma = 1;
}
if (inp_vflag & INP_IPV6PROTO) {
db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
comma = 1;
}
}
void
db_print_inpcb(struct inpcb *inp, const char *name, int indent)
{
db_print_indent(indent);
db_printf("%s at %p\n", name, inp);
indent += 2;
db_print_indent(indent);
db_printf("inp_flow: 0x%x\n", inp->inp_flow);
db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
db_print_indent(indent);
db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n",
inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
db_print_indent(indent);
db_printf("inp_label: %p inp_flags: 0x%x (",
inp->inp_label, inp->inp_flags);
db_print_inpflags(inp->inp_flags);
db_printf(")\n");
db_print_indent(indent);
db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp,
inp->inp_vflag);
db_print_inpvflag(inp->inp_vflag);
db_printf(")\n");
db_print_indent(indent);
db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n",
inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
db_print_indent(indent);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
db_printf("in6p_options: %p in6p_outputopts: %p "
"in6p_moptions: %p\n", inp->in6p_options,
inp->in6p_outputopts, inp->in6p_moptions);
db_printf("in6p_icmp6filt: %p in6p_cksum %d "
"in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
inp->in6p_hops);
} else
#endif
{
db_printf("inp_ip_tos: %d inp_ip_options: %p "
"inp_ip_moptions: %p\n", inp->inp_ip_tos,
inp->inp_options, inp->inp_moptions);
}
db_print_indent(indent);
db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd,
(uintmax_t)inp->inp_gencnt);
}
DB_SHOW_COMMAND(inpcb, db_show_inpcb)
{
struct inpcb *inp;
if (!have_addr) {
db_printf("usage: show inpcb <addr>\n");
return;
}
inp = (struct inpcb *)addr;
db_print_inpcb(inp, "inpcb", 0);
}
#endif