freebsd-skq/usr.bin/top/utils.c

331 lines
7.6 KiB
C
Raw Normal View History

/*
* This program may be freely redistributed,
* but this entire comment MUST remain intact.
*
* Copyright (c) 2018, Eitan Adler
* Copyright (c) 1984, 1989, William LeFebvre, Rice University
* Copyright (c) 1989, 1990, 1992, William LeFebvre, Northwestern University
2002-01-24 17:58:42 +00:00
*
* $FreeBSD$
*/
/*
* This file contains various handy utilities used by top.
*/
#include "top.h"
2018-05-21 03:36:16 +00:00
#include "utils.h"
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/user.h>
#include <libutil.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <paths.h>
#include <kvm.h>
int
atoiwi(const char *str)
{
size_t len;
len = strlen(str);
if (len != 0)
{
if (strncmp(str, "infinity", len) == 0 ||
strncmp(str, "all", len) == 0 ||
strncmp(str, "maximum", len) == 0)
{
return(Infinity);
}
else if (str[0] == '-')
{
return(Invalid);
}
else
{
return((int)strtol(str, NULL, 10));
}
}
return(0);
}
/*
* itoa - convert integer (decimal) to ascii string for positive numbers
* only (we don't bother with negative numbers since we know we
* don't use them).
*/
/*
* How do we know that 16 will suffice?
* Because the biggest number that we will
* ever convert will be 2^32-1, which is 10
* digits.
*/
_Static_assert(sizeof(int) <= 4, "buffer too small for this sized int");
char *
itoa(unsigned int val)
{
static char buffer[16]; /* result is built here */
/* 16 is sufficient since the largest number
we will ever convert will be 2^32-1,
which is 10 digits. */
sprintf(buffer, "%u", val);
return (buffer);
}
/*
* itoa7(val) - like itoa, except the number is right justified in a 7
* character field. This code is a duplication of itoa instead of
* a front end to a more general routine for efficiency.
*/
char *
itoa7(int val)
{
static char buffer[16]; /* result is built here */
/* 16 is sufficient since the largest number
we will ever convert will be 2^32-1,
which is 10 digits. */
sprintf(buffer, "%6u", val);
return (buffer);
}
/*
* digits(val) - return number of decimal digits in val. Only works for
* non-negative numbers.
*/
2018-06-11 05:05:20 +00:00
int __pure2
digits(int val)
{
int cnt = 0;
2018-06-11 05:05:20 +00:00
if (val == 0) {
return 1;
}
2018-06-11 05:05:20 +00:00
while (val > 0) {
cnt++;
val /= 10;
}
return(cnt);
}
/*
* string_index(string, array) - find string in array and return index
*/
int
string_index(const char *string, const char * const *array)
{
size_t i = 0;
while (*array != NULL)
{
if (strcmp(string, *array) == 0)
{
return(i);
}
array++;
i++;
}
return(-1);
}
/*
* argparse(line, cntp) - parse arguments in string "line", separating them
* out into an argv-like array, and setting *cntp to the number of
* arguments encountered. This is a simple parser that doesn't understand
* squat about quotes.
*/
const char **
argparse(char *line, int *cntp)
{
const char **ap;
static const char *argv[1024] = {0};
*cntp = 1;
ap = &argv[1];
while ((*ap = strsep(&line, " ")) != NULL) {
if (**ap != '\0') {
(*cntp)++;
if (*cntp >= (int)nitems(argv)) {
break;
}
ap++;
}
}
return (argv);
}
/*
* percentages(cnt, out, new, old, diffs) - calculate percentage change
* between array "old" and "new", putting the percentages i "out".
* "cnt" is size of each array and "diffs" is used for scratch space.
* The array "old" is updated on each call.
* The routine assumes modulo arithmetic. This function is especially
* useful on for calculating cpu state percentages.
*/
long
percentages(int cnt, int *out, long *new, long *old, long *diffs)
{
int i;
long change;
long total_change;
long *dp;
long half_total;
/* initialization */
total_change = 0;
dp = diffs;
/* calculate changes for each state and the overall change */
for (i = 0; i < cnt; i++)
{
if ((change = *new - *old) < 0)
{
/* this only happens when the counter wraps */
change = (int)
((unsigned long)*new-(unsigned long)*old);
}
total_change += (*dp++ = change);
*old++ = *new++;
}
/* avoid divide by zero potential */
if (total_change == 0)
{
total_change = 1;
}
/* calculate percentages based on overall change, rounding up */
half_total = total_change / 2l;
for (i = 0; i < cnt; i++)
{
*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
}
/* return the total in case the caller wants to use it */
return(total_change);
}
/* format_time(seconds) - format number of seconds into a suitable
* display that will fit within 6 characters. Note that this
* routine builds its string in a static area. If it needs
* to be called more than once without overwriting previous data,
* then we will need to adopt a technique similar to the
* one used for format_k.
*/
/* Explanation:
We want to keep the output within 6 characters. For low values we use
the format mm:ss. For values that exceed 999:59, we switch to a format
that displays hours and fractions: hhh.tH. For values that exceed
999.9, we use hhhh.t and drop the "H" designator. For values that
exceed 9999.9, we use "???".
*/
const char *
format_time(long seconds)
{
static char result[10];
/* sanity protection */
if (seconds < 0 || seconds > (99999l * 360l))
{
strcpy(result, " ???");
}
else if (seconds >= (1000l * 60l))
{
/* alternate (slow) method displaying hours and tenths */
sprintf(result, "%5.1fH", (double)seconds / (double)(60l * 60l));
/* It is possible that the sprintf took more than 6 characters.
If so, then the "H" appears as result[6]. If not, then there
is a \0 in result[6]. Either way, it is safe to step on.
*/
result[6] = '\0';
}
else
{
/* standard method produces MMM:SS */
sprintf(result, "%3ld:%02ld",
seconds / 60l, seconds % 60l);
}
return(result);
}
/*
* format_k(amt) - format a kilobyte memory value, returning a string
* suitable for display. Returns a pointer to a static
* area that changes each call. "amt" is converted to a fixed
* size humanize_number call
*/
/*
* Compromise time. We need to return a string, but we don't want the
* caller to have to worry about freeing a dynamically allocated string.
* Unfortunately, we can't just return a pointer to a static area as one
* of the common uses of this function is in a large call to sprintf where
* it might get invoked several times. Our compromise is to maintain an
* array of strings and cycle thru them with each invocation. We make the
* array large enough to handle the above mentioned case. The constant
* NUM_STRINGS defines the number of strings in this array: we can tolerate
* up to NUM_STRINGS calls before we start overwriting old information.
* Keeping NUM_STRINGS a power of two will allow an intelligent optimizer
* to convert the modulo operation into something quicker. What a hack!
*/
#define NUM_STRINGS 8
char *
format_k(int64_t amt)
{
static char retarray[NUM_STRINGS][16];
static int index_ = 0;
char *ret;
ret = retarray[index_];
index_ = (index_ + 1) % NUM_STRINGS;
humanize_number(ret, 6, amt * 1024, "", HN_AUTOSCALE, HN_NOSPACE);
return (ret);
}
int
find_pid(pid_t pid)
{
kvm_t *kd = NULL;
struct kinfo_proc *pbase = NULL;
int nproc;
int ret = 0;
kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, NULL);
if (kd == NULL) {
fprintf(stderr, "top: kvm_open() failed.\n");
quit(TOP_EX_SYS_ERROR);
}
pbase = kvm_getprocs(kd, KERN_PROC_PID, pid, &nproc);
if (pbase == NULL) {
goto done;
}
if ((nproc == 1) && (pbase->ki_pid == pid)) {
ret = 1;
}
done:
2018-06-12 07:31:59 +00:00
kvm_close(kd);
return ret;
}