738 lines
20 KiB
C
738 lines
20 KiB
C
|
/*
|
||
|
* Copyright (c) 1999 Cameron Grant <gandalf@vilnya.demon.co.uk>
|
||
|
* Portions Copyright by Luigi Rizzo - 1997-99
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
* $Id$
|
||
|
*/
|
||
|
|
||
|
#include <dev/pcm/sound.h>
|
||
|
|
||
|
#define MIN_CHUNK_SIZE 256 /* for uiomove etc. */
|
||
|
#define DMA_ALIGN_THRESHOLD 4
|
||
|
#define DMA_ALIGN_MASK (~(DMA_ALIGN_THRESHOLD - 1))
|
||
|
|
||
|
#define ISA_DMA(b) (((b)->chan >= 0 && (b)->chan != 4 && (b)->chan < 8))
|
||
|
#define CANCHANGE(c) (!(c)->buffer.dl)
|
||
|
|
||
|
static int chn_reinit(pcm_channel *c);
|
||
|
static void chn_stintr(pcm_channel *c);
|
||
|
/*
|
||
|
* SOUND OUTPUT
|
||
|
|
||
|
We use a circular buffer to store samples directed to the DAC.
|
||
|
The buffer is split into two variable-size regions, each identified
|
||
|
by an offset in the buffer (rp,fp) and a length (rl,fl):
|
||
|
|
||
|
0 rp,rl fp,fl bufsize
|
||
|
|__________>____________>________|
|
||
|
FREE d READY w FREE
|
||
|
|
||
|
READY: data written from the process and ready to be sent to the DAC;
|
||
|
FREE: free part of the buffer.
|
||
|
|
||
|
Both regions can wrap around the end of the buffer. At initialization,
|
||
|
READY is empty, FREE takes all the available space, and dma is
|
||
|
idle. dl contains the length of the current DMA transfer, dl=0
|
||
|
means that the dma is idle.
|
||
|
|
||
|
The two boundaries (rp,fp) in the buffers are advanced by DMA [d]
|
||
|
and write() [w] operations. The first portion of the READY region
|
||
|
is used for DMA transfers. The transfer is started at rp and with
|
||
|
chunks of length dl. During DMA operations, dsp_wr_dmaupdate()
|
||
|
updates rp, rl and fl tracking the ISA DMA engine as the transfer
|
||
|
makes progress.
|
||
|
When a new block is written, fp advances and rl,fl are updated
|
||
|
accordingly.
|
||
|
|
||
|
The code works as follows: the user write routine dsp_write_body()
|
||
|
fills up the READY region with new data (reclaiming space from the
|
||
|
FREE region) and starts the write DMA engine if inactive. When a
|
||
|
DMA transfer is complete, an interrupt causes dsp_wrintr() to be
|
||
|
called which extends the FREE region and possibly starts the next
|
||
|
transfer.
|
||
|
|
||
|
In some cases, the code tries to track the current status of DMA
|
||
|
operations by calling dsp_wr_dmaupdate() which changes rp, rl and fl.
|
||
|
|
||
|
The sistem tries to make all DMA transfers use the same size,
|
||
|
play_blocksize or rec_blocksize. The size is either selected by
|
||
|
the user, or computed by the system to correspond to about .25s of
|
||
|
audio. The blocksize must be within a range which is currently:
|
||
|
|
||
|
min(5ms, 40 bytes) ... 1/2 buffer size.
|
||
|
|
||
|
When there aren't enough data (write) or space (read), a transfer
|
||
|
is started with a reduced size.
|
||
|
|
||
|
To reduce problems in case of overruns, the routine which fills up
|
||
|
the buffer should initialize (e.g. by repeating the last value) a
|
||
|
reasonably long area after the last block so that no noise is
|
||
|
produced on overruns.
|
||
|
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
|
||
|
/* XXX this is broken: in the event a bounce buffer is used, data never
|
||
|
* gets copied in or out of the real buffer. fix requires mods to isa_dma.c
|
||
|
* and possibly fixes to other autodma mode clients
|
||
|
*/
|
||
|
static void
|
||
|
chn_isadmabounce(pcm_channel *c)
|
||
|
{
|
||
|
if (ISA_DMA(&c->buffer)) {
|
||
|
/* tell isa_dma to bounce data in/out */
|
||
|
} else panic("chn_isadmabounce called on invalid channel");
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
chn_polltrigger(pcm_channel *c)
|
||
|
{
|
||
|
snd_dbuf *b = &c->buffer;
|
||
|
unsigned lim = (c->flags & CHN_F_HAS_SIZE)? c->blocksize : 1;
|
||
|
int trig = 0;
|
||
|
|
||
|
if (c->flags & CHN_F_MAPPED)
|
||
|
trig = ((b->int_count > b->prev_int_count) || b->first_poll);
|
||
|
else trig = (((c->direction == PCMDIR_PLAY)? b->fl : b->rl) >= lim);
|
||
|
return trig;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
chn_pollreset(pcm_channel *c)
|
||
|
{
|
||
|
snd_dbuf *b = &c->buffer;
|
||
|
|
||
|
if (c->flags & CHN_F_MAPPED) b->prev_int_count = b->int_count;
|
||
|
b->first_poll = 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* chn_dmadone() updates pointers and wakes up any process sleeping
|
||
|
* or waiting on a select().
|
||
|
* Must be called at spltty().
|
||
|
*/
|
||
|
static void
|
||
|
chn_dmadone(pcm_channel *c)
|
||
|
{
|
||
|
snd_dbuf *b = &c->buffer;
|
||
|
|
||
|
chn_dmaupdate(c);
|
||
|
if (ISA_DMA(b)) chn_isadmabounce(c); /* sync bounce buffer */
|
||
|
wakeup(b);
|
||
|
b->int_count++;
|
||
|
if (b->sel.si_pid && chn_polltrigger(c)) selwakeup(&b->sel);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* chn_dmaupdate() tracks the status of a dma transfer,
|
||
|
* updating pointers. It must be called at spltty().
|
||
|
*
|
||
|
* NOTE: when we are using auto dma in the device, rl might become
|
||
|
* negative.
|
||
|
*/
|
||
|
void
|
||
|
chn_dmaupdate(pcm_channel *c)
|
||
|
{
|
||
|
snd_dbuf *b = &c->buffer;
|
||
|
int delta, hwptr = chn_getptr(c);
|
||
|
|
||
|
if (c->direction == PCMDIR_PLAY) {
|
||
|
delta = (b->bufsize + hwptr - b->rp) % b->bufsize;
|
||
|
b->rp = hwptr;
|
||
|
b->rl -= delta;
|
||
|
b->fl += delta;
|
||
|
} else {
|
||
|
delta = (b->bufsize + hwptr - b->fp) % b->bufsize;
|
||
|
b->fp = hwptr;
|
||
|
b->rl += delta;
|
||
|
b->fl -= delta;
|
||
|
}
|
||
|
b->total += delta;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write interrupt routine. Can be called from other places (e.g.
|
||
|
* to start a paused transfer), but with interrupts disabled.
|
||
|
*/
|
||
|
static void
|
||
|
chn_wrintr(pcm_channel *c)
|
||
|
{
|
||
|
snd_dbuf *b = &c->buffer;
|
||
|
int start;
|
||
|
|
||
|
if (b->dl) chn_dmadone(c);
|
||
|
|
||
|
/*
|
||
|
* start another dma operation only if have ready data in the buffer,
|
||
|
* there is no pending abort, have a full-duplex device, or have a
|
||
|
* half duplex device and there is no pending op on the other side.
|
||
|
*
|
||
|
* Force transfers to be aligned to a boundary of 4, which is
|
||
|
* needed when doing stereo and 16-bit.
|
||
|
*/
|
||
|
if (c->flags & CHN_F_MAPPED) start = c->flags & CHN_F_TRIGGERED;
|
||
|
else start = (b->rl >= DMA_ALIGN_THRESHOLD && !(c->flags & CHN_F_ABORTING));
|
||
|
if (start) {
|
||
|
int l;
|
||
|
chn_dmaupdate(c);
|
||
|
l = min(b->rl, c->blocksize) & DMA_ALIGN_MASK;
|
||
|
if (c->flags & CHN_F_MAPPED) l = c->blocksize;
|
||
|
/*
|
||
|
* check if we need to reprogram the DMA on the sound card.
|
||
|
* This happens if the size has changed _and_ the new size
|
||
|
* is smaller, or it matches the blocksize.
|
||
|
*
|
||
|
* 0 <= l <= blocksize
|
||
|
* 0 <= dl <= blocksize
|
||
|
* reprog if (dl == 0 || l != dl)
|
||
|
* was:
|
||
|
* l != b->dl && (b->dl == 0 || l < b->dl || l == c->blocksize)
|
||
|
*/
|
||
|
if (b->dl == 0 || l != b->dl) {
|
||
|
/* size has changed. Stop and restart */
|
||
|
DEB(printf("wrintr: bsz %d -> %d, rp %d rl %d\n",
|
||
|
b->dl, l, b->rp, b->rl));
|
||
|
if (b->dl) chn_trigger(c, PCMTRIG_STOP);
|
||
|
b->dl = l; /* record new transfer size */
|
||
|
chn_trigger(c, PCMTRIG_START);
|
||
|
}
|
||
|
} else {
|
||
|
/* cannot start a new dma transfer */
|
||
|
DEB(printf("cannot start wr-dma flags 0x%08x rp %d rl %d\n",
|
||
|
c->flags, b->rp, b->rl));
|
||
|
if (b->dl) { /* was active */
|
||
|
b->dl = 0;
|
||
|
chn_trigger(c, PCMTRIG_STOP);
|
||
|
#if 0
|
||
|
if (c->flags & CHN_F_WRITING)
|
||
|
DEB(printf("got wrint while reloading\n"));
|
||
|
else if (b->rl <= 0) /* XXX added 980110 lr */
|
||
|
chn_resetbuf(c);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* user write routine
|
||
|
*
|
||
|
* advance the boundary between READY and FREE, fill the space with
|
||
|
* uiomove(), and possibly start DMA. Do the above until the transfer
|
||
|
* is complete.
|
||
|
*
|
||
|
* To minimize latency in case a pending DMA transfer is about to end,
|
||
|
* we do the transfer in pieces of increasing sizes, extending the
|
||
|
* READY area at every checkpoint. In the (necessary) assumption that
|
||
|
* memory bandwidth is larger than the rate at which the dma consumes
|
||
|
* data, we reduce the latency to something proportional to the length
|
||
|
* of the first piece, while keeping the overhead low and being able
|
||
|
* to feed the DMA with large blocks.
|
||
|
*/
|
||
|
|
||
|
int
|
||
|
chn_write(pcm_channel *c, struct uio *buf)
|
||
|
{
|
||
|
int l, w, timeout, ret = 0;
|
||
|
long s;
|
||
|
snd_dbuf *b = &c->buffer;
|
||
|
|
||
|
if (c->flags & CHN_F_WRITING) {
|
||
|
/* This shouldn't happen and is actually silly
|
||
|
* - will never wake up, just timeout; why not sleep on b?
|
||
|
*/
|
||
|
tsleep(&s, PZERO, "pcmwrW", hz);
|
||
|
return EBUSY;
|
||
|
}
|
||
|
c->flags |= CHN_F_WRITING;
|
||
|
while (buf->uio_resid >= DMA_ALIGN_THRESHOLD) {
|
||
|
s = spltty();
|
||
|
chn_dmaupdate(c);
|
||
|
splx(s);
|
||
|
if (b->fl < DMA_ALIGN_THRESHOLD) {
|
||
|
if (c->flags & CHN_F_NBIO) break;
|
||
|
timeout = (buf->uio_resid >= b->dl)? hz : 1;
|
||
|
ret = tsleep(b, PRIBIO | PCATCH, "pcmwr", timeout);
|
||
|
if (ret == EINTR) chn_abort(c);
|
||
|
if (ret == EINTR || ret == ERESTART) break;
|
||
|
ret = 0;
|
||
|
continue;
|
||
|
}
|
||
|
/* ensure we always have a whole number of samples */
|
||
|
l = min(b->fl, b->bufsize - b->fp) & DMA_ALIGN_MASK;
|
||
|
w = c->feeder->feed(c->feeder, b->buf + b->fp, l, buf);
|
||
|
s = spltty();
|
||
|
b->rl += w;
|
||
|
b->fl -= w;
|
||
|
b->fp = (b->fp + w) % b->bufsize;
|
||
|
splx(s);
|
||
|
if (b->rl && !b->dl) chn_stintr(c);
|
||
|
}
|
||
|
c->flags &= ~CHN_F_WRITING;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* SOUND INPUT
|
||
|
*
|
||
|
|
||
|
The input part is similar to the output one, with a circular buffer
|
||
|
split in two regions, and boundaries advancing because of read() calls
|
||
|
[r] or dma operation [d]. At initialization, as for the write
|
||
|
routine, READY is empty, and FREE takes all the space.
|
||
|
|
||
|
0 rp,rl fp,fl bufsize
|
||
|
|__________>____________>________|
|
||
|
FREE r READY d FREE
|
||
|
|
||
|
Operation is as follows: upon user read (dsp_read_body()) a DMA read
|
||
|
is started if not already active (marked by b->dl > 0),
|
||
|
then as soon as data are available in the READY region they are
|
||
|
transferred to the user buffer, thus advancing the boundary between FREE
|
||
|
and READY. Upon interrupts, caused by a completion of a DMA transfer,
|
||
|
the READY region is extended and possibly a new transfer is started.
|
||
|
|
||
|
When necessary, dsp_rd_dmaupdate() is called to advance fp (and update
|
||
|
rl,fl accordingly). Upon user reads, rp is advanced and rl,fl are
|
||
|
updated accordingly.
|
||
|
|
||
|
The rules to choose the size of the new DMA area are similar to
|
||
|
the other case, with a preferred constant transfer size equal to
|
||
|
rec_blocksize, and fallback to smaller sizes if no space is available.
|
||
|
|
||
|
*/
|
||
|
|
||
|
/* read interrupt routine. Must be called with interrupts blocked. */
|
||
|
static void
|
||
|
chn_rdintr(pcm_channel *c)
|
||
|
{
|
||
|
snd_dbuf *b = &c->buffer;
|
||
|
int start;
|
||
|
|
||
|
if (b->dl) chn_dmadone(c);
|
||
|
|
||
|
DEB(printf("rdintr: start dl %d, rp:rl %d:%d, fp:fl %d:%d\n",
|
||
|
b->dl, b->rp, b->rl, b->fp, b->fl));
|
||
|
/* Restart if have enough free space to absorb overruns */
|
||
|
if (c->flags & CHN_F_MAPPED) start = c->flags & CHN_F_TRIGGERED;
|
||
|
else start = (b->fl > 0x200 && !(c->flags & CHN_F_ABORTING));
|
||
|
if (start) {
|
||
|
int l = min(b->fl - 0x100, c->blocksize);
|
||
|
if (c->flags & CHN_F_MAPPED) l = c->blocksize;
|
||
|
l &= DMA_ALIGN_MASK ; /* realign sizes */
|
||
|
|
||
|
DEB(printf("rdintr: dl %d -> %d\n", b->dl, l);)
|
||
|
if (l != b->dl) {
|
||
|
/* size has changed. Stop and restart */
|
||
|
if (b->dl) {
|
||
|
chn_trigger(c, PCMTRIG_STOP);
|
||
|
chn_dmaupdate(c);
|
||
|
l = min(b->fl - 0x100, c->blocksize);
|
||
|
l &= DMA_ALIGN_MASK ; /* realign sizes */
|
||
|
}
|
||
|
b->dl = l;
|
||
|
chn_trigger(c, PCMTRIG_START);
|
||
|
}
|
||
|
} else {
|
||
|
if (b->dl) { /* was active */
|
||
|
b->dl = 0;
|
||
|
chn_dmaupdate(c);
|
||
|
chn_trigger(c, PCMTRIG_STOP);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* body of user-read routine
|
||
|
*
|
||
|
* Start DMA if not active; wait for READY not empty.
|
||
|
* Transfer data from READY region using uiomove(), advance boundary
|
||
|
* between FREE and READY. Repeat until transfer is complete.
|
||
|
*
|
||
|
* To avoid excessive latency in freeing up space for the DMA
|
||
|
* engine, transfers are done in blocks of increasing size, so that
|
||
|
* the latency is proportional to the size of the smallest block, but
|
||
|
* we have a low overhead and are able to feed the dma engine with
|
||
|
* large blocks.
|
||
|
*
|
||
|
* NOTE: in the current version, read will not return more than
|
||
|
* blocksize bytes at once (unless more are already available), to
|
||
|
* avoid that requests using very large buffers block for too long.
|
||
|
*/
|
||
|
|
||
|
int
|
||
|
chn_read(pcm_channel *c, struct uio *buf)
|
||
|
{
|
||
|
int w, l, timeout, limit, ret = 0;
|
||
|
long s;
|
||
|
snd_dbuf *b = &c->buffer;
|
||
|
|
||
|
if (c->flags & CHN_F_READING) {
|
||
|
/* This shouldn't happen and is actually silly */
|
||
|
tsleep(&s, PZERO, "pcmrdR", hz);
|
||
|
return (EBUSY);
|
||
|
}
|
||
|
|
||
|
if (!b->rl & !b->dl) chn_stintr(c);
|
||
|
c->flags |= CHN_F_READING;
|
||
|
limit = buf->uio_resid - c->blocksize;
|
||
|
if (limit < 0) limit = 0;
|
||
|
while (buf->uio_resid > limit) {
|
||
|
s = spltty();
|
||
|
chn_dmaupdate(c);
|
||
|
splx(s);
|
||
|
if (b->rl < DMA_ALIGN_THRESHOLD) {
|
||
|
if (c->flags & CHN_F_NBIO) break;
|
||
|
timeout = (buf->uio_resid - limit >= b->dl)? hz : 1;
|
||
|
ret = tsleep(b, PRIBIO | PCATCH, "pcmrd", timeout);
|
||
|
if (ret == EINTR) chn_abort(c);
|
||
|
if (ret == EINTR || ret == ERESTART) break;
|
||
|
ret = 0;
|
||
|
continue;
|
||
|
}
|
||
|
/* ensure we always have a whole number of samples */
|
||
|
l = min(b->rl, b->bufsize - b->rp) & DMA_ALIGN_MASK;
|
||
|
w = c->feeder->feed(c->feeder, b->buf + b->rp, l, buf);
|
||
|
s = spltty();
|
||
|
b->rl -= w;
|
||
|
b->fl += w;
|
||
|
b->rp = (b->rp + w) % b->bufsize;
|
||
|
splx(s);
|
||
|
}
|
||
|
c->flags &= ~CHN_F_READING;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
chn_intr(pcm_channel *c)
|
||
|
{
|
||
|
if (!c->buffer.dl) chn_reinit(c);
|
||
|
if (c->direction == PCMDIR_PLAY) chn_wrintr(c); else chn_rdintr(c);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
chn_stintr(pcm_channel *c)
|
||
|
{
|
||
|
u_long s;
|
||
|
s = spltty();
|
||
|
chn_intr(c);
|
||
|
splx(s);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
chn_dma_setmap(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
||
|
{
|
||
|
snd_dbuf *b = (snd_dbuf *)arg;
|
||
|
|
||
|
if (bootverbose) {
|
||
|
printf("pcm: setmap %lx, %lx; ", (unsigned long)segs->ds_addr,
|
||
|
(unsigned long)segs->ds_len);
|
||
|
printf("%p -> %lx\n", b->buf, (unsigned long)vtophys(b->buf));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int
|
||
|
chn_allocbuf(snd_dbuf *b, bus_dma_tag_t parent_dmat)
|
||
|
{
|
||
|
if (bus_dmamem_alloc(parent_dmat, (void **)&b->buf,
|
||
|
BUS_DMA_NOWAIT, &b->dmamap)) return -1;
|
||
|
if (bus_dmamap_load(parent_dmat, b->dmamap, b->buf,
|
||
|
b->bufsize, chn_dma_setmap, b, 0)) return -1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
chn_resetbuf(pcm_channel *c)
|
||
|
{
|
||
|
snd_dbuf *b = &c->buffer;
|
||
|
u_int16_t data, *p;
|
||
|
u_int32_t i;
|
||
|
|
||
|
c->buffer.sample_size = 1;
|
||
|
c->buffer.sample_size <<= (c->hwfmt & AFMT_STEREO)? 1 : 0;
|
||
|
c->buffer.sample_size <<= (c->hwfmt & AFMT_16BIT)? 1 : 0;
|
||
|
/* rely on bufsize & 3 == 0 */
|
||
|
if (c->hwfmt & AFMT_SIGNED) data = 0x00; else data = 0x80;
|
||
|
if (c->hwfmt & AFMT_16BIT) data <<= 8; else data |= data << 8;
|
||
|
if (c->hwfmt & AFMT_BIGENDIAN)
|
||
|
data = ((data >> 8) & 0x00ff) | ((data << 8) & 0xff00);
|
||
|
for (i = 0, p = (u_int16_t *)b->buf; i < b->bufsize; i += 2)
|
||
|
*p++ = data;
|
||
|
b->rp = b->fp = 0;
|
||
|
b->dl = b->rl = 0;
|
||
|
b->prev_total = b->total = 0;
|
||
|
b->prev_int_count = b->int_count = 0;
|
||
|
b->first_poll = 1;
|
||
|
b->fl = b->bufsize;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
buf_isadma(snd_dbuf *b, int go)
|
||
|
{
|
||
|
if (ISA_DMA(b)) {
|
||
|
if (go == PCMTRIG_START) isa_dmastart(b->dir | B_RAW, b->buf,
|
||
|
b->bufsize, b->chan);
|
||
|
else {
|
||
|
isa_dmastop(b->chan);
|
||
|
isa_dmadone(b->dir | B_RAW, b->buf, b->bufsize,
|
||
|
b->chan);
|
||
|
}
|
||
|
} else panic("buf_isadma called on invalid channel");
|
||
|
}
|
||
|
|
||
|
int
|
||
|
buf_isadmaptr(snd_dbuf *b)
|
||
|
{
|
||
|
if (ISA_DMA(b)) {
|
||
|
int i = b->dl? isa_dmastatus(b->chan) : b->bufsize;
|
||
|
if (i < 0) i = 0;
|
||
|
return b->bufsize - i;
|
||
|
} else panic("buf_isadmaptr called on invalid channel");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* snd_sync waits until the space in the given channel goes above
|
||
|
* a threshold. The threshold is checked against fl or rl respectively.
|
||
|
* Assume that the condition can become true, do not check here...
|
||
|
*/
|
||
|
int
|
||
|
chn_sync(pcm_channel *c, int threshold)
|
||
|
{
|
||
|
u_long s, rdy;
|
||
|
int ret;
|
||
|
snd_dbuf *b = &c->buffer;
|
||
|
|
||
|
for (;;) {
|
||
|
s = spltty();
|
||
|
chn_dmaupdate(c);
|
||
|
rdy = (c->direction == PCMDIR_PLAY)? b->fl : b->rl;
|
||
|
if (rdy <= threshold) {
|
||
|
ret = tsleep((caddr_t)b, PRIBIO | PCATCH, "pcmsyn", 1);
|
||
|
splx(s);
|
||
|
if (ret == ERESTART || ret == EINTR) {
|
||
|
printf("tsleep returns %d\n", ret);
|
||
|
return -1;
|
||
|
}
|
||
|
} else break;
|
||
|
}
|
||
|
splx(s);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
chn_poll(pcm_channel *c, int ev, struct proc *p)
|
||
|
{
|
||
|
snd_dbuf *b = &c->buffer;
|
||
|
u_long s = spltty();
|
||
|
if (b->dl) chn_dmaupdate(c);
|
||
|
splx(s);
|
||
|
if (chn_polltrigger(c) && chn_pollreset(c)) return ev;
|
||
|
else {
|
||
|
selrecord(p, &b->sel);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* chn_abort is a non-blocking function which aborts a pending
|
||
|
* DMA transfer and flushes the buffers.
|
||
|
* It returns the number of bytes that have not been transferred.
|
||
|
*/
|
||
|
int
|
||
|
chn_abort(pcm_channel *c)
|
||
|
{
|
||
|
long s;
|
||
|
int missing = 0;
|
||
|
snd_dbuf *b = &c->buffer;
|
||
|
|
||
|
s = spltty();
|
||
|
if (b->dl) {
|
||
|
b->dl = 0;
|
||
|
c->flags &= ~((c->direction == PCMDIR_PLAY)? CHN_F_WRITING : CHN_F_READING);
|
||
|
chn_trigger(c, PCMTRIG_ABORT);
|
||
|
chn_dmadone(c);
|
||
|
}
|
||
|
missing = b->rl;
|
||
|
splx(s);
|
||
|
return missing;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* this routine tries to flush the dma transfer. It is called
|
||
|
* on a close. We immediately abort any read DMA
|
||
|
* operation, and then wait for the play buffer to drain.
|
||
|
*/
|
||
|
|
||
|
int
|
||
|
chn_flush(pcm_channel *c)
|
||
|
{
|
||
|
int ret, count = 10;
|
||
|
snd_dbuf *b = &c->buffer;
|
||
|
|
||
|
DEB(printf("snd_flush c->flags 0x%08x\n", c->flags));
|
||
|
c->flags |= CHN_F_CLOSING;
|
||
|
if (c->direction != PCMDIR_PLAY) chn_abort(c);
|
||
|
else while (b->dl) {
|
||
|
/* still pending output data. */
|
||
|
ret = tsleep((caddr_t)b, PRIBIO | PCATCH, "pcmflu", hz);
|
||
|
chn_dmaupdate(c);
|
||
|
DEB(printf("snd_sync: now rl : fl %d : %d\n", b->rl, b->fl));
|
||
|
if (ret == EINTR) {
|
||
|
printf("tsleep returns %d\n", ret);
|
||
|
return -1;
|
||
|
}
|
||
|
if (ret && --count == 0) {
|
||
|
printf("timeout flushing dbuf_out, cnt 0x%x flags 0x%x\n",
|
||
|
b->rl, c->flags);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
c->flags &= ~CHN_F_CLOSING;
|
||
|
if (c->direction == PCMDIR_PLAY) chn_abort(c);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
chn_reset(pcm_channel *c)
|
||
|
{
|
||
|
chn_abort(c);
|
||
|
c->flags &= CHN_F_RESET;
|
||
|
chn_resetbuf(c);
|
||
|
c->flags |= CHN_F_INIT;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
chn_reinit(pcm_channel *c)
|
||
|
{
|
||
|
if ((c->flags & CHN_F_INIT) && CANCHANGE(c)) {
|
||
|
chn_setformat(c, c->format);
|
||
|
chn_setspeed(c, c->speed);
|
||
|
chn_setblocksize(c, c->blocksize);
|
||
|
chn_setvolume(c, (c->volume >> 8) & 0xff, c->volume & 0xff);
|
||
|
c->flags &= ~CHN_F_INIT;
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
chn_init(pcm_channel *c, void *devinfo, int dir)
|
||
|
{
|
||
|
c->flags = 0;
|
||
|
c->feeder = &feeder_root;
|
||
|
c->buffer.chan = -1;
|
||
|
c->devinfo = c->init(devinfo, &c->buffer, c, dir);
|
||
|
chn_setdir(c, dir);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
chn_setdir(pcm_channel *c, int dir)
|
||
|
{
|
||
|
c->direction = dir;
|
||
|
if (ISA_DMA(&c->buffer))
|
||
|
c->buffer.dir = (dir == PCMDIR_PLAY)? B_WRITE : B_READ;
|
||
|
return c->setdir(c->devinfo, c->direction);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
chn_setvolume(pcm_channel *c, int left, int right)
|
||
|
{
|
||
|
/* could add a feeder for volume changing if channel returns -1 */
|
||
|
if (CANCHANGE(c)) {
|
||
|
return -1;
|
||
|
}
|
||
|
c->volume = (left << 8) | right;
|
||
|
c->flags |= CHN_F_INIT;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
chn_setspeed(pcm_channel *c, int speed)
|
||
|
{
|
||
|
/* could add a feeder for rate conversion */
|
||
|
if (CANCHANGE(c)) {
|
||
|
c->speed = c->setspeed(c->devinfo, speed);
|
||
|
return c->speed;
|
||
|
}
|
||
|
c->speed = speed;
|
||
|
c->flags |= CHN_F_INIT;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
chn_setformat(pcm_channel *c, u_int32_t fmt)
|
||
|
{
|
||
|
if (CANCHANGE(c)) {
|
||
|
c->hwfmt = c->format = fmt;
|
||
|
c->hwfmt = chn_feedchain(c);
|
||
|
chn_resetbuf(c);
|
||
|
c->setformat(c->devinfo, c->hwfmt);
|
||
|
return fmt;
|
||
|
}
|
||
|
c->format = fmt;
|
||
|
c->flags |= CHN_F_INIT;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
chn_setblocksize(pcm_channel *c, int blksz)
|
||
|
{
|
||
|
if (CANCHANGE(c)) {
|
||
|
c->flags &= ~CHN_F_HAS_SIZE;
|
||
|
if (blksz >= 2) c->flags |= CHN_F_HAS_SIZE;
|
||
|
blksz = abs(blksz);
|
||
|
if (blksz < 2) blksz = (c->buffer.sample_size * c->speed) >> 2;
|
||
|
RANGE(blksz, 1024, c->buffer.bufsize / 4);
|
||
|
blksz &= ~3;
|
||
|
c->blocksize = c->setblocksize(c->devinfo, blksz);
|
||
|
return c->blocksize;
|
||
|
}
|
||
|
c->blocksize = blksz;
|
||
|
c->flags |= CHN_F_INIT;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
chn_trigger(pcm_channel *c, int go)
|
||
|
{
|
||
|
return c->trigger(c->devinfo, go);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
chn_getptr(pcm_channel *c)
|
||
|
{
|
||
|
return c->getptr(c->devinfo);
|
||
|
}
|
||
|
|
||
|
pcmchan_caps *
|
||
|
chn_getcaps(pcm_channel *c)
|
||
|
{
|
||
|
return c->getcaps(c->devinfo);
|
||
|
}
|