freebsd-skq/sys/i386/pci/pci_cfgreg.c

796 lines
19 KiB
C
Raw Normal View History

Completely replace the PCI bus driver code to make it better reflect reality. There will be a new call interface, but for now the file pci_compat.c (which is to be deleted, after all drivers are converted) provides an emulation of the old PCI bus driver functions. The only change that might be visible to drivers is, that the type pcici_t (which had been meant to be just a handle, whose exact definition should not be relied on), has been converted into a pcicfgregs* . The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t and has been converted to just call the PCI drivers functions to access configuration space register, instead of inventing its own ... This code is by no means complete, but assumed to be fully operational, and brings the official code base more in line with my development code. A new generic device descriptor data type has to be agreed on. The PCI code will then use that data type to provide new functionality: 1) userconfig support 2) "wired" PCI devices 3) conflicts checking against ISA/EISA 4) maps will depend on the command register enable bits 5) PCI to Anything bridges can be defined as devices, and are probed like any "standard" PCI device. The following features are currently missing, but will be added back, soon: 1) unknown device probe message 2) suppression of "mirrored" devices caused by ancient, broken chip-sets This code relies on generic shared interrupt support just commited to kern_intr.c (plus the modifications of isa.c and isa_device.h).
1997-05-26 15:08:43 +00:00
/*
* Copyright (c) 1997, Stefan Esser <se@freebsd.org>
* Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
* Copyright (c) 2000, BSDi
Completely replace the PCI bus driver code to make it better reflect reality. There will be a new call interface, but for now the file pci_compat.c (which is to be deleted, after all drivers are converted) provides an emulation of the old PCI bus driver functions. The only change that might be visible to drivers is, that the type pcici_t (which had been meant to be just a handle, whose exact definition should not be relied on), has been converted into a pcicfgregs* . The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t and has been converted to just call the PCI drivers functions to access configuration space register, instead of inventing its own ... This code is by no means complete, but assumed to be fully operational, and brings the official code base more in line with my development code. A new generic device descriptor data type has to be agreed on. The PCI code will then use that data type to provide new functionality: 1) userconfig support 2) "wired" PCI devices 3) conflicts checking against ISA/EISA 4) maps will depend on the command register enable bits 5) PCI to Anything bridges can be defined as devices, and are probed like any "standard" PCI device. The following features are currently missing, but will be added back, soon: 1) unknown device probe message 2) suppression of "mirrored" devices caused by ancient, broken chip-sets This code relies on generic shared interrupt support just commited to kern_intr.c (plus the modifications of isa.c and isa_device.h).
1997-05-26 15:08:43 +00:00
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
2003-06-02 17:01:49 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h> /* XXX trim includes */
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/md_var.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <isa/isavar.h>
#include <machine/pci_cfgreg.h>
#include <machine/segments.h>
#include <machine/pc/bios.h>
#include "pcib_if.h"
#define PRVERB(a) do { \
if (bootverbose) \
printf a ; \
} while(0)
Completely replace the PCI bus driver code to make it better reflect reality. There will be a new call interface, but for now the file pci_compat.c (which is to be deleted, after all drivers are converted) provides an emulation of the old PCI bus driver functions. The only change that might be visible to drivers is, that the type pcici_t (which had been meant to be just a handle, whose exact definition should not be relied on), has been converted into a pcicfgregs* . The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t and has been converted to just call the PCI drivers functions to access configuration space register, instead of inventing its own ... This code is by no means complete, but assumed to be fully operational, and brings the official code base more in line with my development code. A new generic device descriptor data type has to be agreed on. The PCI code will then use that data type to provide new functionality: 1) userconfig support 2) "wired" PCI devices 3) conflicts checking against ISA/EISA 4) maps will depend on the command register enable bits 5) PCI to Anything bridges can be defined as devices, and are probed like any "standard" PCI device. The following features are currently missing, but will be added back, soon: 1) unknown device probe message 2) suppression of "mirrored" devices caused by ancient, broken chip-sets This code relies on generic shared interrupt support just commited to kern_intr.c (plus the modifications of isa.c and isa_device.h).
1997-05-26 15:08:43 +00:00
static int cfgmech;
static int devmax;
static int pci_cfgintr_valid(struct PIR_entry *pe, int pin, int irq);
static int pci_cfgintr_unique(struct PIR_entry *pe, int pin);
static int pci_cfgintr_linked(struct PIR_entry *pe, int pin);
static int pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin);
static int pci_cfgintr_virgin(struct PIR_entry *pe, int pin);
static void pci_print_irqmask(u_int16_t irqs);
static void pci_print_route_table(struct PIR_table *prt, int size);
static int pcireg_cfgread(int bus, int slot, int func, int reg, int bytes);
static void pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes);
static int pcireg_cfgopen(void);
static struct PIR_table *pci_route_table;
static int pci_route_count;
static struct mtx pcicfg_mtx;
/* sysctl vars */
SYSCTL_DECL(_hw_pci);
2003-08-02 05:14:17 +00:00
#ifdef PC98
#define PCI_IRQ_OVERRIDE_MASK 0x3e68
#else
#define PCI_IRQ_OVERRIDE_MASK 0xdef4
#endif
static uint32_t pci_irq_override_mask = PCI_IRQ_OVERRIDE_MASK;
TUNABLE_INT("hw.pci.irq_override_mask", &pci_irq_override_mask);
SYSCTL_INT(_hw_pci, OID_AUTO, irq_override_mask, CTLFLAG_RDTUN,
2003-08-02 05:14:17 +00:00
&pci_irq_override_mask, PCI_IRQ_OVERRIDE_MASK,
"Mask of allowed irqs to try to route when it has no good clue about\n"
"which irqs it should use.");
/*
* Some BIOS writers seem to want to ignore the spec and put
* 0 in the intline rather than 255 to indicate none. Some use
* numbers in the range 128-254 to indicate something strange and
* apparently undocumented anywhere. Assume these are completely bogus
* and map them to 255, which means "none".
*/
static __inline__ int
pci_i386_map_intline(int line)
{
if (line == 0 || line >= 128)
return (PCI_INVALID_IRQ);
return (line);
}
static u_int16_t
pcibios_get_version(void)
{
struct bios_regs args;
if (PCIbios.ventry == 0) {
PRVERB(("pcibios: No call entry point\n"));
return (0);
}
args.eax = PCIBIOS_BIOS_PRESENT;
if (bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL))) {
PRVERB(("pcibios: BIOS_PRESENT call failed\n"));
return (0);
}
if (args.edx != 0x20494350) {
PRVERB(("pcibios: BIOS_PRESENT didn't return 'PCI ' in edx\n"));
return (0);
}
return (args.ebx & 0xffff);
}
/*
* Initialise access to PCI configuration space
*/
int
pci_cfgregopen(void)
{
static int opened = 0;
u_long sigaddr;
static struct PIR_table *pt;
u_int16_t v;
u_int8_t ck, *cv;
int i;
if (opened)
return(1);
if (pcireg_cfgopen() == 0)
return(0);
v = pcibios_get_version();
if (v > 0)
printf("pcibios: BIOS version %x.%02x\n", (v & 0xff00) >> 8,
v & 0xff);
/*
* Look for the interrupt routing table.
*
* We use PCI BIOS's PIR table if it's available $PIR is the
* standard way to do this. Sadly, some machines are not
* standards conforming and have _PIR instead. We shrug and cope
* by looking for both.
*/
if (pcibios_get_version() >= 0x0210 && pt == NULL) {
sigaddr = bios_sigsearch(0, "$PIR", 4, 16, 0);
if (sigaddr == 0)
sigaddr = bios_sigsearch(0, "_PIR", 4, 16, 0);
if (sigaddr != 0) {
pt = (struct PIR_table *)(uintptr_t)
BIOS_PADDRTOVADDR(sigaddr);
for (cv = (u_int8_t *)pt, ck = 0, i = 0;
i < (pt->pt_header.ph_length); i++) {
ck += cv[i];
}
if (ck == 0 && pt->pt_header.ph_length >
sizeof(struct PIR_header)) {
pci_route_table = pt;
pci_route_count = (pt->pt_header.ph_length -
sizeof(struct PIR_header)) /
sizeof(struct PIR_entry);
printf("Using $PIR table, %d entries at %p\n",
pci_route_count, pci_route_table);
if (bootverbose)
pci_print_route_table(pci_route_table,
pci_route_count);
}
}
}
mtx_init(&pcicfg_mtx, "pcicfg", NULL, MTX_SPIN);
opened = 1;
return(1);
}
/*
* Read configuration space register
*/
u_int32_t
pci_cfgregread(int bus, int slot, int func, int reg, int bytes)
{
uint32_t line;
/*
* Some BIOS writers seem to want to ignore the spec and put
* 0 in the intline rather than 255 to indicate none. The rest of
* the code uses 255 as an invalid IRQ.
*/
if (reg == PCIR_INTLINE && bytes == 1) {
line = pcireg_cfgread(bus, slot, func, PCIR_INTLINE, 1);
New APIC support code: - The apic interrupt entry points have been rewritten so that each entry point can serve 32 different vectors. When the entry is executed, it uses one of the 32-bit ISR registers to determine which vector in its assigned range was triggered. Thus, the apic code can support 159 different interrupt vectors with only 5 entry points. - We now always to disable the local APIC to work around an errata in certain PPros and then re-enable it again if we decide to use the APICs to route interrupts. - We no longer map IO APICs or local APICs using special page table entries. Instead, we just use pmap_mapdev(). We also no longer export the virtual address of the local APIC as a global symbol to the rest of the system, but only in local_apic.c. To aid this, the APIC ID of each CPU is exported as a per-CPU variable. - Interrupt sources are provided for each intpin on each IO APIC. Currently, each source is given a unique interrupt vector meaning that PCI interrupts are not shared on most machines with an I/O APIC. That mapping for interrupt sources to interrupt vectors is up to the APIC enumerator driver however. - We no longer probe to see if we need to use mixed mode to route IRQ 0, instead we always use mixed mode to route IRQ 0 for now. This can be disabled via the 'NO_MIXED_MODE' kernel option. - The npx(4) driver now always probes to see if a built-in FPU is present since this test can now be performed with the new APIC code. However, an SMP kernel will panic if there is more than one CPU and a built-in FPU is not found. - PCI interrupts are now properly routed when using APICs to route interrupts, so remove the hack to psuedo-route interrupts when the intpin register was read. - The apic.h header was moved to apicreg.h and a new apicvar.h header that declares the APIs used by the new APIC code was added.
2003-11-03 21:53:38 +00:00
return (pci_i386_map_intline(line));
}
New APIC support code: - The apic interrupt entry points have been rewritten so that each entry point can serve 32 different vectors. When the entry is executed, it uses one of the 32-bit ISR registers to determine which vector in its assigned range was triggered. Thus, the apic code can support 159 different interrupt vectors with only 5 entry points. - We now always to disable the local APIC to work around an errata in certain PPros and then re-enable it again if we decide to use the APICs to route interrupts. - We no longer map IO APICs or local APICs using special page table entries. Instead, we just use pmap_mapdev(). We also no longer export the virtual address of the local APIC as a global symbol to the rest of the system, but only in local_apic.c. To aid this, the APIC ID of each CPU is exported as a per-CPU variable. - Interrupt sources are provided for each intpin on each IO APIC. Currently, each source is given a unique interrupt vector meaning that PCI interrupts are not shared on most machines with an I/O APIC. That mapping for interrupt sources to interrupt vectors is up to the APIC enumerator driver however. - We no longer probe to see if we need to use mixed mode to route IRQ 0, instead we always use mixed mode to route IRQ 0 for now. This can be disabled via the 'NO_MIXED_MODE' kernel option. - The npx(4) driver now always probes to see if a built-in FPU is present since this test can now be performed with the new APIC code. However, an SMP kernel will panic if there is more than one CPU and a built-in FPU is not found. - PCI interrupts are now properly routed when using APICs to route interrupts, so remove the hack to psuedo-route interrupts when the intpin register was read. - The apic.h header was moved to apicreg.h and a new apicvar.h header that declares the APIs used by the new APIC code was added.
2003-11-03 21:53:38 +00:00
return (pcireg_cfgread(bus, slot, func, reg, bytes));
}
/*
* Write configuration space register
*/
void
pci_cfgregwrite(int bus, int slot, int func, int reg, u_int32_t data, int bytes)
{
pcireg_cfgwrite(bus, slot, func, reg, data, bytes);
}
/*
* Route a PCI interrupt
*/
int
pci_cfgintr(int bus, int device, int pin, int oldirq)
{
struct PIR_entry *pe;
int i, irq;
struct bios_regs args;
u_int16_t v;
int already = 0;
int errok = 0;
v = pcibios_get_version();
if (v < 0x0210) {
PRVERB((
"pci_cfgintr: BIOS %x.%02x doesn't support interrupt routing\n",
(v & 0xff00) >> 8, v & 0xff));
return (PCI_INVALID_IRQ);
}
if ((bus < 0) || (bus > 255) || (device < 0) || (device > 255) ||
(pin < 1) || (pin > 4))
return(PCI_INVALID_IRQ);
/*
* Scan the entry table for a contender
*/
for (i = 0, pe = &pci_route_table->pt_entry[0]; i < pci_route_count;
i++, pe++) {
if ((bus != pe->pe_bus) || (device != pe->pe_device))
continue;
/*
* A link of 0 means that this intpin is not connected to
* any other device's interrupt pins and is not connected to
* any of the Interrupt Router's interrupt pins, so we can't
* route it.
*/
if (pe->pe_intpin[pin - 1].link == 0)
continue;
if (pci_cfgintr_valid(pe, pin, oldirq)) {
printf("pci_cfgintr: %d:%d INT%c BIOS irq %d\n", bus,
device, 'A' + pin - 1, oldirq);
return (oldirq);
}
/*
* We try to find a linked interrupt, then we look to see
* if the interrupt is uniquely routed, then we look for
* a virgin interrupt. The virgin interrupt should return
* an interrupt we can route, but if that fails, maybe we
* should try harder to route a different interrupt.
* However, experience has shown that that's rarely the
* failure mode we see.
*/
irq = pci_cfgintr_linked(pe, pin);
if (irq != PCI_INVALID_IRQ)
already = 1;
if (irq == PCI_INVALID_IRQ) {
irq = pci_cfgintr_unique(pe, pin);
if (irq != PCI_INVALID_IRQ)
errok = 1;
}
if (irq == PCI_INVALID_IRQ)
irq = pci_cfgintr_virgin(pe, pin);
if (irq == PCI_INVALID_IRQ)
break;
/*
* Ask the BIOS to route the interrupt. If we picked an
* interrupt that failed, we should really try other
* choices that the BIOS offers us.
*
* For uniquely routed interrupts, we need to try
* to route them on some machines. Yet other machines
* fail to route, so we have to pretend that in that
* case it worked. Isn't pc hardware fun?
*
* NOTE: if we want to whack hardware to do this, then
* I think the right way to do that would be to have
* bridge drivers that do this. I'm not sure that the
* $PIR table would be valid for those interrupt
* routers.
*/
args.eax = PCIBIOS_ROUTE_INTERRUPT;
args.ebx = (bus << 8) | (device << 3);
/* pin value is 0xa - 0xd */
args.ecx = (irq << 8) | (0xa + pin - 1);
if (!already &&
bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL)) &&
!errok) {
PRVERB(("pci_cfgintr: ROUTE_INTERRUPT failed.\n"));
return(PCI_INVALID_IRQ);
}
printf("pci_cfgintr: %d:%d INT%c routed to irq %d\n", bus,
device, 'A' + pin - 1, irq);
return(irq);
}
PRVERB(("pci_cfgintr: can't route an interrupt to %d:%d INT%c\n", bus,
device, 'A' + pin - 1));
return(PCI_INVALID_IRQ);
}
/*
* Check to see if an existing IRQ setting is valid.
*/
static int
pci_cfgintr_valid(struct PIR_entry *pe, int pin, int irq)
{
uint32_t irqmask;
if (!PCI_INTERRUPT_VALID(irq))
return (0);
irqmask = pe->pe_intpin[pin - 1].irqs;
if (irqmask & (1 << irq)) {
PRVERB(("pci_cfgintr_valid: BIOS irq %d is valid\n", irq));
return (1);
}
return (0);
}
/*
* Look to see if the routing table claims this pin is uniquely routed.
*/
static int
pci_cfgintr_unique(struct PIR_entry *pe, int pin)
{
int irq;
uint32_t irqmask;
irqmask = pe->pe_intpin[pin - 1].irqs;
if (irqmask != 0 && powerof2(irqmask)) {
irq = ffs(irqmask) - 1;
PRVERB(("pci_cfgintr_unique: hard-routed to irq %d\n", irq));
return(irq);
}
return(PCI_INVALID_IRQ);
}
/*
* Look for another device which shares the same link byte and
* already has a unique IRQ, or which has had one routed already.
*/
static int
pci_cfgintr_linked(struct PIR_entry *pe, int pin)
{
struct PIR_entry *oe;
struct PIR_intpin *pi;
int i, j, irq;
/*
* Scan table slots.
*/
for (i = 0, oe = &pci_route_table->pt_entry[0]; i < pci_route_count;
i++, oe++) {
/* scan interrupt pins */
for (j = 0, pi = &oe->pe_intpin[0]; j < 4; j++, pi++) {
/* don't look at the entry we're trying to match */
if ((pe == oe) && (i == (pin - 1)))
continue;
/* compare link bytes */
if (pi->link != pe->pe_intpin[pin - 1].link)
continue;
/* link destination mapped to a unique interrupt? */
if (pi->irqs != 0 && powerof2(pi->irqs)) {
irq = ffs(pi->irqs) - 1;
PRVERB(("pci_cfgintr_linked: linked (%x) to hard-routed irq %d\n",
pi->link, irq));
return(irq);
}
/*
* look for the real PCI device that matches this
* table entry
*/
irq = pci_cfgintr_search(pe, oe->pe_bus, oe->pe_device,
j + 1, pin);
if (irq != PCI_INVALID_IRQ)
return(irq);
}
}
return(PCI_INVALID_IRQ);
}
/*
* Scan for the real PCI device at (bus)/(device) using intpin (matchpin) and
* see if it has already been assigned an interrupt.
*/
static int
pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin)
{
devclass_t pci_devclass;
device_t *pci_devices;
int pci_count;
device_t *pci_children;
int pci_childcount;
device_t *busp, *childp;
int i, j, irq;
/*
* Find all the PCI busses.
*/
pci_count = 0;
if ((pci_devclass = devclass_find("pci")) != NULL)
devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
/*
* Scan all the PCI busses/devices looking for this one.
*/
irq = PCI_INVALID_IRQ;
for (i = 0, busp = pci_devices; (i < pci_count) && (irq == PCI_INVALID_IRQ);
i++, busp++) {
pci_childcount = 0;
device_get_children(*busp, &pci_children, &pci_childcount);
for (j = 0, childp = pci_children; j < pci_childcount; j++,
childp++) {
if ((pci_get_bus(*childp) == bus) &&
(pci_get_slot(*childp) == device) &&
(pci_get_intpin(*childp) == matchpin)) {
irq = pci_i386_map_intline(pci_get_irq(*childp));
if (irq != PCI_INVALID_IRQ)
PRVERB(("pci_cfgintr_search: linked (%x) to configured irq %d at %d:%d:%d\n",
pe->pe_intpin[pin - 1].link, irq,
pci_get_bus(*childp),
pci_get_slot(*childp),
pci_get_function(*childp)));
break;
}
}
if (pci_children != NULL)
free(pci_children, M_TEMP);
}
if (pci_devices != NULL)
free(pci_devices, M_TEMP);
return(irq);
}
/*
* Pick a suitable IRQ from those listed as routable to this device.
*/
static int
pci_cfgintr_virgin(struct PIR_entry *pe, int pin)
{
int irq, ibit;
/*
* first scan the set of PCI-only interrupts and see if any of these
* are routable
*/
for (irq = 0; irq < 16; irq++) {
ibit = (1 << irq);
/* can we use this interrupt? */
if ((pci_route_table->pt_header.ph_pci_irqs & ibit) &&
(pe->pe_intpin[pin - 1].irqs & ibit)) {
PRVERB(("pci_cfgintr_virgin: using routable PCI-only interrupt %d\n", irq));
return(irq);
}
}
/* life is tough, so just pick an interrupt */
for (irq = 0; irq < 16; irq++) {
ibit = (1 << irq);
if ((ibit & pci_irq_override_mask) == 0)
continue;
if (pe->pe_intpin[pin - 1].irqs & ibit) {
PRVERB(("pci_cfgintr_virgin: using routable interrupt %d\n", irq));
return(irq);
}
}
return(PCI_INVALID_IRQ);
}
static void
pci_print_irqmask(u_int16_t irqs)
{
int i, first;
if (irqs == 0) {
printf("none");
return;
}
first = 1;
for (i = 0; i < 16; i++, irqs >>= 1)
if (irqs & 1) {
if (!first)
printf(" ");
else
first = 0;
printf("%d", i);
}
}
/*
* Dump the contents of a PCI BIOS Interrupt Routing Table to the console.
*/
static void
pci_print_route_table(struct PIR_table *prt, int size)
{
struct PIR_entry *entry;
struct PIR_intpin *intpin;
int i, pin;
printf("PCI-Only Interrupts: ");
pci_print_irqmask(prt->pt_header.ph_pci_irqs);
printf("\nLocation Bus Device Pin Link IRQs\n");
entry = &prt->pt_entry[0];
for (i = 0; i < size; i++, entry++) {
intpin = &entry->pe_intpin[0];
for (pin = 0; pin < 4; pin++, intpin++)
if (intpin->link != 0) {
if (entry->pe_slot == 0)
printf("embedded ");
else
printf("slot %-3d ", entry->pe_slot);
printf(" %3d %3d %c 0x%02x ",
entry->pe_bus, entry->pe_device,
'A' + pin, intpin->link);
pci_print_irqmask(intpin->irqs);
printf("\n");
}
}
}
/*
* See if any interrupts for a given PCI bus are routed in the PIR. Don't
* even bother looking if the BIOS doesn't support routing anyways.
*/
int
pci_probe_route_table(int bus)
{
int i;
u_int16_t v;
v = pcibios_get_version();
if (v < 0x0210)
return (0);
for (i = 0; i < pci_route_count; i++)
if (pci_route_table->pt_entry[i].pe_bus == bus)
return (1);
return (0);
}
/*
* Configuration space access using direct register operations
*/
Completely replace the PCI bus driver code to make it better reflect reality. There will be a new call interface, but for now the file pci_compat.c (which is to be deleted, after all drivers are converted) provides an emulation of the old PCI bus driver functions. The only change that might be visible to drivers is, that the type pcici_t (which had been meant to be just a handle, whose exact definition should not be relied on), has been converted into a pcicfgregs* . The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t and has been converted to just call the PCI drivers functions to access configuration space register, instead of inventing its own ... This code is by no means complete, but assumed to be fully operational, and brings the official code base more in line with my development code. A new generic device descriptor data type has to be agreed on. The PCI code will then use that data type to provide new functionality: 1) userconfig support 2) "wired" PCI devices 3) conflicts checking against ISA/EISA 4) maps will depend on the command register enable bits 5) PCI to Anything bridges can be defined as devices, and are probed like any "standard" PCI device. The following features are currently missing, but will be added back, soon: 1) unknown device probe message 2) suppression of "mirrored" devices caused by ancient, broken chip-sets This code relies on generic shared interrupt support just commited to kern_intr.c (plus the modifications of isa.c and isa_device.h).
1997-05-26 15:08:43 +00:00
/* enable configuration space accesses and return data port address */
static int
Completely replace the PCI bus driver code to make it better reflect reality. There will be a new call interface, but for now the file pci_compat.c (which is to be deleted, after all drivers are converted) provides an emulation of the old PCI bus driver functions. The only change that might be visible to drivers is, that the type pcici_t (which had been meant to be just a handle, whose exact definition should not be relied on), has been converted into a pcicfgregs* . The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t and has been converted to just call the PCI drivers functions to access configuration space register, instead of inventing its own ... This code is by no means complete, but assumed to be fully operational, and brings the official code base more in line with my development code. A new generic device descriptor data type has to be agreed on. The PCI code will then use that data type to provide new functionality: 1) userconfig support 2) "wired" PCI devices 3) conflicts checking against ISA/EISA 4) maps will depend on the command register enable bits 5) PCI to Anything bridges can be defined as devices, and are probed like any "standard" PCI device. The following features are currently missing, but will be added back, soon: 1) unknown device probe message 2) suppression of "mirrored" devices caused by ancient, broken chip-sets This code relies on generic shared interrupt support just commited to kern_intr.c (plus the modifications of isa.c and isa_device.h).
1997-05-26 15:08:43 +00:00
pci_cfgenable(unsigned bus, unsigned slot, unsigned func, int reg, int bytes)
{
int dataport = 0;
if (bus <= PCI_BUSMAX
&& slot < devmax
&& func <= PCI_FUNCMAX
&& reg <= PCI_REGMAX
&& bytes != 3
&& (unsigned) bytes <= 4
&& (reg & (bytes - 1)) == 0) {
switch (cfgmech) {
case 1:
outl(CONF1_ADDR_PORT, (1 << 31)
| (bus << 16) | (slot << 11)
| (func << 8) | (reg & ~0x03));
dataport = CONF1_DATA_PORT + (reg & 0x03);
break;
case 2:
outb(CONF2_ENABLE_PORT, 0xf0 | (func << 1));
outb(CONF2_FORWARD_PORT, bus);
dataport = 0xc000 | (slot << 8) | reg;
break;
}
Completely replace the PCI bus driver code to make it better reflect reality. There will be a new call interface, but for now the file pci_compat.c (which is to be deleted, after all drivers are converted) provides an emulation of the old PCI bus driver functions. The only change that might be visible to drivers is, that the type pcici_t (which had been meant to be just a handle, whose exact definition should not be relied on), has been converted into a pcicfgregs* . The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t and has been converted to just call the PCI drivers functions to access configuration space register, instead of inventing its own ... This code is by no means complete, but assumed to be fully operational, and brings the official code base more in line with my development code. A new generic device descriptor data type has to be agreed on. The PCI code will then use that data type to provide new functionality: 1) userconfig support 2) "wired" PCI devices 3) conflicts checking against ISA/EISA 4) maps will depend on the command register enable bits 5) PCI to Anything bridges can be defined as devices, and are probed like any "standard" PCI device. The following features are currently missing, but will be added back, soon: 1) unknown device probe message 2) suppression of "mirrored" devices caused by ancient, broken chip-sets This code relies on generic shared interrupt support just commited to kern_intr.c (plus the modifications of isa.c and isa_device.h).
1997-05-26 15:08:43 +00:00
}
return (dataport);
Completely replace the PCI bus driver code to make it better reflect reality. There will be a new call interface, but for now the file pci_compat.c (which is to be deleted, after all drivers are converted) provides an emulation of the old PCI bus driver functions. The only change that might be visible to drivers is, that the type pcici_t (which had been meant to be just a handle, whose exact definition should not be relied on), has been converted into a pcicfgregs* . The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t and has been converted to just call the PCI drivers functions to access configuration space register, instead of inventing its own ... This code is by no means complete, but assumed to be fully operational, and brings the official code base more in line with my development code. A new generic device descriptor data type has to be agreed on. The PCI code will then use that data type to provide new functionality: 1) userconfig support 2) "wired" PCI devices 3) conflicts checking against ISA/EISA 4) maps will depend on the command register enable bits 5) PCI to Anything bridges can be defined as devices, and are probed like any "standard" PCI device. The following features are currently missing, but will be added back, soon: 1) unknown device probe message 2) suppression of "mirrored" devices caused by ancient, broken chip-sets This code relies on generic shared interrupt support just commited to kern_intr.c (plus the modifications of isa.c and isa_device.h).
1997-05-26 15:08:43 +00:00
}
Completely replace the PCI bus driver code to make it better reflect reality. There will be a new call interface, but for now the file pci_compat.c (which is to be deleted, after all drivers are converted) provides an emulation of the old PCI bus driver functions. The only change that might be visible to drivers is, that the type pcici_t (which had been meant to be just a handle, whose exact definition should not be relied on), has been converted into a pcicfgregs* . The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t and has been converted to just call the PCI drivers functions to access configuration space register, instead of inventing its own ... This code is by no means complete, but assumed to be fully operational, and brings the official code base more in line with my development code. A new generic device descriptor data type has to be agreed on. The PCI code will then use that data type to provide new functionality: 1) userconfig support 2) "wired" PCI devices 3) conflicts checking against ISA/EISA 4) maps will depend on the command register enable bits 5) PCI to Anything bridges can be defined as devices, and are probed like any "standard" PCI device. The following features are currently missing, but will be added back, soon: 1) unknown device probe message 2) suppression of "mirrored" devices caused by ancient, broken chip-sets This code relies on generic shared interrupt support just commited to kern_intr.c (plus the modifications of isa.c and isa_device.h).
1997-05-26 15:08:43 +00:00
/* disable configuration space accesses */
static void
pci_cfgdisable(void)
{
switch (cfgmech) {
case 1:
outl(CONF1_ADDR_PORT, 0);
break;
case 2:
outb(CONF2_ENABLE_PORT, 0);
outb(CONF2_FORWARD_PORT, 0);
break;
}
Completely replace the PCI bus driver code to make it better reflect reality. There will be a new call interface, but for now the file pci_compat.c (which is to be deleted, after all drivers are converted) provides an emulation of the old PCI bus driver functions. The only change that might be visible to drivers is, that the type pcici_t (which had been meant to be just a handle, whose exact definition should not be relied on), has been converted into a pcicfgregs* . The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t and has been converted to just call the PCI drivers functions to access configuration space register, instead of inventing its own ... This code is by no means complete, but assumed to be fully operational, and brings the official code base more in line with my development code. A new generic device descriptor data type has to be agreed on. The PCI code will then use that data type to provide new functionality: 1) userconfig support 2) "wired" PCI devices 3) conflicts checking against ISA/EISA 4) maps will depend on the command register enable bits 5) PCI to Anything bridges can be defined as devices, and are probed like any "standard" PCI device. The following features are currently missing, but will be added back, soon: 1) unknown device probe message 2) suppression of "mirrored" devices caused by ancient, broken chip-sets This code relies on generic shared interrupt support just commited to kern_intr.c (plus the modifications of isa.c and isa_device.h).
1997-05-26 15:08:43 +00:00
}
static int
pcireg_cfgread(int bus, int slot, int func, int reg, int bytes)
Completely replace the PCI bus driver code to make it better reflect reality. There will be a new call interface, but for now the file pci_compat.c (which is to be deleted, after all drivers are converted) provides an emulation of the old PCI bus driver functions. The only change that might be visible to drivers is, that the type pcici_t (which had been meant to be just a handle, whose exact definition should not be relied on), has been converted into a pcicfgregs* . The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t and has been converted to just call the PCI drivers functions to access configuration space register, instead of inventing its own ... This code is by no means complete, but assumed to be fully operational, and brings the official code base more in line with my development code. A new generic device descriptor data type has to be agreed on. The PCI code will then use that data type to provide new functionality: 1) userconfig support 2) "wired" PCI devices 3) conflicts checking against ISA/EISA 4) maps will depend on the command register enable bits 5) PCI to Anything bridges can be defined as devices, and are probed like any "standard" PCI device. The following features are currently missing, but will be added back, soon: 1) unknown device probe message 2) suppression of "mirrored" devices caused by ancient, broken chip-sets This code relies on generic shared interrupt support just commited to kern_intr.c (plus the modifications of isa.c and isa_device.h).
1997-05-26 15:08:43 +00:00
{
int data = -1;
int port;
mtx_lock_spin(&pcicfg_mtx);
port = pci_cfgenable(bus, slot, func, reg, bytes);
if (port != 0) {
switch (bytes) {
case 1:
data = inb(port);
break;
case 2:
data = inw(port);
break;
case 4:
data = inl(port);
break;
}
pci_cfgdisable();
Completely replace the PCI bus driver code to make it better reflect reality. There will be a new call interface, but for now the file pci_compat.c (which is to be deleted, after all drivers are converted) provides an emulation of the old PCI bus driver functions. The only change that might be visible to drivers is, that the type pcici_t (which had been meant to be just a handle, whose exact definition should not be relied on), has been converted into a pcicfgregs* . The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t and has been converted to just call the PCI drivers functions to access configuration space register, instead of inventing its own ... This code is by no means complete, but assumed to be fully operational, and brings the official code base more in line with my development code. A new generic device descriptor data type has to be agreed on. The PCI code will then use that data type to provide new functionality: 1) userconfig support 2) "wired" PCI devices 3) conflicts checking against ISA/EISA 4) maps will depend on the command register enable bits 5) PCI to Anything bridges can be defined as devices, and are probed like any "standard" PCI device. The following features are currently missing, but will be added back, soon: 1) unknown device probe message 2) suppression of "mirrored" devices caused by ancient, broken chip-sets This code relies on generic shared interrupt support just commited to kern_intr.c (plus the modifications of isa.c and isa_device.h).
1997-05-26 15:08:43 +00:00
}
mtx_unlock_spin(&pcicfg_mtx);
return (data);
Completely replace the PCI bus driver code to make it better reflect reality. There will be a new call interface, but for now the file pci_compat.c (which is to be deleted, after all drivers are converted) provides an emulation of the old PCI bus driver functions. The only change that might be visible to drivers is, that the type pcici_t (which had been meant to be just a handle, whose exact definition should not be relied on), has been converted into a pcicfgregs* . The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t and has been converted to just call the PCI drivers functions to access configuration space register, instead of inventing its own ... This code is by no means complete, but assumed to be fully operational, and brings the official code base more in line with my development code. A new generic device descriptor data type has to be agreed on. The PCI code will then use that data type to provide new functionality: 1) userconfig support 2) "wired" PCI devices 3) conflicts checking against ISA/EISA 4) maps will depend on the command register enable bits 5) PCI to Anything bridges can be defined as devices, and are probed like any "standard" PCI device. The following features are currently missing, but will be added back, soon: 1) unknown device probe message 2) suppression of "mirrored" devices caused by ancient, broken chip-sets This code relies on generic shared interrupt support just commited to kern_intr.c (plus the modifications of isa.c and isa_device.h).
1997-05-26 15:08:43 +00:00
}
static void
pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes)
Completely replace the PCI bus driver code to make it better reflect reality. There will be a new call interface, but for now the file pci_compat.c (which is to be deleted, after all drivers are converted) provides an emulation of the old PCI bus driver functions. The only change that might be visible to drivers is, that the type pcici_t (which had been meant to be just a handle, whose exact definition should not be relied on), has been converted into a pcicfgregs* . The Tekram AMD SCSI driver bogusly relied on the definition of pcici_t and has been converted to just call the PCI drivers functions to access configuration space register, instead of inventing its own ... This code is by no means complete, but assumed to be fully operational, and brings the official code base more in line with my development code. A new generic device descriptor data type has to be agreed on. The PCI code will then use that data type to provide new functionality: 1) userconfig support 2) "wired" PCI devices 3) conflicts checking against ISA/EISA 4) maps will depend on the command register enable bits 5) PCI to Anything bridges can be defined as devices, and are probed like any "standard" PCI device. The following features are currently missing, but will be added back, soon: 1) unknown device probe message 2) suppression of "mirrored" devices caused by ancient, broken chip-sets This code relies on generic shared interrupt support just commited to kern_intr.c (plus the modifications of isa.c and isa_device.h).
1997-05-26 15:08:43 +00:00
{
int port;
mtx_lock_spin(&pcicfg_mtx);
port = pci_cfgenable(bus, slot, func, reg, bytes);
if (port != 0) {
switch (bytes) {
case 1:
outb(port, data);
break;
case 2:
outw(port, data);
break;
case 4:
outl(port, data);
break;
}
pci_cfgdisable();
}
mtx_unlock_spin(&pcicfg_mtx);
}
/* check whether the configuration mechanism has been correctly identified */
static int
pci_cfgcheck(int maxdev)
{
uint32_t id, class;
uint8_t header;
uint8_t device;
int port;
if (bootverbose)
printf("pci_cfgcheck:\tdevice ");
for (device = 0; device < maxdev; device++) {
if (bootverbose)
printf("%d ", device);
port = pci_cfgenable(0, device, 0, 0, 4);
id = inl(port);
if (id == 0 || id == 0xffffffff)
continue;
port = pci_cfgenable(0, device, 0, 8, 4);
class = inl(port) >> 8;
if (bootverbose)
printf("[class=%06x] ", class);
if (class == 0 || (class & 0xf870ff) != 0)
continue;
port = pci_cfgenable(0, device, 0, 14, 1);
header = inb(port);
if (bootverbose)
printf("[hdr=%02x] ", header);
if ((header & 0x7e) != 0)
continue;
if (bootverbose)
printf("is there (id=%08x)\n", id);
pci_cfgdisable();
return (1);
}
if (bootverbose)
printf("-- nothing found\n");
pci_cfgdisable();
return (0);
}
static int
pcireg_cfgopen(void)
{
uint32_t mode1res, oldval1;
uint8_t mode2res, oldval2;
oldval1 = inl(CONF1_ADDR_PORT);
if (bootverbose) {
printf("pci_open(1):\tmode 1 addr port (0x0cf8) is 0x%08x\n",
oldval1);
}
if ((oldval1 & CONF1_ENABLE_MSK) == 0) {
cfgmech = 1;
devmax = 32;
outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK);
outb(CONF1_ADDR_PORT + 3, 0);
mode1res = inl(CONF1_ADDR_PORT);
outl(CONF1_ADDR_PORT, oldval1);
if (bootverbose)
printf("pci_open(1a):\tmode1res=0x%08x (0x%08lx)\n",
mode1res, CONF1_ENABLE_CHK);
if (mode1res) {
if (pci_cfgcheck(32))
return (cfgmech);
}
outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK1);
mode1res = inl(CONF1_ADDR_PORT);
outl(CONF1_ADDR_PORT, oldval1);
if (bootverbose)
printf("pci_open(1b):\tmode1res=0x%08x (0x%08lx)\n",
mode1res, CONF1_ENABLE_CHK1);
if ((mode1res & CONF1_ENABLE_MSK1) == CONF1_ENABLE_RES1) {
if (pci_cfgcheck(32))
return (cfgmech);
}
}
oldval2 = inb(CONF2_ENABLE_PORT);
if (bootverbose) {
printf("pci_open(2):\tmode 2 enable port (0x0cf8) is 0x%02x\n",
oldval2);
}
if ((oldval2 & 0xf0) == 0) {
cfgmech = 2;
devmax = 16;
outb(CONF2_ENABLE_PORT, CONF2_ENABLE_CHK);
mode2res = inb(CONF2_ENABLE_PORT);
outb(CONF2_ENABLE_PORT, oldval2);
if (bootverbose)
printf("pci_open(2a):\tmode2res=0x%02x (0x%02x)\n",
mode2res, CONF2_ENABLE_CHK);
if (mode2res == CONF2_ENABLE_RES) {
if (bootverbose)
printf("pci_open(2a):\tnow trying mechanism 2\n");
if (pci_cfgcheck(16))
return (cfgmech);
}
}
cfgmech = 0;
devmax = 0;
return (cfgmech);
}