120 lines
5.4 KiB
C
Raw Normal View History

/*-
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
2007-12-10 16:03:40 +00:00
* $KAME: in6_pcb.h,v 1.13 2001/02/06 09:16:53 itojun Exp $
*/
/*-
* Copyright (c) 1982, 1986, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.h 8.1 (Berkeley) 6/10/93
2007-12-10 16:03:40 +00:00
* $FreeBSD$
*/
#ifndef _NETINET6_IN6_PCB_H_
#define _NETINET6_IN6_PCB_H_
#ifdef _KERNEL
#define satosin6(sa) ((struct sockaddr_in6 *)(sa))
#define sin6tosa(sin6) ((struct sockaddr *)(sin6))
#define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
Implement a CPU-affine TCP and UDP connection lookup data structure, struct inpcbgroup. pcbgroups, or "connection groups", supplement the existing inpcbinfo connection hash table, which when pcbgroups are enabled, might now be thought of more usefully as a per-protocol 4-tuple reservation table. Connections are assigned to connection groups base on a hash of their 4-tuple; wildcard sockets require special handling, and are members of all connection groups. During a connection lookup, a per-connection group lock is employed rather than the global pcbinfo lock. By aligning connection groups with input path processing, connection groups take on an effective CPU affinity, especially when aligned with RSS work placement (see a forthcoming commit for details). This eliminates cache line migration associated with global, protocol-layer data structures in steady state TCP and UDP processing (with the exception of protocol-layer statistics; further commit to follow). Elements of this approach were inspired by Willman, Rixner, and Cox's 2006 USENIX paper, "An Evaluation of Network Stack Parallelization Strategies in Modern Operating Systems". However, there are also significant differences: we maintain the inpcb lock, rather than using the connection group lock for per-connection state. Likewise, the focus of this implementation is alignment with NIC packet distribution strategies such as RSS, rather than pure software strategies. Despite that focus, software distribution is supported through the parallel netisr implementation, and works well in configurations where the number of hardware threads is greater than the number of NIC input queues, such as in the RMI XLR threaded MIPS architecture. Another important difference is the continued maintenance of existing hash tables as "reservation tables" -- these are useful both to distinguish the resource allocation aspect of protocol name management and the more common-case lookup aspect. In configurations where connection tables are aligned with hardware hashes, it is desirable to use the traditional lookup tables for loopback or encapsulated traffic rather than take the expense of hardware hashes that are hard to implement efficiently in software (such as RSS Toeplitz). Connection group support is enabled by compiling "options PCBGROUP" into your kernel configuration; for the time being, this is an experimental feature, and hence is not enabled by default. Subject to the limited MFCability of change dependencies in inpcb, and its change to the inpcbinfo init function signature, this change in principle could be merged to FreeBSD 8.x. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-06-06 12:55:02 +00:00
struct inpcbgroup *
in6_pcbgroup_byhash(struct inpcbinfo *, u_int, uint32_t);
struct inpcbgroup *
in6_pcbgroup_byinpcb(struct inpcb *);
Implement a CPU-affine TCP and UDP connection lookup data structure, struct inpcbgroup. pcbgroups, or "connection groups", supplement the existing inpcbinfo connection hash table, which when pcbgroups are enabled, might now be thought of more usefully as a per-protocol 4-tuple reservation table. Connections are assigned to connection groups base on a hash of their 4-tuple; wildcard sockets require special handling, and are members of all connection groups. During a connection lookup, a per-connection group lock is employed rather than the global pcbinfo lock. By aligning connection groups with input path processing, connection groups take on an effective CPU affinity, especially when aligned with RSS work placement (see a forthcoming commit for details). This eliminates cache line migration associated with global, protocol-layer data structures in steady state TCP and UDP processing (with the exception of protocol-layer statistics; further commit to follow). Elements of this approach were inspired by Willman, Rixner, and Cox's 2006 USENIX paper, "An Evaluation of Network Stack Parallelization Strategies in Modern Operating Systems". However, there are also significant differences: we maintain the inpcb lock, rather than using the connection group lock for per-connection state. Likewise, the focus of this implementation is alignment with NIC packet distribution strategies such as RSS, rather than pure software strategies. Despite that focus, software distribution is supported through the parallel netisr implementation, and works well in configurations where the number of hardware threads is greater than the number of NIC input queues, such as in the RMI XLR threaded MIPS architecture. Another important difference is the continued maintenance of existing hash tables as "reservation tables" -- these are useful both to distinguish the resource allocation aspect of protocol name management and the more common-case lookup aspect. In configurations where connection tables are aligned with hardware hashes, it is desirable to use the traditional lookup tables for loopback or encapsulated traffic rather than take the expense of hardware hashes that are hard to implement efficiently in software (such as RSS Toeplitz). Connection group support is enabled by compiling "options PCBGROUP" into your kernel configuration; for the time being, this is an experimental feature, and hence is not enabled by default. Subject to the limited MFCability of change dependencies in inpcb, and its change to the inpcbinfo init function signature, this change in principle could be merged to FreeBSD 8.x. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-06-06 12:55:02 +00:00
struct inpcbgroup *
in6_pcbgroup_bymbuf(struct inpcbinfo *, struct mbuf *);
struct inpcbgroup *
in6_pcbgroup_bytuple(struct inpcbinfo *, const struct in6_addr *,
u_short, const struct in6_addr *, u_short);
Implement a CPU-affine TCP and UDP connection lookup data structure, struct inpcbgroup. pcbgroups, or "connection groups", supplement the existing inpcbinfo connection hash table, which when pcbgroups are enabled, might now be thought of more usefully as a per-protocol 4-tuple reservation table. Connections are assigned to connection groups base on a hash of their 4-tuple; wildcard sockets require special handling, and are members of all connection groups. During a connection lookup, a per-connection group lock is employed rather than the global pcbinfo lock. By aligning connection groups with input path processing, connection groups take on an effective CPU affinity, especially when aligned with RSS work placement (see a forthcoming commit for details). This eliminates cache line migration associated with global, protocol-layer data structures in steady state TCP and UDP processing (with the exception of protocol-layer statistics; further commit to follow). Elements of this approach were inspired by Willman, Rixner, and Cox's 2006 USENIX paper, "An Evaluation of Network Stack Parallelization Strategies in Modern Operating Systems". However, there are also significant differences: we maintain the inpcb lock, rather than using the connection group lock for per-connection state. Likewise, the focus of this implementation is alignment with NIC packet distribution strategies such as RSS, rather than pure software strategies. Despite that focus, software distribution is supported through the parallel netisr implementation, and works well in configurations where the number of hardware threads is greater than the number of NIC input queues, such as in the RMI XLR threaded MIPS architecture. Another important difference is the continued maintenance of existing hash tables as "reservation tables" -- these are useful both to distinguish the resource allocation aspect of protocol name management and the more common-case lookup aspect. In configurations where connection tables are aligned with hardware hashes, it is desirable to use the traditional lookup tables for loopback or encapsulated traffic rather than take the expense of hardware hashes that are hard to implement efficiently in software (such as RSS Toeplitz). Connection group support is enabled by compiling "options PCBGROUP" into your kernel configuration; for the time being, this is an experimental feature, and hence is not enabled by default. Subject to the limited MFCability of change dependencies in inpcb, and its change to the inpcbinfo init function signature, this change in principle could be merged to FreeBSD 8.x. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-06-06 12:55:02 +00:00
void in6_pcbpurgeif0(struct inpcbinfo *, struct ifnet *);
void in6_losing(struct inpcb *);
int in6_pcbbind(struct inpcb *, struct sockaddr *, struct ucred *);
int in6_pcbconnect(struct inpcb *, struct sockaddr *, struct ucred *);
int in6_pcbconnect_mbuf(struct inpcb *, struct sockaddr *,
struct ucred *, struct mbuf *);
void in6_pcbdisconnect(struct inpcb *);
struct inpcb *
in6_pcblookup_local(struct inpcbinfo *,
struct in6_addr *, u_short, int,
struct ucred *);
struct inpcb *
in6_pcblookup(struct inpcbinfo *, struct in6_addr *,
Decompose the current single inpcbinfo lock into two locks: - The existing ipi_lock continues to protect the global inpcb list and inpcb counter. This lock is now relegated to a small number of allocation and free operations, and occasional operations that walk all connections (including, awkwardly, certain UDP multicast receive operations -- something to revisit). - A new ipi_hash_lock protects the two inpcbinfo hash tables for looking up connections and bound sockets, manipulated using new INP_HASH_*() macros. This lock, combined with inpcb locks, protects the 4-tuple address space. Unlike the current ipi_lock, ipi_hash_lock follows the individual inpcb connection locks, so may be acquired while manipulating a connection on which a lock is already held, avoiding the need to acquire the inpcbinfo lock preemptively when a binding change might later be required. As a result, however, lookup operations necessarily go through a reference acquire while holding the lookup lock, later acquiring an inpcb lock -- if required. A new function in_pcblookup() looks up connections, and accepts flags indicating how to return the inpcb. Due to lock order changes, callers no longer need acquire locks before performing a lookup: the lookup routine will acquire the ipi_hash_lock as needed. In the future, it will also be able to use alternative lookup and locking strategies transparently to callers, such as pcbgroup lookup. New lookup flags are, supplementing the existing INPLOOKUP_WILDCARD flag: INPLOOKUP_RLOCKPCB - Acquire a read lock on the returned inpcb INPLOOKUP_WLOCKPCB - Acquire a write lock on the returned inpcb Callers must pass exactly one of these flags (for the time being). Some notes: - All protocols are updated to work within the new regime; especially, TCP, UDPv4, and UDPv6. pcbinfo ipi_lock acquisitions are largely eliminated, and global hash lock hold times are dramatically reduced compared to previous locking. - The TCP syncache still relies on the pcbinfo lock, something that we may want to revisit. - Support for reverting to the FreeBSD 7.x locking strategy in TCP input is no longer available -- hash lookup locks are now held only very briefly during inpcb lookup, rather than for potentially extended periods. However, the pcbinfo ipi_lock will still be acquired if a connection state might change such that a connection is added or removed. - Raw IP sockets continue to use the pcbinfo ipi_lock for protection, due to maintaining their own hash tables. - The interface in6_pcblookup_hash_locked() is maintained, which allows callers to acquire hash locks and perform one or more lookups atomically with 4-tuple allocation: this is required only for TCPv6, as there is no in6_pcbconnect_setup(), which there should be. - UDPv6 locking remains significantly more conservative than UDPv4 locking, which relates to source address selection. This needs attention, as it likely significantly reduces parallelism in this code for multithreaded socket use (such as in BIND). - In the UDPv4 and UDPv6 multicast cases, we need to revisit locking somewhat, as they relied on ipi_lock to stablise 4-tuple matches, which is no longer sufficient. A second check once the inpcb lock is held should do the trick, keeping the general case from requiring the inpcb lock for every inpcb visited. - This work reminds us that we need to revisit locking of the v4/v6 flags, which may be accessed lock-free both before and after this change. - Right now, a single lock name is used for the pcbhash lock -- this is undesirable, and probably another argument is required to take care of this (or a char array name field in the pcbinfo?). This is not an MFC candidate for 8.x due to its impact on lookup and locking semantics. It's possible some of these issues could be worked around with compatibility wrappers, if necessary. Reviewed by: bz Sponsored by: Juniper Networks, Inc.
2011-05-30 09:43:55 +00:00
u_int, struct in6_addr *, u_int, int,
struct ifnet *);
struct inpcb *
in6_pcblookup_mbuf(struct inpcbinfo *, struct in6_addr *,
u_int, struct in6_addr *, u_int, int,
struct ifnet *ifp, struct mbuf *);
void in6_pcbnotify(struct inpcbinfo *, struct sockaddr *,
u_int, const struct sockaddr *, u_int, int, void *,
struct inpcb *(*)(struct inpcb *, int));
struct inpcb *
in6_rtchange(struct inpcb *, int);
struct sockaddr *
in6_sockaddr(in_port_t port, struct in6_addr *addr_p);
struct sockaddr *
in6_v4mapsin6_sockaddr(in_port_t port, struct in_addr *addr_p);
int in6_getpeeraddr(struct socket *so, struct sockaddr **nam);
int in6_getsockaddr(struct socket *so, struct sockaddr **nam);
int in6_mapped_sockaddr(struct socket *so, struct sockaddr **nam);
int in6_mapped_peeraddr(struct socket *so, struct sockaddr **nam);
int in6_selecthlim(struct in6pcb *, struct ifnet *);
int in6_pcbsetport(struct in6_addr *, struct inpcb *, struct ucred *);
void init_sin6(struct sockaddr_in6 *sin6, struct mbuf *m);
#endif /* _KERNEL */
#endif /* !_NETINET6_IN6_PCB_H_ */