freebsd-skq/sys/dev/ata/ata-pci.c

933 lines
25 KiB
C
Raw Normal View History

/*-
2012-01-15 13:23:18 +00:00
* Copyright (c) 1998 - 2008 Søren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
#include <sys/ata.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/malloc.h>
#include <sys/sema.h>
#include <sys/taskqueue.h>
#include <vm/uma.h>
#include <machine/stdarg.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/ata/ata-all.h>
#include <dev/ata/ata-pci.h>
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
#include <ata_if.h>
MALLOC_DEFINE(M_ATAPCI, "ata_pci", "ATA driver PCI");
/* misc defines */
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
#define IOMASK 0xfffffffc
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
/*
* generic PCI ATA device probe
*/
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
int
ata_pci_probe(device_t dev)
{
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
struct ata_pci_controller *ctlr = device_get_softc(dev);
char buffer[64];
/* is this a storage class device ? */
if (pci_get_class(dev) != PCIC_STORAGE)
return (ENXIO);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
/* is this an IDE/ATA type device ? */
if (pci_get_subclass(dev) != PCIS_STORAGE_IDE)
return (ENXIO);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
sprintf(buffer, "%s ATA controller", ata_pcivendor2str(dev));
device_set_desc_copy(dev, buffer);
ctlr->chipinit = ata_generic_chipinit;
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
/* we are a low priority handler */
return (BUS_PROBE_GENERIC);
}
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
int
ata_pci_attach(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(dev);
device_t child;
u_int32_t cmd;
int unit;
/* do chipset specific setups only needed once */
ctlr->legacy = ata_legacy(dev);
if (ctlr->legacy || pci_read_config(dev, PCIR_BAR(2), 4) & IOMASK)
ctlr->channels = 2;
else
ctlr->channels = 1;
ctlr->ichannels = -1;
ctlr->ch_attach = ata_pci_ch_attach;
ctlr->ch_detach = ata_pci_ch_detach;
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
ctlr->dev = dev;
/* if needed try to enable busmastering */
pci_enable_busmaster(dev);
cmd = pci_read_config(dev, PCIR_COMMAND, 2);
/* if busmastering mode "stuck" use it */
if ((cmd & PCIM_CMD_BUSMASTEREN) == PCIM_CMD_BUSMASTEREN) {
ctlr->r_type1 = SYS_RES_IOPORT;
ctlr->r_rid1 = ATA_BMADDR_RID;
ctlr->r_res1 = bus_alloc_resource_any(dev, ctlr->r_type1, &ctlr->r_rid1,
RF_ACTIVE);
}
if (ctlr->chipinit(dev))
return ENXIO;
/* attach all channels on this controller */
2004-04-30 18:49:03 +00:00
for (unit = 0; unit < ctlr->channels; unit++) {
if ((ctlr->ichannels & (1 << unit)) == 0)
continue;
child = device_add_child(dev, "ata",
((unit == 0 || unit == 1) && ctlr->legacy) ?
unit : devclass_find_free_unit(ata_devclass, 2));
if (child == NULL)
device_printf(dev, "failed to add ata child device\n");
else
device_set_ivars(child, (void *)(intptr_t)unit);
2004-04-30 18:49:03 +00:00
}
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
bus_generic_attach(dev);
return 0;
}
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
int
ata_pci_detach(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(dev);
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
/* detach & delete all children */
device_delete_children(dev);
if (ctlr->r_irq) {
bus_teardown_intr(dev, ctlr->r_irq, ctlr->handle);
bus_release_resource(dev, SYS_RES_IRQ, ctlr->r_irq_rid, ctlr->r_irq);
if (ctlr->r_irq_rid != ATA_IRQ_RID)
pci_release_msi(dev);
}
if (ctlr->chipdeinit != NULL)
ctlr->chipdeinit(dev);
if (ctlr->r_res2) {
#ifdef __sparc64__
bus_space_unmap(rman_get_bustag(ctlr->r_res2),
rman_get_bushandle(ctlr->r_res2), rman_get_size(ctlr->r_res2));
#endif
bus_release_resource(dev, ctlr->r_type2, ctlr->r_rid2, ctlr->r_res2);
}
if (ctlr->r_res1) {
#ifdef __sparc64__
bus_space_unmap(rman_get_bustag(ctlr->r_res1),
rman_get_bushandle(ctlr->r_res1), rman_get_size(ctlr->r_res1));
#endif
bus_release_resource(dev, ctlr->r_type1, ctlr->r_rid1, ctlr->r_res1);
}
return 0;
}
int
ata_pci_suspend(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(dev);
int error = 0;
bus_generic_suspend(dev);
if (ctlr->suspend)
error = ctlr->suspend(dev);
return error;
}
int
ata_pci_resume(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(dev);
int error = 0;
if (ctlr->resume)
error = ctlr->resume(dev);
bus_generic_resume(dev);
return error;
}
int
ata_pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
return (BUS_READ_IVAR(device_get_parent(dev), dev, which, result));
}
int
ata_pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
{
return (BUS_WRITE_IVAR(device_get_parent(dev), dev, which, value));
}
uint32_t
ata_pci_read_config(device_t dev, device_t child, int reg, int width)
{
return (pci_read_config(dev, reg, width));
}
void
ata_pci_write_config(device_t dev, device_t child, int reg,
uint32_t val, int width)
{
pci_write_config(dev, reg, val, width);
}
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
struct resource *
ata_pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
struct ata_pci_controller *controller = device_get_softc(dev);
struct resource *res = NULL;
if (device_get_devclass(child) == ata_devclass) {
int unit = ((struct ata_channel *)device_get_softc(child))->unit;
int myrid;
if (type == SYS_RES_IOPORT) {
switch (*rid) {
case ATA_IOADDR_RID:
if (controller->legacy) {
start = (unit ? ATA_SECONDARY : ATA_PRIMARY);
count = ATA_IOSIZE;
end = start + count - 1;
}
myrid = PCIR_BAR(0) + (unit << 3);
res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev,
SYS_RES_IOPORT, &myrid,
start, end, count, flags);
break;
case ATA_CTLADDR_RID:
if (controller->legacy) {
start = (unit ? ATA_SECONDARY : ATA_PRIMARY) +
ATA_CTLOFFSET;
count = ATA_CTLIOSIZE;
end = start + count - 1;
}
myrid = PCIR_BAR(1) + (unit << 3);
res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev,
SYS_RES_IOPORT, &myrid,
start, end, count, flags);
break;
}
}
if (type == SYS_RES_IRQ && *rid == ATA_IRQ_RID) {
if (controller->legacy) {
int irq = (unit == 0 ? 14 : 15);
res = BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
SYS_RES_IRQ, rid, irq, irq, 1, flags);
} else
res = controller->r_irq;
}
} else {
if (type == SYS_RES_IRQ) {
if (*rid != ATA_IRQ_RID)
return (NULL);
res = controller->r_irq;
} else {
res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev,
type, rid, start, end, count, flags);
}
}
return (res);
}
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
int
ata_pci_release_resource(device_t dev, device_t child, int type, int rid,
struct resource *r)
{
if (device_get_devclass(child) == ata_devclass) {
struct ata_pci_controller *controller = device_get_softc(dev);
int unit = ((struct ata_channel *)device_get_softc(child))->unit;
if (type == SYS_RES_IOPORT) {
switch (rid) {
case ATA_IOADDR_RID:
return BUS_RELEASE_RESOURCE(device_get_parent(dev), dev,
SYS_RES_IOPORT,
PCIR_BAR(0) + (unit << 3), r);
case ATA_CTLADDR_RID:
return BUS_RELEASE_RESOURCE(device_get_parent(dev), dev,
SYS_RES_IOPORT,
PCIR_BAR(1) + (unit << 3), r);
default:
return ENOENT;
}
}
if (type == SYS_RES_IRQ) {
if (rid != ATA_IRQ_RID)
return ENOENT;
if (controller->legacy) {
return BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
SYS_RES_IRQ, rid, r);
} else
return 0;
}
} else {
if (type == SYS_RES_IRQ) {
if (rid != ATA_IRQ_RID)
return (ENOENT);
return (0);
} else {
return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
type, rid, r));
}
2004-06-15 11:02:09 +00:00
}
return (EINVAL);
}
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
int
ata_pci_setup_intr(device_t dev, device_t child, struct resource *irq,
int flags, driver_filter_t *filter, driver_intr_t *function,
void *argument, void **cookiep)
{
struct ata_pci_controller *controller = device_get_softc(dev);
if (controller->legacy) {
return BUS_SETUP_INTR(device_get_parent(dev), child, irq,
flags, filter, function, argument, cookiep);
} else {
struct ata_pci_controller *controller = device_get_softc(dev);
int unit;
if (filter != NULL) {
printf("ata-pci.c: we cannot use a filter here\n");
return (EINVAL);
}
if (device_get_devclass(child) == ata_devclass)
unit = ((struct ata_channel *)device_get_softc(child))->unit;
else
unit = ATA_PCI_MAX_CH - 1;
controller->interrupt[unit].function = function;
controller->interrupt[unit].argument = argument;
*cookiep = controller;
return 0;
}
}
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
int
ata_pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
void *cookie)
{
struct ata_pci_controller *controller = device_get_softc(dev);
if (controller->legacy) {
return BUS_TEARDOWN_INTR(device_get_parent(dev), child, irq, cookie);
} else {
struct ata_pci_controller *controller = device_get_softc(dev);
int unit;
if (device_get_devclass(child) == ata_devclass)
unit = ((struct ata_channel *)device_get_softc(child))->unit;
else
unit = ATA_PCI_MAX_CH - 1;
controller->interrupt[unit].function = NULL;
controller->interrupt[unit].argument = NULL;
return 0;
}
}
int
ata_generic_setmode(device_t dev, int target, int mode)
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
{
return (min(mode, ATA_UDMA2));
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
}
int
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
ata_generic_chipinit(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(dev);
if (ata_setup_interrupt(dev, ata_generic_intr))
return ENXIO;
ctlr->setmode = ata_generic_setmode;
return 0;
}
int
ata_pci_ch_attach(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
struct resource *io = NULL, *ctlio = NULL;
int i, rid;
rid = ATA_IOADDR_RID;
2005-04-25 07:57:04 +00:00
if (!(io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE)))
return ENXIO;
rid = ATA_CTLADDR_RID;
2005-04-25 07:57:04 +00:00
if (!(ctlio = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,RF_ACTIVE))){
bus_release_resource(dev, SYS_RES_IOPORT, ATA_IOADDR_RID, io);
return ENXIO;
}
ata_pci_dmainit(dev);
for (i = ATA_DATA; i <= ATA_COMMAND; i ++) {
ch->r_io[i].res = io;
ch->r_io[i].offset = i;
}
ch->r_io[ATA_CONTROL].res = ctlio;
ch->r_io[ATA_CONTROL].offset = ctlr->legacy ? 0 : 2;
ch->r_io[ATA_IDX_ADDR].res = io;
ata_default_registers(dev);
if (ctlr->r_res1) {
for (i = ATA_BMCMD_PORT; i <= ATA_BMDTP_PORT; i++) {
ch->r_io[i].res = ctlr->r_res1;
ch->r_io[i].offset = (i - ATA_BMCMD_PORT) + (ch->unit*ATA_BMIOSIZE);
}
}
ata_pci_hw(dev);
return 0;
}
int
ata_pci_ch_detach(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
ata_pci_dmafini(dev);
bus_release_resource(dev, SYS_RES_IOPORT, ATA_CTLADDR_RID,
ch->r_io[ATA_CONTROL].res);
bus_release_resource(dev, SYS_RES_IOPORT, ATA_IOADDR_RID,
ch->r_io[ATA_IDX_ADDR].res);
return (0);
}
int
ata_pci_status(device_t dev)
{
struct ata_pci_controller *controller =
device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
if ((dumping || !controller->legacy) &&
((ch->flags & ATA_ALWAYS_DMASTAT) ||
(ch->dma.flags & ATA_DMA_ACTIVE))) {
int bmstat = ATA_IDX_INB(ch, ATA_BMSTAT_PORT) & ATA_BMSTAT_MASK;
if ((bmstat & ATA_BMSTAT_INTERRUPT) == 0)
return 0;
ATA_IDX_OUTB(ch, ATA_BMSTAT_PORT, bmstat & ~ATA_BMSTAT_ERROR);
DELAY(1);
}
if (ATA_IDX_INB(ch, ATA_ALTSTAT) & ATA_S_BUSY) {
2006-01-18 13:10:17 +00:00
DELAY(100);
if (ATA_IDX_INB(ch, ATA_ALTSTAT) & ATA_S_BUSY)
return 0;
}
return 1;
}
void
ata_pci_hw(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
ata_generic_hw(dev);
ch->hw.status = ata_pci_status;
}
static int
ata_pci_dmastart(struct ata_request *request)
{
struct ata_channel *ch = device_get_softc(request->parent);
ATA_DEBUG_RQ(request, "dmastart");
ATA_IDX_OUTB(ch, ATA_BMSTAT_PORT, (ATA_IDX_INB(ch, ATA_BMSTAT_PORT) |
(ATA_BMSTAT_INTERRUPT | ATA_BMSTAT_ERROR)));
ATA_IDX_OUTL(ch, ATA_BMDTP_PORT, request->dma->sg_bus);
ch->dma.flags |= ATA_DMA_ACTIVE;
ATA_IDX_OUTB(ch, ATA_BMCMD_PORT,
2004-05-10 20:23:25 +00:00
(ATA_IDX_INB(ch, ATA_BMCMD_PORT) & ~ATA_BMCMD_WRITE_READ) |
((request->flags & ATA_R_READ) ? ATA_BMCMD_WRITE_READ : 0)|
ATA_BMCMD_START_STOP);
return 0;
}
static int
ata_pci_dmastop(struct ata_request *request)
{
struct ata_channel *ch = device_get_softc(request->parent);
int error;
ATA_DEBUG_RQ(request, "dmastop");
ATA_IDX_OUTB(ch, ATA_BMCMD_PORT,
ATA_IDX_INB(ch, ATA_BMCMD_PORT) & ~ATA_BMCMD_START_STOP);
ch->dma.flags &= ~ATA_DMA_ACTIVE;
error = ATA_IDX_INB(ch, ATA_BMSTAT_PORT) & ATA_BMSTAT_MASK;
ATA_IDX_OUTB(ch, ATA_BMSTAT_PORT, ATA_BMSTAT_INTERRUPT | ATA_BMSTAT_ERROR);
return error;
}
static void
ata_pci_dmareset(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
struct ata_request *request;
ATA_IDX_OUTB(ch, ATA_BMCMD_PORT,
ATA_IDX_INB(ch, ATA_BMCMD_PORT) & ~ATA_BMCMD_START_STOP);
ch->dma.flags &= ~ATA_DMA_ACTIVE;
ATA_IDX_OUTB(ch, ATA_BMSTAT_PORT, ATA_BMSTAT_INTERRUPT | ATA_BMSTAT_ERROR);
if ((request = ch->running)) {
device_printf(dev, "DMA reset calling unload\n");
ch->dma.unload(request);
}
}
void
ata_pci_dmainit(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
ata_dmainit(dev);
ch->dma.start = ata_pci_dmastart;
ch->dma.stop = ata_pci_dmastop;
ch->dma.reset = ata_pci_dmareset;
}
void
ata_pci_dmafini(device_t dev)
{
ata_dmafini(dev);
}
int
ata_pci_print_child(device_t dev, device_t child)
{
int retval;
retval = bus_print_child_header(dev, child);
retval += printf(" at channel %d",
(int)(intptr_t)device_get_ivars(child));
retval += bus_print_child_footer(dev, child);
return (retval);
}
int
ata_pci_child_location_str(device_t dev, device_t child, char *buf,
size_t buflen)
{
snprintf(buf, buflen, "channel=%d",
(int)(intptr_t)device_get_ivars(child));
return (0);
}
static bus_dma_tag_t
ata_pci_get_dma_tag(device_t bus, device_t child)
{
return (bus_get_dma_tag(bus));
}
static device_method_t ata_pci_methods[] = {
/* device interface */
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
DEVMETHOD(device_probe, ata_pci_probe),
DEVMETHOD(device_attach, ata_pci_attach),
DEVMETHOD(device_detach, ata_pci_detach),
DEVMETHOD(device_suspend, ata_pci_suspend),
DEVMETHOD(device_resume, ata_pci_resume),
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
DEVMETHOD(device_shutdown, bus_generic_shutdown),
/* bus methods */
DEVMETHOD(bus_read_ivar, ata_pci_read_ivar),
DEVMETHOD(bus_write_ivar, ata_pci_write_ivar),
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
DEVMETHOD(bus_alloc_resource, ata_pci_alloc_resource),
DEVMETHOD(bus_release_resource, ata_pci_release_resource),
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
DEVMETHOD(bus_setup_intr, ata_pci_setup_intr),
DEVMETHOD(bus_teardown_intr, ata_pci_teardown_intr),
DEVMETHOD(pci_read_config, ata_pci_read_config),
DEVMETHOD(pci_write_config, ata_pci_write_config),
DEVMETHOD(bus_print_child, ata_pci_print_child),
DEVMETHOD(bus_child_location_str, ata_pci_child_location_str),
DEVMETHOD(bus_get_dma_tag, ata_pci_get_dma_tag),
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
DEVMETHOD_END
};
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
devclass_t ata_pci_devclass;
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
static driver_t ata_pci_driver = {
"atapci",
ata_pci_methods,
sizeof(struct ata_pci_controller),
};
DRIVER_MODULE(atapci, pci, ata_pci_driver, ata_pci_devclass, NULL, NULL);
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
MODULE_VERSION(atapci, 1);
MODULE_DEPEND(atapci, ata, 1, 1, 1);
static int
ata_pcichannel_probe(device_t dev)
{
if ((intptr_t)device_get_ivars(dev) < 0)
return (ENXIO);
device_set_desc(dev, "ATA channel");
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
return ata_probe(dev);
}
static int
ata_pcichannel_attach(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
int error;
if (ch->attached)
return (0);
ch->attached = 1;
ch->dev = dev;
ch->unit = (intptr_t)device_get_ivars(dev);
resource_int_value(device_get_name(dev),
device_get_unit(dev), "pm_level", &ch->pm_level);
if ((error = ctlr->ch_attach(dev)))
2004-06-15 11:02:09 +00:00
return error;
return ata_attach(dev);
}
static int
ata_pcichannel_detach(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
int error;
if (!ch->attached)
return (0);
ch->attached = 0;
if ((error = ata_detach(dev)))
return error;
if (ctlr->ch_detach)
return (ctlr->ch_detach(dev));
return (0);
}
static int
ata_pcichannel_suspend(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
int error;
if (!ch->attached)
return (0);
if ((error = ata_suspend(dev)))
return (error);
if (ctlr->ch_suspend != NULL && (error = ctlr->ch_suspend(dev)))
return (error);
return (0);
}
static int
ata_pcichannel_resume(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
int error;
if (!ch->attached)
return (0);
if (ctlr->ch_resume != NULL && (error = ctlr->ch_resume(dev)))
return (error);
return ata_resume(dev);
}
static void
ata_pcichannel_reset(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
/* if DMA engine present reset it */
if (ch->dma.reset)
ch->dma.reset(dev);
/* reset the controller HW */
if (ctlr->reset)
ctlr->reset(dev);
else
ata_generic_reset(dev);
}
static int
ata_pcichannel_setmode(device_t dev, int target, int mode)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
if (ctlr->setmode)
return (ctlr->setmode(dev, target, mode));
else
return (ata_generic_setmode(dev, target, mode));
}
static int
ata_pcichannel_getrev(device_t dev, int target)
{
struct ata_pci_controller *ctlr = device_get_softc(device_get_parent(dev));
struct ata_channel *ch = device_get_softc(dev);
if (ch->flags & ATA_SATA) {
if (ctlr->getrev)
return (ctlr->getrev(dev, target));
else
return (0xff);
} else
return (0);
}
static device_method_t ata_pcichannel_methods[] = {
/* device interface */
DEVMETHOD(device_probe, ata_pcichannel_probe),
DEVMETHOD(device_attach, ata_pcichannel_attach),
DEVMETHOD(device_detach, ata_pcichannel_detach),
This is the much rumoured ATA mkIII update that I've been working on. o ATA is now fully newbus'd and split into modules. This means that on a modern system you just load "atapci and ata" to get the base support, and then one or more of the device subdrivers "atadisk atapicd atapifd atapist ataraid". All can be loaded/unloaded anytime, but for obvious reasons you dont want to unload atadisk when you have mounted filesystems. o The device identify part of the probe has been rewritten to fix the problems with odd devices the old had, and to try to remove so of the long delays some HW could provoke. Also probing is done without the need for interrupts, making earlier probing possible. o SATA devices can be hot inserted/removed and devices will be created/ removed in /dev accordingly. NOTE: only supported on controllers that has this feature: Promise and Silicon Image for now. On other controllers the usual atacontrol detach/attach dance is still needed. o Support for "atomic" composite ATA requests used for RAID. o ATA RAID support has been rewritten and and now supports these metadata formats: "Adaptec HostRAID" "Highpoint V2 RocketRAID" "Highpoint V3 RocketRAID" "Intel MatrixRAID" "Integrated Technology Express" "LSILogic V2 MegaRAID" "LSILogic V3 MegaRAID" "Promise FastTrak" "Silicon Image Medley" "FreeBSD PseudoRAID" o Update the ioctl API to match new RAID levels etc. o Update atacontrol to know about the new RAID levels etc NOTE: you need to recompile atacontrol with the new sys/ata.h, make world will take care of that. NOTE2: that rebuild is done differently from the old system as the rebuild is now done piggybacked on read requests to the array, so atacontrol simply starts a background "dd" to rebuild the array. o The reinit code has been worked over to be much more robust. o The timeout code has been overhauled for races. o Support of new chipsets. o Lots of fixes for bugs found while doing the modulerization and reviewing the old code. Missing or changed features from current ATA: o atapi-cd no longer has support for ATAPI changers. Todays its much cheaper and alot faster to copy those CD images to disk and serve them from there. Besides they dont seem to be made anymore, maybe for that exact reason. o ATA RAID can only read metadata from all the above metadata formats, not write all of them (Promise and Highpoint V2 so far). This means that arrays can be picked up from the BIOS, but they cannot be created from FreeBSD. There is more to it than just the missing write metadata support, those formats are not unique to a given controller like Promise and Highpoint formats, instead they exist for several types, and even worse, some controllers can have different formats and its impossible to tell which one. The outcome is that we cannot reliably create the metadata of those formats and be sure the controller BIOS will understand it. However write support is needed to update/fail/rebuild the arrays properly so it sits fairly high on the TODO list. o So far atapicam is not supported with these changes. When/if this will change is up to the maintainer of atapi-cam so go there for questions. HW donated by: Webveveriet AS HW donated by: Frode Nordahl HW donated by: Yahoo! HW donated by: Sentex Patience by: Vife and my boys (and even the cats)
2005-03-30 12:03:40 +00:00
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, ata_pcichannel_suspend),
DEVMETHOD(device_resume, ata_pcichannel_resume),
/* ATA methods */
DEVMETHOD(ata_setmode, ata_pcichannel_setmode),
DEVMETHOD(ata_getrev, ata_pcichannel_getrev),
DEVMETHOD(ata_reset, ata_pcichannel_reset),
DEVMETHOD_END
};
driver_t ata_pcichannel_driver = {
"ata",
ata_pcichannel_methods,
sizeof(struct ata_channel),
};
DRIVER_MODULE(ata, atapci, ata_pcichannel_driver, ata_devclass, NULL, NULL);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
/*
* misc support fucntions
*/
int
ata_legacy(device_t dev)
{
return (((pci_read_config(dev, PCIR_SUBCLASS, 1) == PCIS_STORAGE_IDE) &&
(pci_read_config(dev, PCIR_PROGIF, 1)&PCIP_STORAGE_IDE_MASTERDEV)&&
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
((pci_read_config(dev, PCIR_PROGIF, 1) &
(PCIP_STORAGE_IDE_MODEPRIM | PCIP_STORAGE_IDE_MODESEC)) !=
(PCIP_STORAGE_IDE_MODEPRIM | PCIP_STORAGE_IDE_MODESEC))) ||
(!pci_read_config(dev, PCIR_BAR(0), 4) &&
!pci_read_config(dev, PCIR_BAR(1), 4) &&
!pci_read_config(dev, PCIR_BAR(2), 4) &&
!pci_read_config(dev, PCIR_BAR(3), 4) &&
!pci_read_config(dev, PCIR_BAR(5), 4)));
}
void
ata_generic_intr(void *data)
{
struct ata_pci_controller *ctlr = data;
struct ata_channel *ch;
int unit;
for (unit = 0; unit < ATA_PCI_MAX_CH; unit++) {
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
if ((ch = ctlr->interrupt[unit].argument))
ctlr->interrupt[unit].function(ch);
}
}
int
ata_setup_interrupt(device_t dev, void *intr_func)
{
struct ata_pci_controller *ctlr = device_get_softc(dev);
int i, msi = 0;
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
if (!ctlr->legacy) {
if (resource_int_value(device_get_name(dev),
device_get_unit(dev), "msi", &i) == 0 && i != 0)
msi = 1;
if (msi && pci_msi_count(dev) > 0 && pci_alloc_msi(dev, &msi) == 0) {
ctlr->r_irq_rid = 0x1;
} else {
msi = 0;
ctlr->r_irq_rid = ATA_IRQ_RID;
}
if (!(ctlr->r_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&ctlr->r_irq_rid, RF_SHAREABLE | RF_ACTIVE))) {
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
device_printf(dev, "unable to map interrupt\n");
if (msi)
pci_release_msi(dev);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
return ENXIO;
}
if ((bus_setup_intr(dev, ctlr->r_irq, ATA_INTR_FLAGS, NULL,
intr_func, ctlr, &ctlr->handle))) {
device_printf(dev, "unable to setup interrupt\n");
bus_release_resource(dev,
SYS_RES_IRQ, ctlr->r_irq_rid, ctlr->r_irq);
if (msi)
pci_release_msi(dev);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
return ENXIO;
}
}
return 0;
}
void
ata_set_desc(device_t dev)
{
struct ata_pci_controller *ctlr = device_get_softc(dev);
char buffer[128];
sprintf(buffer, "%s %s %s controller",
ata_pcivendor2str(dev), ctlr->chip->text,
ata_mode2str(ctlr->chip->max_dma));
device_set_desc_copy(dev, buffer);
}
const struct ata_chip_id *
ata_match_chip(device_t dev, const struct ata_chip_id *index)
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
{
uint32_t devid;
uint8_t revid;
devid = pci_get_devid(dev);
revid = pci_get_revid(dev);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
while (index->chipid != 0) {
if (devid == index->chipid && revid >= index->chiprev)
return (index);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
index++;
}
return (NULL);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
}
const struct ata_chip_id *
ata_find_chip(device_t dev, const struct ata_chip_id *index, int slot)
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
{
const struct ata_chip_id *idx;
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
device_t *children;
int nchildren, i;
uint8_t s;
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
if (device_get_children(device_get_parent(dev), &children, &nchildren))
return (NULL);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
for (i = 0; i < nchildren; i++) {
s = pci_get_slot(children[i]);
if ((slot >= 0 && s == slot) || (slot < 0 && s <= -slot)) {
idx = ata_match_chip(children[i], index);
if (idx != NULL) {
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
free(children, M_TEMP);
return (idx);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
}
}
}
free(children, M_TEMP);
return (NULL);
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
}
const char *
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
ata_pcivendor2str(device_t dev)
{
switch (pci_get_vendor(dev)) {
case ATA_ACARD_ID: return "Acard";
case ATA_ACER_LABS_ID: return "AcerLabs";
case ATA_AMD_ID: return "AMD";
case ATA_ADAPTEC_ID: return "Adaptec";
case ATA_ATI_ID: return "ATI";
case ATA_CYRIX_ID: return "Cyrix";
case ATA_CYPRESS_ID: return "Cypress";
case ATA_HIGHPOINT_ID: return "HighPoint";
case ATA_INTEL_ID: return "Intel";
case ATA_ITE_ID: return "ITE";
case ATA_JMICRON_ID: return "JMicron";
case ATA_MARVELL_ID: return "Marvell";
case ATA_MARVELL2_ID: return "Marvell";
This is the roumored ATA modulerisation works, and it needs a little explanation. If you just config KERNEL as usual there should be no apparent changes, you'll get all chipset support code compiled in. However there is now a way to only compile in code for chipsets needed on a pr vendor basis. ATA now has the following "device" entries: atacore: ATA core functionality, always needed for any ATA setup atacard: CARDBUS support atacbus: PC98 cbus support ataisa: ISA bus support atapci: PCI bus support only generic chipset support. ataahci: AHCI support, also pulled in by some vendor modules. ataacard, ataacerlabs, ataadaptec, ataamd, ataati, atacenatek, atacypress, atacyrix, atahighpoint, ataintel, ataite, atajmicron, atamarvell, atamicron, atanational, atanetcell, atanvidia, atapromise, ataserverworks, atasiliconimage, atasis, atavia; Vendor support, ie atavia for VIA chipsets atadisk: ATA disk driver ataraid: ATA softraid driver atapicd: ATAPI cd/dvd driver atapifd: ATAPI floppy/flashdisk driver atapist: ATAPI tape driver atausb: ATA<>USB bridge atapicam: ATA<>CAM bridge This makes it possible to config a kernel with just VIA chipset support by having the following ATA lines in the kernel config file: device atacore device atapci device atavia And then you need the atadisk, atapicd etc lines in there just as usual. If you use ATA as modules loaded at boot there is few changes except the rename of the "ata" module to "atacore", things looks just as usual. However under atapci you now have a whole bunch of vendor specific drivers, that you can kldload individually depending on you needs. Drivers have the same names as used in the kernel config explained above.
2008-10-09 12:56:57 +00:00
case ATA_NATIONAL_ID: return "National";
case ATA_NETCELL_ID: return "Netcell";
case ATA_NVIDIA_ID: return "nVidia";
case ATA_PROMISE_ID: return "Promise";
case ATA_SERVERWORKS_ID: return "ServerWorks";
case ATA_SILICON_IMAGE_ID: return "SiI";
case ATA_SIS_ID: return "SiS";
case ATA_VIA_ID: return "VIA";
case ATA_CENATEK_ID: return "Cenatek";
case ATA_MICRON_ID: return "Micron";
default: return "Generic";
}
}
int
ata_mode2idx(int mode)
{
if ((mode & ATA_DMA_MASK) == ATA_UDMA0)
return (mode & ATA_MODE_MASK) + 8;
if ((mode & ATA_DMA_MASK) == ATA_WDMA0)
return (mode & ATA_MODE_MASK) + 5;
return (mode & ATA_MODE_MASK) - ATA_PIO0;
}