freebsd-skq/sys/dev/msk/if_msk.c

4063 lines
118 KiB
C
Raw Normal View History

Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
/******************************************************************************
*
* Name : sky2.c
* Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
* Version: $Revision: 1.23 $
* Date : $Date: 2005/12/22 09:04:11 $
* Purpose: Main driver source file
*
*****************************************************************************/
/******************************************************************************
*
* LICENSE:
* Copyright (C) Marvell International Ltd. and/or its affiliates
*
* The computer program files contained in this folder ("Files")
* are provided to you under the BSD-type license terms provided
* below, and any use of such Files and any derivative works
* thereof created by you shall be governed by the following terms
* and conditions:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* - Neither the name of Marvell nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* /LICENSE
*
*****************************************************************************/
/*-
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Device driver for the Marvell Yukon II Ethernet controller.
* Due to lack of documentation, this driver is based on the code from
* sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/brgphyreg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/msk/if_mskreg.h>
MODULE_DEPEND(msk, pci, 1, 1, 1);
MODULE_DEPEND(msk, ether, 1, 1, 1);
MODULE_DEPEND(msk, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/* Tunables. */
static int msi_disable = 0;
TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
#define MSK_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
/*
* Devices supported by this driver.
*/
static struct msk_product {
uint16_t msk_vendorid;
uint16_t msk_deviceid;
const char *msk_name;
} msk_products[] = {
{ VENDORID_SK, DEVICEID_SK_YUKON2,
"SK-9Sxx Gigabit Ethernet" },
{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
"SK-9Exx Gigabit Ethernet"},
{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
"Marvell Yukon 88E8021CU Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
"Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
"Marvell Yukon 88E8022CU Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
"Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
"Marvell Yukon 88E8061CU Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
"Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
"Marvell Yukon 88E8062CU Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
"Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
"Marvell Yukon 88E8035 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
"Marvell Yukon 88E8036 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
"Marvell Yukon 88E8038 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
"Marvell Yukon 88E8050 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
"Marvell Yukon 88E8052 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
"Marvell Yukon 88E8053 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
"Marvell Yukon 88E8055 Gigabit Ethernet" },
{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
"Marvell Yukon 88E8056 Gigabit Ethernet" },
{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
"D-Link 550SX Gigabit Ethernet" },
{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
"D-Link 560T Gigabit Ethernet" }
};
static const char *model_name[] = {
"Yukon XL",
"Yukon EC Ultra",
"Yukon Unknown",
"Yukon EC",
"Yukon FE"
};
static int mskc_probe(device_t);
static int mskc_attach(device_t);
static int mskc_detach(device_t);
static void mskc_shutdown(device_t);
static int mskc_setup_rambuffer(struct msk_softc *);
static int mskc_suspend(device_t);
static int mskc_resume(device_t);
static void mskc_reset(struct msk_softc *);
static int msk_probe(device_t);
static int msk_attach(device_t);
static int msk_detach(device_t);
static void msk_tick(void *);
static void msk_intr(void *);
static void msk_int_task(void *, int);
static void msk_intr_phy(struct msk_if_softc *);
static void msk_intr_gmac(struct msk_if_softc *);
static __inline void msk_rxput(struct msk_if_softc *);
static int msk_handle_events(struct msk_softc *);
static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
static void msk_intr_hwerr(struct msk_softc *);
static void msk_rxeof(struct msk_if_softc *, uint32_t, int);
static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
static void msk_txeof(struct msk_if_softc *, int);
static struct mbuf *msk_defrag(struct mbuf *, int, int);
static int msk_encap(struct msk_if_softc *, struct mbuf **);
static void msk_tx_task(void *, int);
static void msk_start(struct ifnet *);
static int msk_ioctl(struct ifnet *, u_long, caddr_t);
static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
static void msk_set_rambuffer(struct msk_if_softc *);
static void msk_init(void *);
static void msk_init_locked(struct msk_if_softc *);
static void msk_stop(struct msk_if_softc *);
static void msk_watchdog(struct msk_if_softc *);
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
static int msk_mediachange(struct ifnet *);
static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
static void msk_phy_power(struct msk_softc *, int);
static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int msk_status_dma_alloc(struct msk_softc *);
static void msk_status_dma_free(struct msk_softc *);
static int msk_txrx_dma_alloc(struct msk_if_softc *);
static void msk_txrx_dma_free(struct msk_if_softc *);
static void *msk_jalloc(struct msk_if_softc *);
static void msk_jfree(void *, void *);
static int msk_init_rx_ring(struct msk_if_softc *);
static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
static void msk_init_tx_ring(struct msk_if_softc *);
static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
static int msk_newbuf(struct msk_if_softc *, int);
static int msk_jumbo_newbuf(struct msk_if_softc *, int);
static int msk_phy_readreg(struct msk_if_softc *, int, int);
static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
static int msk_miibus_readreg(device_t, int, int);
static int msk_miibus_writereg(device_t, int, int, int);
static void msk_miibus_statchg(device_t);
static void msk_link_task(void *, int);
static void msk_setmulti(struct msk_if_softc *);
static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
static void msk_setpromisc(struct msk_if_softc *);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
static device_method_t mskc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mskc_probe),
DEVMETHOD(device_attach, mskc_attach),
DEVMETHOD(device_detach, mskc_detach),
DEVMETHOD(device_suspend, mskc_suspend),
DEVMETHOD(device_resume, mskc_resume),
DEVMETHOD(device_shutdown, mskc_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
{ NULL, NULL }
};
static driver_t mskc_driver = {
"mskc",
mskc_methods,
sizeof(struct msk_softc)
};
static devclass_t mskc_devclass;
static device_method_t msk_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, msk_probe),
DEVMETHOD(device_attach, msk_attach),
DEVMETHOD(device_detach, msk_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, msk_miibus_readreg),
DEVMETHOD(miibus_writereg, msk_miibus_writereg),
DEVMETHOD(miibus_statchg, msk_miibus_statchg),
{ NULL, NULL }
};
static driver_t msk_driver = {
"msk",
msk_methods,
sizeof(struct msk_if_softc)
};
static devclass_t msk_devclass;
DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
static struct resource_spec msk_res_spec_io[] = {
{ SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec msk_res_spec_mem[] = {
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec msk_irq_spec_legacy[] = {
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
static struct resource_spec msk_irq_spec_msi[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ SYS_RES_IRQ, 2, RF_ACTIVE },
{ -1, 0, 0 }
};
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
static int
msk_miibus_readreg(device_t dev, int phy, int reg)
{
struct msk_if_softc *sc_if;
sc_if = device_get_softc(dev);
return (msk_phy_readreg(sc_if, phy, reg));
}
static int
msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
{
struct msk_softc *sc;
int i, val;
sc = sc_if->msk_softc;
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
for (i = 0; i < MSK_TIMEOUT; i++) {
DELAY(1);
val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
if ((val & GM_SMI_CT_RD_VAL) != 0) {
val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
break;
}
}
if (i == MSK_TIMEOUT) {
if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
val = 0;
}
return (val);
}
static int
msk_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct msk_if_softc *sc_if;
sc_if = device_get_softc(dev);
return (msk_phy_writereg(sc_if, phy, reg, val));
}
static int
msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
{
struct msk_softc *sc;
int i;
sc = sc_if->msk_softc;
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
for (i = 0; i < MSK_TIMEOUT; i++) {
DELAY(1);
if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
GM_SMI_CT_BUSY) == 0)
break;
}
if (i == MSK_TIMEOUT)
if_printf(sc_if->msk_ifp, "phy write timeout\n");
return (0);
}
static void
msk_miibus_statchg(device_t dev)
{
struct msk_if_softc *sc_if;
sc_if = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task);
}
static void
msk_link_task(void *arg, int pending)
{
struct msk_softc *sc;
struct msk_if_softc *sc_if;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t gmac;
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
sc_if = (struct msk_if_softc *)arg;
sc = sc_if->msk_softc;
MSK_IF_LOCK(sc_if);
mii = device_get_softc(sc_if->msk_miibus);
ifp = sc_if->msk_ifp;
if (mii == NULL || ifp == NULL) {
MSK_IF_UNLOCK(sc_if);
return;
}
if (mii->mii_media_status & IFM_ACTIVE) {
if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
sc_if->msk_link = 1;
} else
sc_if->msk_link = 0;
if (sc_if->msk_link != 0) {
/* Enable Tx FIFO Underrun. */
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
/*
* Because mii(4) notify msk(4) that it detected link status
* change, there is no need to enable automatic
* speed/flow-control/duplex updates.
*/
gmac = GM_GPCR_AU_ALL_DIS;
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_SX:
case IFM_1000_T:
gmac |= GM_GPCR_SPEED_1000;
break;
case IFM_100_TX:
gmac |= GM_GPCR_SPEED_100;
break;
case IFM_10_T:
break;
}
if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
gmac |= GM_GPCR_DUP_FULL;
/* Disable Rx flow control. */
if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
gmac |= GM_GPCR_FC_RX_DIS;
/* Disable Tx flow control. */
if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
gmac |= GM_GPCR_FC_TX_DIS;
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
/* Read again to ensure writing. */
GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
gmac = GMC_PAUSE_ON;
if (((mii->mii_media_active & IFM_GMASK) &
(IFM_FLAG0 | IFM_FLAG1)) == 0)
gmac = GMC_PAUSE_OFF;
/* Diable pause for 10/100 Mbps in half-duplex mode. */
if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
(IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
gmac = GMC_PAUSE_OFF;
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
/* Enable PHY interrupt for FIFO underrun/overflow. */
if (sc->msk_marvell_phy)
msk_phy_writereg(sc_if, PHY_ADDR_MARV,
PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
} else {
/*
* Link state changed to down.
* Disable PHY interrupts.
*/
if (sc->msk_marvell_phy)
msk_phy_writereg(sc_if, PHY_ADDR_MARV,
PHY_MARV_INT_MASK, 0);
/* Disable Rx/Tx MAC. */
gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
/* Read again to ensure writing. */
GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
}
MSK_IF_UNLOCK(sc_if);
}
static void
msk_setmulti(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t mchash[2];
uint32_t crc;
uint16_t mode;
sc = sc_if->msk_softc;
MSK_IF_LOCK_ASSERT(sc_if);
ifp = sc_if->msk_ifp;
bzero(mchash, sizeof(mchash));
mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
mode |= GM_RXCR_UCF_ENA;
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
if ((ifp->if_flags & IFF_PROMISC) != 0)
mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
mchash[0] = 0xffff;
mchash[1] = 0xffff;
}
} else {
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
/* Just want the 6 least significant bits. */
crc &= 0x3f;
/* Set the corresponding bit in the hash table. */
mchash[crc >> 5] |= 1 << (crc & 0x1f);
}
IF_ADDR_UNLOCK(ifp);
mode |= GM_RXCR_MCF_ENA;
}
GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
mchash[0] & 0xffff);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
(mchash[0] >> 16) & 0xffff);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
mchash[1] & 0xffff);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
(mchash[1] >> 16) & 0xffff);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
}
static void
msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
{
struct msk_softc *sc;
sc = sc_if->msk_softc;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
RX_VLAN_STRIP_ON);
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
TX_VLAN_TAG_ON);
} else {
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
RX_VLAN_STRIP_OFF);
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
TX_VLAN_TAG_OFF);
}
}
static void
msk_setpromisc(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
struct ifnet *ifp;
uint16_t mode;
MSK_IF_LOCK_ASSERT(sc_if);
sc = sc_if->msk_softc;
ifp = sc_if->msk_ifp;
mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
if (ifp->if_flags & IFF_PROMISC)
mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
else
mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
}
static int
msk_init_rx_ring(struct msk_if_softc *sc_if)
{
struct msk_ring_data *rd;
struct msk_rxdesc *rxd;
int i, prod;
MSK_IF_LOCK_ASSERT(sc_if);
sc_if->msk_cdata.msk_rx_cons = 0;
sc_if->msk_cdata.msk_rx_prod = 0;
sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
rd = &sc_if->msk_rdata;
bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
prod = sc_if->msk_cdata.msk_rx_prod;
for (i = 0; i < MSK_RX_RING_CNT; i++) {
rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
rxd->rx_m = NULL;
rxd->rx_le = &rd->msk_rx_ring[prod];
if (msk_newbuf(sc_if, prod) != 0)
return (ENOBUFS);
MSK_INC(prod, MSK_RX_RING_CNT);
}
bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
sc_if->msk_cdata.msk_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Update prefetch unit. */
sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
CSR_WRITE_2(sc_if->msk_softc,
Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
sc_if->msk_cdata.msk_rx_prod);
return (0);
}
static int
msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
{
struct msk_ring_data *rd;
struct msk_rxdesc *rxd;
int i, prod;
MSK_IF_LOCK_ASSERT(sc_if);
sc_if->msk_cdata.msk_rx_cons = 0;
sc_if->msk_cdata.msk_rx_prod = 0;
sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
rd = &sc_if->msk_rdata;
bzero(rd->msk_jumbo_rx_ring,
sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
prod = sc_if->msk_cdata.msk_rx_prod;
for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
rxd->rx_m = NULL;
rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
if (msk_jumbo_newbuf(sc_if, prod) != 0)
return (ENOBUFS);
MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
}
bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
sc_if->msk_cdata.msk_jumbo_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
CSR_WRITE_2(sc_if->msk_softc,
Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
sc_if->msk_cdata.msk_rx_prod);
return (0);
}
static void
msk_init_tx_ring(struct msk_if_softc *sc_if)
{
struct msk_ring_data *rd;
struct msk_txdesc *txd;
int i;
sc_if->msk_cdata.msk_tso_mtu = 0;
sc_if->msk_cdata.msk_tx_prod = 0;
sc_if->msk_cdata.msk_tx_cons = 0;
sc_if->msk_cdata.msk_tx_cnt = 0;
rd = &sc_if->msk_rdata;
bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
for (i = 0; i < MSK_TX_RING_CNT; i++) {
txd = &sc_if->msk_cdata.msk_txdesc[i];
txd->tx_m = NULL;
txd->tx_le = &rd->msk_tx_ring[i];
}
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
sc_if->msk_cdata.msk_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static __inline void
msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
{
struct msk_rx_desc *rx_le;
struct msk_rxdesc *rxd;
struct mbuf *m;
rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
m = rxd->rx_m;
rx_le = rxd->rx_le;
rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
}
static __inline void
msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx)
{
struct msk_rx_desc *rx_le;
struct msk_rxdesc *rxd;
struct mbuf *m;
rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
m = rxd->rx_m;
rx_le = rxd->rx_le;
rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
}
static int
msk_newbuf(struct msk_if_softc *sc_if, int idx)
{
struct msk_rx_desc *rx_le;
struct msk_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, ETHER_ALIGN);
if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
BUS_DMA_NOWAIT) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
sc_if->msk_cdata.msk_rx_sparemap = map;
bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
rx_le = rxd->rx_le;
rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
rx_le->msk_control =
htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
return (0);
}
static int
msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
{
struct msk_rx_desc *rx_le;
struct msk_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
void *buf;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
buf = msk_jalloc(sc_if);
if (buf == NULL) {
m_freem(m);
return (ENOBUFS);
}
/* Attach the buffer to the mbuf. */
MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0,
EXT_NET_DRV);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
m->m_pkthdr.len = m->m_len = MSK_JLEN;
m_adj(m, ETHER_ALIGN);
if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
BUS_DMA_NOWAIT) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
rxd->rx_m = m;
rx_le = rxd->rx_le;
rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
rx_le->msk_control =
htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
return (0);
}
/*
* Set media options.
*/
static int
msk_mediachange(struct ifnet *ifp)
{
struct msk_if_softc *sc_if;
struct mii_data *mii;
sc_if = ifp->if_softc;
MSK_IF_LOCK(sc_if);
mii = device_get_softc(sc_if->msk_miibus);
mii_mediachg(mii);
MSK_IF_UNLOCK(sc_if);
return (0);
}
/*
* Report current media status.
*/
static void
msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct msk_if_softc *sc_if;
struct mii_data *mii;
sc_if = ifp->if_softc;
MSK_IF_LOCK(sc_if);
mii = device_get_softc(sc_if->msk_miibus);
mii_pollstat(mii);
MSK_IF_UNLOCK(sc_if);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
static int
msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct msk_if_softc *sc_if;
struct ifreq *ifr;
struct mii_data *mii;
int error, mask;
sc_if = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch(command) {
case SIOCSIFMTU:
if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
error = EINVAL;
break;
}
if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
error = EINVAL;
break;
}
MSK_IF_LOCK(sc_if);
ifp->if_mtu = ifr->ifr_mtu;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
msk_init_locked(sc_if);
MSK_IF_UNLOCK(sc_if);
break;
case SIOCSIFFLAGS:
MSK_IF_LOCK(sc_if);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc_if->msk_if_flags)
& IFF_PROMISC) != 0) {
msk_setpromisc(sc_if);
msk_setmulti(sc_if);
}
} else {
if (sc_if->msk_detach == 0)
msk_init_locked(sc_if);
}
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
msk_stop(sc_if);
}
sc_if->msk_if_flags = ifp->if_flags;
MSK_IF_UNLOCK(sc_if);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
MSK_IF_LOCK(sc_if);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
msk_setmulti(sc_if);
MSK_IF_UNLOCK(sc_if);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc_if->msk_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
MSK_IF_LOCK(sc_if);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
(IFCAP_TXCSUM & ifp->if_capabilities) != 0)
ifp->if_hwassist |= MSK_CSUM_FEATURES;
else
ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
}
if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
msk_setvlan(sc_if, ifp);
}
if ((mask & IFCAP_TSO4) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
(IFCAP_TSO4 & ifp->if_capabilities) != 0)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
}
VLAN_CAPABILITIES(ifp);
MSK_IF_UNLOCK(sc_if);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static int
mskc_probe(device_t dev)
{
struct msk_product *mp;
uint16_t vendor, devid;
int i;
vendor = pci_get_vendor(dev);
devid = pci_get_device(dev);
mp = msk_products;
for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
i++, mp++) {
if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
device_set_desc(dev, mp->msk_name);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static int
mskc_setup_rambuffer(struct msk_softc *sc)
{
int totqsize, minqsize;
int avail, next;
int i;
uint8_t val;
/* Get adapter SRAM size. */
val = CSR_READ_1(sc, B2_E_0);
sc->msk_ramsize = (val == 0) ? 128 : val * 4;
if (sc->msk_hw_id == CHIP_ID_YUKON_FE)
sc->msk_ramsize = 4 * 4;
if (bootverbose)
device_printf(sc->msk_dev,
"RAM buffer size : %dKB\n", sc->msk_ramsize);
totqsize = sc->msk_ramsize * sc->msk_num_port;
minqsize = MSK_MIN_RXQ_SIZE + MSK_MIN_TXQ_SIZE;
if (minqsize > sc->msk_ramsize)
minqsize = sc->msk_ramsize;
if (minqsize * sc->msk_num_port > totqsize) {
device_printf(sc->msk_dev,
"not enough RAM buffer memory : %d/%dKB\n",
minqsize * sc->msk_num_port, totqsize);
return (ENOSPC);
}
avail = totqsize;
if (sc->msk_num_port > 1) {
/*
* Divide up the memory evenly so that everyone gets a
* fair share for dual port adapters.
*/
avail = sc->msk_ramsize;
}
/* Take away the minimum memory for active queues. */
avail -= minqsize;
/* Rx queue gets the minimum + 80% of the rest. */
sc->msk_rxqsize =
(avail * MSK_RAM_QUOTA_RX) / 100 + MSK_MIN_RXQ_SIZE;
avail -= (sc->msk_rxqsize - MSK_MIN_RXQ_SIZE);
sc->msk_txqsize = avail + MSK_MIN_TXQ_SIZE;
for (i = 0, next = 0; i < sc->msk_num_port; i++) {
sc->msk_rxqstart[i] = next;
sc->msk_rxqend[i] = next + (sc->msk_rxqsize * 1024) - 1;
next = sc->msk_rxqend[i] + 1;
sc->msk_txqstart[i] = next;
sc->msk_txqend[i] = next + (sc->msk_txqsize * 1024) - 1;
next = sc->msk_txqend[i] + 1;
if (bootverbose) {
device_printf(sc->msk_dev,
"Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
sc->msk_rxqsize, sc->msk_rxqstart[i],
sc->msk_rxqend[i]);
device_printf(sc->msk_dev,
"Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
sc->msk_txqsize, sc->msk_txqstart[i],
sc->msk_txqend[i]);
}
}
return (0);
}
static void
msk_phy_power(struct msk_softc *sc, int mode)
{
uint32_t val;
int i;
switch (mode) {
case MSK_PHY_POWERUP:
/* Switch power to VCC (WA for VAUX problem). */
CSR_WRITE_1(sc, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
/* Disable Core Clock Division, set Clock Select to 0. */
CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
val = 0;
if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
/* Enable bits are inverted. */
val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
}
/*
* Enable PCI & Core Clock, enable clock gating for both Links.
*/
CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
/* Deassert Low Power for 1st PHY. */
val |= PCI_Y2_PHY1_COMA;
if (sc->msk_num_port > 1)
val |= PCI_Y2_PHY2_COMA;
} else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
uint32_t our;
CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
/* Enable all clocks. */
pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
/* Set all bits to 0 except bits 15..12. */
pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
/* Set to default value. */
pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
}
/* Release PHY from PowerDown/COMA mode. */
pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
for (i = 0; i < sc->msk_num_port; i++) {
CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
GMLC_RST_SET);
CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
GMLC_RST_CLR);
}
break;
case MSK_PHY_POWERDOWN:
val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
val &= ~PCI_Y2_PHY1_COMA;
if (sc->msk_num_port > 1)
val &= ~PCI_Y2_PHY2_COMA;
}
pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
/* Enable bits are inverted. */
val = 0;
}
/*
* Disable PCI & Core Clock, disable clock gating for
* both Links.
*/
CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
CSR_WRITE_1(sc, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
break;
default:
break;
}
}
static void
mskc_reset(struct msk_softc *sc)
{
bus_addr_t addr;
uint16_t status;
uint32_t val;
int i;
CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
/* Disable ASF. */
if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
}
/*
* Since we disabled ASF, S/W reset is required for Power Management.
*/
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
/* Clear all error bits in the PCI status register. */
status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_write_config(sc->msk_dev, PCIR_STATUS, status |
PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
switch (sc->msk_bustype) {
case MSK_PEX_BUS:
/* Clear all PEX errors. */
CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
if ((val & PEX_RX_OV) != 0) {
sc->msk_intrmask &= ~Y2_IS_HW_ERR;
sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
}
break;
case MSK_PCI_BUS:
case MSK_PCIX_BUS:
/* Set Cache Line Size to 2(8bytes) if configured to 0. */
val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
if (val == 0)
pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
if (sc->msk_bustype == MSK_PCIX_BUS) {
/* Set Cache Line Size opt. */
val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
val |= PCI_CLS_OPT;
pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
}
break;
}
/* Set PHY power state. */
msk_phy_power(sc, MSK_PHY_POWERUP);
/* Reset GPHY/GMAC Control */
for (i = 0; i < sc->msk_num_port; i++) {
/* GPHY Control reset. */
CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
/* GMAC Control reset. */
CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
}
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
/* LED On. */
CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
/* Clear TWSI IRQ. */
CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
/* Turn off hardware timer. */
CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
/* Turn off descriptor polling. */
CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
/* Turn off time stamps. */
CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
/* Configure timeout values. */
for (i = 0; i < sc->msk_num_port; i++) {
CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
MSK_RI_TO_53);
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
MSK_RI_TO_53);
}
/* Disable all interrupts. */
CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
CSR_READ_4(sc, B0_HWE_IMSK);
CSR_WRITE_4(sc, B0_IMSK, 0);
CSR_READ_4(sc, B0_IMSK);
/*
* On dual port PCI-X card, there is an problem where status
* can be received out of order due to split transactions.
*/
if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
int pcix;
uint16_t pcix_cmd;
if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) {
pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
/* Clear Max Outstanding Split Transactions. */
pcix_cmd &= ~0x70;
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
}
if (sc->msk_bustype == MSK_PEX_BUS) {
uint16_t v, width;
v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
/* Change Max. Read Request Size to 4096 bytes. */
v &= ~PEX_DC_MAX_RRS_MSK;
v |= PEX_DC_MAX_RD_RQ_SIZE(5);
pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
width = (width & PEX_LS_LINK_WI_MSK) >> 4;
v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
v = (v & PEX_LS_LINK_WI_MSK) >> 4;
if (v != width)
device_printf(sc->msk_dev,
"negotiated width of link(x%d) != "
"max. width of link(x%d)\n", width, v);
}
/* Clear status list. */
bzero(sc->msk_stat_ring,
sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
sc->msk_stat_cons = 0;
bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
/* Set the status list base address. */
addr = sc->msk_stat_ring_paddr;
CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
/* Set the status list last index. */
CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
if (HW_FEATURE(sc, HWF_WA_DEV_43_418)) {
/* WA for dev. #4.3 */
CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
/* WA for dev. #4.18 */
CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
} else {
CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
CSR_WRITE_1(sc, STAT_FIFO_ISR_WM,
HW_FEATURE(sc, HWF_WA_DEV_4109) ? 0x10 : 0x04);
CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
}
/*
* Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
*/
CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
/* Enable status unit. */
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
}
static int
msk_probe(device_t dev)
{
struct msk_softc *sc;
char desc[100];
sc = device_get_softc(device_get_parent(dev));
/*
* Not much to do here. We always know there will be
* at least one GMAC present, and if there are two,
* mskc_attach() will create a second device instance
* for us.
*/
snprintf(desc, sizeof(desc),
"Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
sc->msk_hw_rev);
device_set_desc_copy(dev, desc);
return (BUS_PROBE_DEFAULT);
}
static int
msk_attach(device_t dev)
{
struct msk_softc *sc;
struct msk_if_softc *sc_if;
struct ifnet *ifp;
int i, port, error;
uint8_t eaddr[6];
if (dev == NULL)
return (EINVAL);
error = 0;
sc_if = device_get_softc(dev);
sc = device_get_softc(device_get_parent(dev));
port = *(int *)device_get_ivars(dev);
sc_if->msk_if_dev = dev;
sc_if->msk_port = port;
sc_if->msk_softc = sc;
sc->msk_if[port] = sc_if;
/* Setup Tx/Rx queue register offsets. */
if (port == MSK_PORT_A) {
sc_if->msk_txq = Q_XA1;
sc_if->msk_txsq = Q_XS1;
sc_if->msk_rxq = Q_R1;
} else {
sc_if->msk_txq = Q_XA2;
sc_if->msk_txsq = Q_XS2;
sc_if->msk_rxq = Q_R2;
}
callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if);
if ((error = msk_txrx_dma_alloc(sc_if) != 0))
goto fail;
ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc_if;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
/*
* IFCAP_RXCSUM capability is intentionally disabled as the hardware
* has serious bug in Rx checksum offload for all Yukon II family
* hardware. It seems there is a workaround to make it work somtimes.
* However, the workaround also have to check OP code sequences to
* verify whether the OP code is correct. Sometimes it should compute
* IP/TCP/UDP checksum in driver in order to verify correctness of
* checksum computed by hardware. If you have to compute checksum
* with software to verify the hardware's checksum why have hardware
* compute the checksum? I think there is no reason to spend time to
* make Rx checksum offload work on Yukon II hardware.
*/
ifp->if_capabilities = IFCAP_TXCSUM;
ifp->if_hwassist = MSK_CSUM_FEATURES;
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
if (sc->msk_hw_id != CHIP_ID_YUKON_EC_U) {
/* It seems Yukon EC Ultra doesn't support TSO. */
ifp->if_capabilities |= IFCAP_TSO4;
ifp->if_hwassist |= CSUM_TSO;
}
ifp->if_capenable = ifp->if_capabilities;
ifp->if_ioctl = msk_ioctl;
ifp->if_start = msk_start;
ifp->if_timer = 0;
ifp->if_watchdog = NULL;
ifp->if_init = msk_init;
IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);
/*
* Get station address for this interface. Note that
* dual port cards actually come with three station
* addresses: one for each port, plus an extra. The
* extra one is used by the SysKonnect driver software
* as a 'virtual' station address for when both ports
* are operating in failover mode. Currently we don't
* use this extra address.
*/
MSK_IF_LOCK(sc_if);
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
/*
* Call MI attach routine. Can't hold locks when calling into ether_*.
*/
MSK_IF_UNLOCK(sc_if);
ether_ifattach(ifp, eaddr);
MSK_IF_LOCK(sc_if);
/* VLAN capability setup */
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
if (ifp->if_capabilities & IFCAP_HWCSUM)
ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
ifp->if_capenable = ifp->if_capabilities;
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
/*
* Do miibus setup.
*/
MSK_IF_UNLOCK(sc_if);
error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
msk_mediastatus);
if (error != 0) {
device_printf(sc_if->msk_if_dev, "no PHY found!\n");
ether_ifdetach(ifp);
error = ENXIO;
goto fail;
}
/* Check whether PHY Id is MARVELL. */
if (msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_ID0)
== PHY_MARV_ID0_VAL)
sc->msk_marvell_phy = 1;
fail:
if (error != 0) {
/* Access should be ok even though lock has been dropped */
sc->msk_if[port] = NULL;
msk_detach(dev);
}
return (error);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
mskc_attach(device_t dev)
{
struct msk_softc *sc;
int error, msic, *port, reg;
sc = device_get_softc(dev);
sc->msk_dev = dev;
mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
/* Allocate I/O resource */
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
#ifdef MSK_USEIOSPACE
sc->msk_res_spec = msk_res_spec_io;
#else
sc->msk_res_spec = msk_res_spec_mem;
#endif
sc->msk_irq_spec = msk_irq_spec_legacy;
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
if (error) {
if (sc->msk_res_spec == msk_res_spec_mem)
sc->msk_res_spec = msk_res_spec_io;
else
sc->msk_res_spec = msk_res_spec_mem;
error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
if (error) {
device_printf(dev, "couldn't allocate %s resources\n",
sc->msk_res_spec == msk_res_spec_mem ? "memory" :
"I/O");
mtx_destroy(&sc->msk_mtx);
return (ENXIO);
}
}
CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
/* Bail out if chip is not recognized. */
if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
sc->msk_hw_id > CHIP_ID_YUKON_FE) {
device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
sc->msk_hw_id, sc->msk_hw_rev);
error = ENXIO;
goto fail;
}
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
&sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
"max number of Rx events to process");
sc->msk_process_limit = MSK_PROC_DEFAULT;
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
"process_limit", &sc->msk_process_limit);
if (error == 0) {
if (sc->msk_process_limit < MSK_PROC_MIN ||
sc->msk_process_limit > MSK_PROC_MAX) {
device_printf(dev, "process_limit value out of range; "
"using default: %d\n", MSK_PROC_DEFAULT);
sc->msk_process_limit = MSK_PROC_DEFAULT;
}
}
/* Soft reset. */
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
sc->msk_coppertype = 0;
else
sc->msk_coppertype = 1;
/* Check number of MACs. */
sc->msk_num_port = 1;
if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
CFG_DUAL_MAC_MSK) {
if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
sc->msk_num_port++;
}
/* Check bus type. */
if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, &reg) == 0)
sc->msk_bustype = MSK_PEX_BUS;
else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &reg) == 0)
sc->msk_bustype = MSK_PCIX_BUS;
else
sc->msk_bustype = MSK_PCI_BUS;
/* Get H/W features(bugs). */
switch (sc->msk_hw_id) {
case CHIP_ID_YUKON_EC:
sc->msk_clock = 125; /* 125 Mhz */
if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
sc->msk_hw_feature =
HWF_WA_DEV_42 | HWF_WA_DEV_46 | HWF_WA_DEV_43_418 |
HWF_WA_DEV_420 | HWF_WA_DEV_423 |
HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 |
HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
} else {
/* A2/A3 */
sc->msk_hw_feature =
HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 |
HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
}
break;
case CHIP_ID_YUKON_EC_U:
sc->msk_clock = 125; /* 125 Mhz */
if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_483 |
HWF_WA_DEV_4109;
} else if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
uint16_t v;
sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 |
HWF_WA_DEV_4185;
v = CSR_READ_2(sc, Q_ADDR(Q_XA1, Q_WM));
if (v == 0)
sc->msk_hw_feature |= HWF_WA_DEV_4185CS |
HWF_WA_DEV_4200;
}
break;
case CHIP_ID_YUKON_FE:
sc->msk_clock = 100; /* 100 Mhz */
sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 |
HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
break;
case CHIP_ID_YUKON_XL:
sc->msk_clock = 156; /* 156 Mhz */
switch (sc->msk_hw_rev) {
case CHIP_REV_YU_XL_A0:
sc->msk_hw_feature =
HWF_WA_DEV_427 | HWF_WA_DEV_463 | HWF_WA_DEV_472 |
HWF_WA_DEV_479 | HWF_WA_DEV_483 | HWF_WA_DEV_4115 |
HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
break;
case CHIP_REV_YU_XL_A1:
sc->msk_hw_feature =
HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
HWF_WA_DEV_4115 | HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
break;
case CHIP_REV_YU_XL_A2:
sc->msk_hw_feature =
HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
HWF_WA_DEV_4115 | HWF_WA_DEV_4167;
break;
case CHIP_REV_YU_XL_A3:
sc->msk_hw_feature =
HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
HWF_WA_DEV_4115;
}
break;
default:
sc->msk_clock = 156; /* 156 Mhz */
sc->msk_hw_feature = 0;
}
/* Allocate IRQ resources. */
msic = pci_msi_count(dev);
if (bootverbose)
device_printf(dev, "MSI count : %d\n", msic);
/*
* The Yukon II reports it can handle two messages, one for each
* possible port. We go ahead and allocate two messages and only
* setup a handler for both if we have a dual port card.
*
* XXX: I haven't untangled the interrupt handler to handle dual
* port cards with separate MSI messages, so for now I disable MSI
* on dual port cards.
*/
if (msic == 2 && msi_disable == 0 && sc->msk_num_port == 1 &&
pci_alloc_msi(dev, &msic) == 0) {
if (msic == 2) {
sc->msk_msi = 1;
sc->msk_irq_spec = msk_irq_spec_msi;
} else {
pci_release_msi(dev);
sc->msk_irq_spec = msk_irq_spec_legacy;
}
}
error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
if (error) {
device_printf(dev, "couldn't allocate IRQ resources\n");
goto fail;
}
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
if ((error = msk_status_dma_alloc(sc)) != 0)
goto fail;
/* Set base interrupt mask. */
sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
/* Reset the adapter. */
mskc_reset(sc);
if ((error = mskc_setup_rambuffer(sc)) != 0)
goto fail;
sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
if (sc->msk_devs[MSK_PORT_A] == NULL) {
device_printf(dev, "failed to add child for PORT_A\n");
error = ENXIO;
goto fail;
}
port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
if (port == NULL) {
device_printf(dev, "failed to allocate memory for "
"ivars of PORT_A\n");
error = ENXIO;
goto fail;
}
*port = MSK_PORT_A;
device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
if (sc->msk_num_port > 1) {
sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
if (sc->msk_devs[MSK_PORT_B] == NULL) {
device_printf(dev, "failed to add child for PORT_B\n");
error = ENXIO;
goto fail;
}
port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
if (port == NULL) {
device_printf(dev, "failed to allocate memory for "
"ivars of PORT_B\n");
error = ENXIO;
goto fail;
}
*port = MSK_PORT_B;
device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
}
error = bus_generic_attach(dev);
if (error) {
device_printf(dev, "failed to attach port(s)\n");
goto fail;
}
TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->msk_tq);
taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->msk_dev));
/* Hook interrupt last to avoid having to lock softc. */
error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
INTR_MPSAFE | INTR_FAST, msk_intr, sc, &sc->msk_intrhand[0]);
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
if (error != 0) {
device_printf(dev, "couldn't set up interrupt handler\n");
taskqueue_free(sc->msk_tq);
sc->msk_tq = NULL;
goto fail;
}
fail:
if (error != 0)
mskc_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
msk_detach(device_t dev)
{
struct msk_softc *sc;
struct msk_if_softc *sc_if;
struct ifnet *ifp;
sc_if = device_get_softc(dev);
KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
("msk mutex not initialized in msk_detach"));
MSK_IF_LOCK(sc_if);
ifp = sc_if->msk_ifp;
if (device_is_attached(dev)) {
/* XXX */
sc_if->msk_detach = 1;
msk_stop(sc_if);
/* Can't hold locks while calling detach. */
MSK_IF_UNLOCK(sc_if);
callout_drain(&sc_if->msk_tick_ch);
taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task);
ether_ifdetach(ifp);
MSK_IF_LOCK(sc_if);
}
/*
* We're generally called from mskc_detach() which is using
* device_delete_child() to get to here. It's already trashed
* miibus for us, so don't do it here or we'll panic.
*
* if (sc_if->msk_miibus != NULL) {
* device_delete_child(dev, sc_if->msk_miibus);
* sc_if->msk_miibus = NULL;
* }
*/
msk_txrx_dma_free(sc_if);
bus_generic_detach(dev);
if (ifp)
if_free(ifp);
sc = sc_if->msk_softc;
sc->msk_if[sc_if->msk_port] = NULL;
MSK_IF_UNLOCK(sc_if);
return (0);
}
static int
mskc_detach(device_t dev)
{
struct msk_softc *sc;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
if (device_is_alive(dev)) {
if (sc->msk_devs[MSK_PORT_A] != NULL) {
free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
M_DEVBUF);
device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
}
if (sc->msk_devs[MSK_PORT_B] != NULL) {
free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
M_DEVBUF);
device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
}
bus_generic_detach(dev);
}
/* Disable all interrupts. */
CSR_WRITE_4(sc, B0_IMSK, 0);
CSR_READ_4(sc, B0_IMSK);
CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
CSR_READ_4(sc, B0_HWE_IMSK);
/* LED Off. */
CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
/* Put hardware reset. */
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
msk_status_dma_free(sc);
if (sc->msk_tq != NULL) {
taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
taskqueue_free(sc->msk_tq);
sc->msk_tq = NULL;
}
if (sc->msk_intrhand[0]) {
bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
sc->msk_intrhand[0] = NULL;
}
if (sc->msk_intrhand[1]) {
bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
sc->msk_intrhand[1] = NULL;
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
}
bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
if (sc->msk_msi)
pci_release_msi(dev);
bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
mtx_destroy(&sc->msk_mtx);
return (0);
}
struct msk_dmamap_arg {
bus_addr_t msk_busaddr;
};
static void
msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct msk_dmamap_arg *ctx;
if (error != 0)
return;
ctx = arg;
ctx->msk_busaddr = segs[0].ds_addr;
}
/* Create status DMA region. */
static int
msk_status_dma_alloc(struct msk_softc *sc)
{
struct msk_dmamap_arg ctx;
int error;
error = bus_dma_tag_create(
bus_get_dma_tag(sc->msk_dev), /* parent */
MSK_STAT_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MSK_STAT_RING_SZ, /* maxsize */
1, /* nsegments */
MSK_STAT_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->msk_stat_tag);
if (error != 0) {
device_printf(sc->msk_dev,
"failed to create status DMA tag\n");
return (error);
}
/* Allocate DMA'able memory and load the DMA map for status ring. */
error = bus_dmamem_alloc(sc->msk_stat_tag,
(void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
BUS_DMA_ZERO, &sc->msk_stat_map);
if (error != 0) {
device_printf(sc->msk_dev,
"failed to allocate DMA'able memory for status ring\n");
return (error);
}
ctx.msk_busaddr = 0;
error = bus_dmamap_load(sc->msk_stat_tag,
sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
msk_dmamap_cb, &ctx, 0);
if (error != 0) {
device_printf(sc->msk_dev,
"failed to load DMA'able memory for status ring\n");
return (error);
}
sc->msk_stat_ring_paddr = ctx.msk_busaddr;
return (0);
}
static void
msk_status_dma_free(struct msk_softc *sc)
{
/* Destroy status block. */
if (sc->msk_stat_tag) {
if (sc->msk_stat_map) {
bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
if (sc->msk_stat_ring) {
bus_dmamem_free(sc->msk_stat_tag,
sc->msk_stat_ring, sc->msk_stat_map);
sc->msk_stat_ring = NULL;
}
sc->msk_stat_map = NULL;
}
bus_dma_tag_destroy(sc->msk_stat_tag);
sc->msk_stat_tag = NULL;
}
}
static int
msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
{
struct msk_dmamap_arg ctx;
struct msk_txdesc *txd;
struct msk_rxdesc *rxd;
struct msk_rxdesc *jrxd;
struct msk_jpool_entry *entry;
uint8_t *ptr;
int error, i;
mtx_init(&sc_if->msk_jlist_mtx, "msk_jlist_mtx", NULL, MTX_DEF);
SLIST_INIT(&sc_if->msk_jfree_listhead);
SLIST_INIT(&sc_if->msk_jinuse_listhead);
/* Create parent DMA tag. */
/*
* XXX
* It seems that Yukon II supports full 64bits DMA operations. But
* it needs two descriptors(list elements) for 64bits DMA operations.
* Since we don't know what DMA address mappings(32bits or 64bits)
* would be used in advance for each mbufs, we limits its DMA space
* to be in range of 32bits address space. Otherwise, we should check
* what DMA address is used and chain another descriptor for the
* 64bits DMA operation. This also means descriptor ring size is
* variable. Limiting DMA address to be in 32bit address space greatly
* simplyfies descriptor handling and possibly would increase
* performance a bit due to efficient handling of descriptors.
* Apart from harassing checksum offloading mechanisms, it seems
* it's really bad idea to use a seperate descriptor for 64bit
* DMA operation to save small descriptor memory. Anyway, I've
* never seen these exotic scheme on ethernet interface hardware.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc_if->msk_if_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_parent_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create parent DMA tag\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
MSK_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MSK_TX_RING_SZ, /* maxsize */
1, /* nsegments */
MSK_TX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_tx_ring_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create Tx ring DMA tag\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
MSK_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MSK_RX_RING_SZ, /* maxsize */
1, /* nsegments */
MSK_RX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_rx_ring_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create Rx ring DMA tag\n");
goto fail;
}
/* Create tag for jumbo Rx ring. */
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
MSK_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MSK_JUMBO_RX_RING_SZ, /* maxsize */
1, /* nsegments */
MSK_JUMBO_RX_RING_SZ, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create jumbo Rx ring DMA tag\n");
goto fail;
}
/* Create tag for jumbo buffer blocks. */
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
PAGE_SIZE, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MSK_JMEM, /* maxsize */
1, /* nsegments */
MSK_JMEM, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_jumbo_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create jumbo Rx buffer block DMA tag\n");
goto fail;
}
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * MSK_MAXTXSEGS, /* maxsize */
MSK_MAXTXSEGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_tx_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create Tx DMA tag\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
1, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_rx_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create Rx DMA tag\n");
goto fail;
}
/* Create tag for jumbo Rx buffers. */
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
PAGE_SIZE, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * MSK_MAXRXSEGS, /* maxsize */
MSK_MAXRXSEGS, /* nsegments */
MSK_JLEN, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc_if->msk_cdata.msk_jumbo_rx_tag);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create jumbo Rx DMA tag\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
(void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to allocate DMA'able memory for Tx ring\n");
goto fail;
}
ctx.msk_busaddr = 0;
error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to load DMA'able memory for Tx ring\n");
goto fail;
}
sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
(void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to allocate DMA'able memory for Rx ring\n");
goto fail;
}
ctx.msk_busaddr = 0;
error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to load DMA'able memory for Rx ring\n");
goto fail;
}
sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
(void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
&sc_if->msk_cdata.msk_jumbo_rx_ring_map);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to allocate DMA'able memory for jumbo Rx ring\n");
goto fail;
}
ctx.msk_busaddr = 0;
error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
sc_if->msk_cdata.msk_jumbo_rx_ring_map,
sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
msk_dmamap_cb, &ctx, 0);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to load DMA'able memory for jumbo Rx ring\n");
goto fail;
}
sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < MSK_TX_RING_CNT; i++) {
txd = &sc_if->msk_cdata.msk_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create Tx dmamap\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
&sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create spare Rx dmamap\n");
goto fail;
}
for (i = 0; i < MSK_RX_RING_CNT; i++) {
rxd = &sc_if->msk_cdata.msk_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create Rx dmamap\n");
goto fail;
}
}
/* Create DMA maps for jumbo Rx buffers. */
if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
&sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create spare jumbo Rx dmamap\n");
goto fail;
}
for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
jrxd->rx_m = NULL;
jrxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
&jrxd->rx_dmamap);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to create jumbo Rx dmamap\n");
goto fail;
}
}
/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
(void **)&sc_if->msk_rdata.msk_jumbo_buf,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
&sc_if->msk_cdata.msk_jumbo_map);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to allocate DMA'able memory for jumbo buf\n");
goto fail;
}
ctx.msk_busaddr = 0;
error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
MSK_JMEM, msk_dmamap_cb, &ctx, 0);
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"failed to load DMA'able memory for jumbobuf\n");
goto fail;
}
sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
/*
* Now divide it up into 9K pieces and save the addresses
* in an array.
*/
ptr = sc_if->msk_rdata.msk_jumbo_buf;
for (i = 0; i < MSK_JSLOTS; i++) {
sc_if->msk_cdata.msk_jslots[i] = ptr;
ptr += MSK_JLEN;
entry = malloc(sizeof(struct msk_jpool_entry),
M_DEVBUF, M_WAITOK);
if (entry == NULL) {
device_printf(sc_if->msk_if_dev,
"no memory for jumbo buffers!\n");
error = ENOMEM;
goto fail;
}
entry->slot = i;
SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
jpool_entries);
}
fail:
return (error);
}
static void
msk_txrx_dma_free(struct msk_if_softc *sc_if)
{
struct msk_txdesc *txd;
struct msk_rxdesc *rxd;
struct msk_rxdesc *jrxd;
struct msk_jpool_entry *entry;
int i;
MSK_JLIST_LOCK(sc_if);
while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
device_printf(sc_if->msk_if_dev,
"asked to free buffer that is in use!\n");
SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
jpool_entries);
}
while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
free(entry, M_DEVBUF);
}
MSK_JLIST_UNLOCK(sc_if);
/* Destroy jumbo buffer block. */
if (sc_if->msk_cdata.msk_jumbo_map)
bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
sc_if->msk_cdata.msk_jumbo_map);
if (sc_if->msk_rdata.msk_jumbo_buf) {
bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
sc_if->msk_rdata.msk_jumbo_buf,
sc_if->msk_cdata.msk_jumbo_map);
sc_if->msk_rdata.msk_jumbo_buf = NULL;
sc_if->msk_cdata.msk_jumbo_map = NULL;
}
/* Tx ring. */
if (sc_if->msk_cdata.msk_tx_ring_tag) {
if (sc_if->msk_cdata.msk_tx_ring_map)
bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
sc_if->msk_cdata.msk_tx_ring_map);
if (sc_if->msk_cdata.msk_tx_ring_map &&
sc_if->msk_rdata.msk_tx_ring)
bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
sc_if->msk_rdata.msk_tx_ring,
sc_if->msk_cdata.msk_tx_ring_map);
sc_if->msk_rdata.msk_tx_ring = NULL;
sc_if->msk_cdata.msk_tx_ring_map = NULL;
bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
sc_if->msk_cdata.msk_tx_ring_tag = NULL;
}
/* Rx ring. */
if (sc_if->msk_cdata.msk_rx_ring_tag) {
if (sc_if->msk_cdata.msk_rx_ring_map)
bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
sc_if->msk_cdata.msk_rx_ring_map);
if (sc_if->msk_cdata.msk_rx_ring_map &&
sc_if->msk_rdata.msk_rx_ring)
bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
sc_if->msk_rdata.msk_rx_ring,
sc_if->msk_cdata.msk_rx_ring_map);
sc_if->msk_rdata.msk_rx_ring = NULL;
sc_if->msk_cdata.msk_rx_ring_map = NULL;
bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
sc_if->msk_cdata.msk_rx_ring_tag = NULL;
}
/* Jumbo Rx ring. */
if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
sc_if->msk_cdata.msk_jumbo_rx_ring_map);
if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
sc_if->msk_rdata.msk_jumbo_rx_ring)
bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
sc_if->msk_rdata.msk_jumbo_rx_ring,
sc_if->msk_cdata.msk_jumbo_rx_ring_map);
sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
}
/* Tx buffers. */
if (sc_if->msk_cdata.msk_tx_tag) {
for (i = 0; i < MSK_TX_RING_CNT; i++) {
txd = &sc_if->msk_cdata.msk_txdesc[i];
if (txd->tx_dmamap) {
bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
sc_if->msk_cdata.msk_tx_tag = NULL;
}
/* Rx buffers. */
if (sc_if->msk_cdata.msk_rx_tag) {
for (i = 0; i < MSK_RX_RING_CNT; i++) {
rxd = &sc_if->msk_cdata.msk_rxdesc[i];
if (rxd->rx_dmamap) {
bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc_if->msk_cdata.msk_rx_sparemap) {
bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
sc_if->msk_cdata.msk_rx_sparemap);
sc_if->msk_cdata.msk_rx_sparemap = 0;
}
bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
sc_if->msk_cdata.msk_rx_tag = NULL;
}
/* Jumbo Rx buffers. */
if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
if (jrxd->rx_dmamap) {
bus_dmamap_destroy(
sc_if->msk_cdata.msk_jumbo_rx_tag,
jrxd->rx_dmamap);
jrxd->rx_dmamap = NULL;
}
}
if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
sc_if->msk_cdata.msk_jumbo_rx_sparemap);
sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
}
bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
}
if (sc_if->msk_cdata.msk_parent_tag) {
bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
sc_if->msk_cdata.msk_parent_tag = NULL;
}
mtx_destroy(&sc_if->msk_jlist_mtx);
}
/*
* Allocate a jumbo buffer.
*/
static void *
msk_jalloc(struct msk_if_softc *sc_if)
{
struct msk_jpool_entry *entry;
MSK_JLIST_LOCK(sc_if);
entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
if (entry == NULL) {
MSK_JLIST_UNLOCK(sc_if);
return (NULL);
}
SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
MSK_JLIST_UNLOCK(sc_if);
return (sc_if->msk_cdata.msk_jslots[entry->slot]);
}
/*
* Release a jumbo buffer.
*/
static void
msk_jfree(void *buf, void *args)
{
struct msk_if_softc *sc_if;
struct msk_jpool_entry *entry;
int i;
/* Extract the softc struct pointer. */
sc_if = (struct msk_if_softc *)args;
KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
MSK_JLIST_LOCK(sc_if);
/* Calculate the slot this buffer belongs to. */
i = ((vm_offset_t)buf
- (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
KASSERT(i >= 0 && i < MSK_JSLOTS,
("%s: asked to free buffer that we don't manage!", __func__));
entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
entry->slot = i;
SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
wakeup(sc_if);
MSK_JLIST_UNLOCK(sc_if);
}
/*
* It's copy of ath_defrag(ath(4)).
*
* Defragment an mbuf chain, returning at most maxfrags separate
* mbufs+clusters. If this is not possible NULL is returned and
* the original mbuf chain is left in it's present (potentially
* modified) state. We use two techniques: collapsing consecutive
* mbufs and replacing consecutive mbufs by a cluster.
*/
static struct mbuf *
msk_defrag(struct mbuf *m0, int how, int maxfrags)
{
struct mbuf *m, *n, *n2, **prev;
u_int curfrags;
/*
* Calculate the current number of frags.
*/
curfrags = 0;
for (m = m0; m != NULL; m = m->m_next)
curfrags++;
/*
* First, try to collapse mbufs. Note that we always collapse
* towards the front so we don't need to deal with moving the
* pkthdr. This may be suboptimal if the first mbuf has much
* less data than the following.
*/
m = m0;
again:
for (;;) {
n = m->m_next;
if (n == NULL)
break;
if ((m->m_flags & M_RDONLY) == 0 &&
n->m_len < M_TRAILINGSPACE(m)) {
bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
n->m_len);
m->m_len += n->m_len;
m->m_next = n->m_next;
m_free(n);
if (--curfrags <= maxfrags)
return (m0);
} else
m = n;
}
KASSERT(maxfrags > 1,
("maxfrags %u, but normal collapse failed", maxfrags));
/*
* Collapse consecutive mbufs to a cluster.
*/
prev = &m0->m_next; /* NB: not the first mbuf */
while ((n = *prev) != NULL) {
if ((n2 = n->m_next) != NULL &&
n->m_len + n2->m_len < MCLBYTES) {
m = m_getcl(how, MT_DATA, 0);
if (m == NULL)
goto bad;
bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
n2->m_len);
m->m_len = n->m_len + n2->m_len;
m->m_next = n2->m_next;
*prev = m;
m_free(n);
m_free(n2);
if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
return m0;
/*
* Still not there, try the normal collapse
* again before we allocate another cluster.
*/
goto again;
}
prev = &n->m_next;
}
/*
* No place where we can collapse to a cluster; punt.
* This can occur if, for example, you request 2 frags
* but the packet requires that both be clusters (we
* never reallocate the first mbuf to avoid moving the
* packet header).
*/
bad:
return (NULL);
}
static int
msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
{
struct msk_txdesc *txd, *txd_last;
struct msk_tx_desc *tx_le;
struct mbuf *m;
bus_dmamap_t map;
bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
uint32_t control, prod, si;
uint16_t offset, tcp_offset, tso_mtu;
int error, i, nseg, tso;
MSK_IF_LOCK_ASSERT(sc_if);
tcp_offset = offset = 0;
m = *m_head;
if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) {
/*
* Since mbuf has no protocol specific structure information
* in it we have to inspect protocol information here to
* setup TSO and checksum offload. I don't know why Marvell
* made a such decision in chip design because other GigE
* hardwares normally takes care of all these chores in
* hardware. However, TSO performance of Yukon II is very
* good such that it's worth to implement it.
*/
struct ether_vlan_header *evh;
struct ether_header *eh;
struct ip *ip;
struct tcphdr *tcp;
/* TODO check for M_WRITABLE(m) */
offset = sizeof(struct ether_header);
m = m_pullup(m, offset);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
/* Check if hardware VLAN insertion is off. */
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
offset = sizeof(struct ether_vlan_header);
m = m_pullup(m, offset);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
evh = mtod(m, struct ether_vlan_header *);
ip = (struct ip *)(evh + 1);
} else
ip = (struct ip *)(eh + 1);
m = m_pullup(m, offset + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
offset += (ip->ip_hl << 2);
tcp_offset = offset;
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
m = m_pullup(m, offset + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
tcp = mtod(m, struct tcphdr *);
offset += (tcp->th_off << 2);
}
*m_head = m;
}
prod = sc_if->msk_cdata.msk_tx_prod;
txd = &sc_if->msk_cdata.msk_txdesc[prod];
txd_last = txd;
map = txd->tx_dmamap;
error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
*m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = msk_defrag(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nseg == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check number of available descriptors. */
if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
(MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
return (ENOBUFS);
}
control = 0;
tso = 0;
tx_le = NULL;
/* Check TSO support. */
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
tso_mtu = offset + m->m_pkthdr.tso_segsz;
if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
tx_le->msk_addr = htole32(tso_mtu);
tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER);
sc_if->msk_cdata.msk_tx_cnt++;
MSK_INC(prod, MSK_TX_RING_CNT);
sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
}
tso++;
}
/* Check if we have a VLAN tag to insert. */
if ((m->m_flags & M_VLANTAG) != 0) {
if (tso == 0) {
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
tx_le->msk_addr = htole32(0);
tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
htons(m->m_pkthdr.ether_vtag));
sc_if->msk_cdata.msk_tx_cnt++;
MSK_INC(prod, MSK_TX_RING_CNT);
} else {
tx_le->msk_control |= htole32(OP_VLAN |
htons(m->m_pkthdr.ether_vtag));
}
control |= INS_VLAN;
}
/* Check if we have to handle checksum offload. */
if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
& 0xffff) | ((uint32_t)tcp_offset << 16));
tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
control |= UDPTCP;
sc_if->msk_cdata.msk_tx_cnt++;
MSK_INC(prod, MSK_TX_RING_CNT);
}
si = prod;
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
if (tso == 0)
tx_le->msk_control = htole32(txsegs[0].ds_len | control |
OP_PACKET);
else
tx_le->msk_control = htole32(txsegs[0].ds_len | control |
OP_LARGESEND);
sc_if->msk_cdata.msk_tx_cnt++;
MSK_INC(prod, MSK_TX_RING_CNT);
for (i = 1; i < nseg; i++) {
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
tx_le->msk_control = htole32(txsegs[i].ds_len | control |
OP_BUFFER | HW_OWNER);
sc_if->msk_cdata.msk_tx_cnt++;
MSK_INC(prod, MSK_TX_RING_CNT);
}
/* Update producer index. */
sc_if->msk_cdata.msk_tx_prod = prod;
/* Set EOP on the last desciptor. */
prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
tx_le->msk_control |= htole32(EOP);
/* Turn the first descriptor ownership to hardware. */
tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
tx_le->msk_control |= htole32(HW_OWNER);
txd = &sc_if->msk_cdata.msk_txdesc[prod];
map = txd_last->tx_dmamap;
txd_last->tx_dmamap = txd->tx_dmamap;
txd->tx_dmamap = map;
txd->tx_m = m;
/* Sync descriptors. */
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
sc_if->msk_cdata.msk_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
msk_tx_task(void *arg, int pending)
{
struct ifnet *ifp;
ifp = arg;
msk_start(ifp);
}
static void
msk_start(struct ifnet *ifp)
{
struct msk_if_softc *sc_if;
struct mbuf *m_head;
int enq;
sc_if = ifp->if_softc;
MSK_IF_LOCK(sc_if);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || sc_if->msk_link == 0) {
MSK_IF_UNLOCK(sc_if);
return;
}
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc_if->msk_cdata.msk_tx_cnt <
(MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (msk_encap(sc_if, &m_head) != 0) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, m_head);
}
if (enq > 0) {
/* Transmit */
CSR_WRITE_2(sc_if->msk_softc,
Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
sc_if->msk_cdata.msk_tx_prod);
/* Set a timeout in case the chip goes out to lunch. */
sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
}
MSK_IF_UNLOCK(sc_if);
}
static void
msk_watchdog(struct msk_if_softc *sc_if)
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
{
struct ifnet *ifp;
uint32_t ridx;
int idx;
MSK_IF_LOCK_ASSERT(sc_if);
if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
return;
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
ifp = sc_if->msk_ifp;
if (sc_if->msk_link == 0) {
if (bootverbose)
if_printf(sc_if->msk_ifp, "watchdog timeout "
"(missed link)\n");
ifp->if_oerrors++;
msk_init_locked(sc_if);
return;
}
/*
* Reclaim first as there is a possibility of losing Tx completion
* interrupts.
*/
ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
idx = CSR_READ_2(sc_if->msk_softc, ridx);
if (sc_if->msk_cdata.msk_tx_cons != idx) {
msk_txeof(sc_if, idx);
if (sc_if->msk_cdata.msk_tx_cnt == 0) {
if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
"-- recovering\n");
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue(taskqueue_fast,
&sc_if->msk_tx_task);
return;
}
}
if_printf(ifp, "watchdog timeout\n");
ifp->if_oerrors++;
msk_init_locked(sc_if);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
}
static void
mskc_shutdown(device_t dev)
{
struct msk_softc *sc;
int i;
sc = device_get_softc(dev);
MSK_LOCK(sc);
for (i = 0; i < sc->msk_num_port; i++) {
if (sc->msk_if[i] != NULL)
msk_stop(sc->msk_if[i]);
}
/* Disable all interrupts. */
CSR_WRITE_4(sc, B0_IMSK, 0);
CSR_READ_4(sc, B0_IMSK);
CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
CSR_READ_4(sc, B0_HWE_IMSK);
/* Put hardware reset. */
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
MSK_UNLOCK(sc);
}
static int
mskc_suspend(device_t dev)
{
struct msk_softc *sc;
int i;
sc = device_get_softc(dev);
MSK_LOCK(sc);
for (i = 0; i < sc->msk_num_port; i++) {
if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
((sc->msk_if[i]->msk_ifp->if_drv_flags &
IFF_DRV_RUNNING) != 0))
msk_stop(sc->msk_if[i]);
}
/* Disable all interrupts. */
CSR_WRITE_4(sc, B0_IMSK, 0);
CSR_READ_4(sc, B0_IMSK);
CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
CSR_READ_4(sc, B0_HWE_IMSK);
msk_phy_power(sc, MSK_PHY_POWERDOWN);
/* Put hardware reset. */
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
sc->msk_suspended = 1;
MSK_UNLOCK(sc);
return (0);
}
static int
mskc_resume(device_t dev)
{
struct msk_softc *sc;
int i;
sc = device_get_softc(dev);
MSK_LOCK(sc);
mskc_reset(sc);
for (i = 0; i < sc->msk_num_port; i++) {
if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
msk_init_locked(sc->msk_if[i]);
}
sc->msk_suspended = 0;
MSK_UNLOCK(sc);
return (0);
}
static void
msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
{
struct mbuf *m;
struct ifnet *ifp;
struct msk_rxdesc *rxd;
int cons, rxlen;
ifp = sc_if->msk_ifp;
MSK_IF_LOCK_ASSERT(sc_if);
cons = sc_if->msk_cdata.msk_rx_cons;
do {
rxlen = status >> 16;
if ((status & GMR_FS_VLAN) != 0)
rxlen -= ETHER_VLAN_ENCAP_LEN;
if (len > sc_if->msk_framesize ||
((status & GMR_FS_ANY_ERR) != 0) ||
((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
/* Don't count flow-control packet as errors. */
if ((status & GMR_FS_GOOD_FC) == 0)
ifp->if_ierrors++;
msk_discard_rxbuf(sc_if, cons);
break;
}
rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
m = rxd->rx_m;
if (msk_newbuf(sc_if, cons) != 0) {
ifp->if_iqdrops++;
/* Reuse old buffer. */
msk_discard_rxbuf(sc_if, cons);
break;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
ifp->if_ipackets++;
/* Check for VLAN tagged packets. */
if ((status & GMR_FS_VLAN) != 0 &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
m->m_flags |= M_VLANTAG;
}
MSK_IF_UNLOCK(sc_if);
(*ifp->if_input)(ifp, m);
MSK_IF_LOCK(sc_if);
} while (0);
MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
}
static void
msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
{
struct mbuf *m;
struct ifnet *ifp;
struct msk_rxdesc *jrxd;
int cons, rxlen;
ifp = sc_if->msk_ifp;
MSK_IF_LOCK_ASSERT(sc_if);
cons = sc_if->msk_cdata.msk_rx_cons;
do {
rxlen = status >> 16;
if ((status & GMR_FS_VLAN) != 0)
rxlen -= ETHER_VLAN_ENCAP_LEN;
if (len > sc_if->msk_framesize ||
((status & GMR_FS_ANY_ERR) != 0) ||
((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
/* Don't count flow-control packet as errors. */
if ((status & GMR_FS_GOOD_FC) == 0)
ifp->if_ierrors++;
msk_discard_jumbo_rxbuf(sc_if, cons);
break;
}
jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
m = jrxd->rx_m;
if (msk_jumbo_newbuf(sc_if, cons) != 0) {
ifp->if_iqdrops++;
/* Reuse old buffer. */
msk_discard_jumbo_rxbuf(sc_if, cons);
break;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
ifp->if_ipackets++;
/* Check for VLAN tagged packets. */
if ((status & GMR_FS_VLAN) != 0 &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
m->m_flags |= M_VLANTAG;
}
MSK_IF_UNLOCK(sc_if);
(*ifp->if_input)(ifp, m);
MSK_IF_LOCK(sc_if);
} while (0);
MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
}
static void
msk_txeof(struct msk_if_softc *sc_if, int idx)
{
struct msk_txdesc *txd;
struct msk_tx_desc *cur_tx;
struct ifnet *ifp;
uint32_t control;
int cons, prog;
MSK_IF_LOCK_ASSERT(sc_if);
ifp = sc_if->msk_ifp;
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
sc_if->msk_cdata.msk_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
cons = sc_if->msk_cdata.msk_tx_cons;
prog = 0;
for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
if (sc_if->msk_cdata.msk_tx_cnt <= 0)
break;
prog++;
cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
control = le32toh(cur_tx->msk_control);
sc_if->msk_cdata.msk_tx_cnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if ((control & EOP) == 0)
continue;
txd = &sc_if->msk_cdata.msk_txdesc[cons];
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
ifp->if_opackets++;
KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
__func__));
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
if (prog > 0) {
sc_if->msk_cdata.msk_tx_cons = cons;
if (sc_if->msk_cdata.msk_tx_cnt == 0)
sc_if->msk_watchdog_timer = 0;
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
/* No need to sync LEs as we didn't update LEs. */
}
}
static void
msk_tick(void *xsc_if)
{
struct msk_if_softc *sc_if;
struct mii_data *mii;
sc_if = xsc_if;
MSK_IF_LOCK_ASSERT(sc_if);
mii = device_get_softc(sc_if->msk_miibus);
mii_tick(mii);
msk_watchdog(sc_if);
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
}
static void
msk_intr_phy(struct msk_if_softc *sc_if)
{
uint16_t status;
if (sc_if->msk_softc->msk_marvell_phy) {
msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
status = msk_phy_readreg(sc_if, PHY_ADDR_MARV,
PHY_MARV_INT_STAT);
/* Handle FIFO Underrun/Overflow? */
if ((status & PHY_M_IS_FIFO_ERROR))
device_printf(sc_if->msk_if_dev,
"PHY FIFO underrun/overflow.\n");
}
}
static void
msk_intr_gmac(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
uint8_t status;
sc = sc_if->msk_softc;
status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
/* GMAC Rx FIFO overrun. */
if ((status & GM_IS_RX_FF_OR) != 0) {
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
GMF_CLI_RX_FO);
device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
}
/* GMAC Tx FIFO underrun. */
if ((status & GM_IS_TX_FF_UR) != 0) {
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
GMF_CLI_TX_FU);
device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
/*
* XXX
* In case of Tx underrun, we may need to flush/reset
* Tx MAC but that would also require resynchronization
* with status LEs. Reintializing status LEs would
* affect other port in dual MAC configuration so it
* should be avoided as possible as we can.
* Due to lack of documentation it's all vague guess but
* it needs more investigation.
*/
}
}
static void
msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
{
struct msk_softc *sc;
sc = sc_if->msk_softc;
if ((status & Y2_IS_PAR_RD1) != 0) {
device_printf(sc_if->msk_if_dev,
"RAM buffer read parity error\n");
/* Clear IRQ. */
CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
RI_CLR_RD_PERR);
}
if ((status & Y2_IS_PAR_WR1) != 0) {
device_printf(sc_if->msk_if_dev,
"RAM buffer write parity error\n");
/* Clear IRQ. */
CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
RI_CLR_WR_PERR);
}
if ((status & Y2_IS_PAR_MAC1) != 0) {
device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
/* Clear IRQ. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
GMF_CLI_TX_PE);
}
if ((status & Y2_IS_PAR_RX1) != 0) {
device_printf(sc_if->msk_if_dev, "Rx parity error\n");
/* Clear IRQ. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
}
if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
/* Clear IRQ. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
}
}
static void
msk_intr_hwerr(struct msk_softc *sc)
{
uint32_t status;
uint32_t tlphead[4];
status = CSR_READ_4(sc, B0_HWE_ISRC);
/* Time Stamp timer overflow. */
if ((status & Y2_IS_TIST_OV) != 0)
CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
if ((status & Y2_IS_PCI_NEXP) != 0) {
/*
* PCI Express Error occured which is not described in PEX
* spec.
* This error is also mapped either to Master Abort(
* Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
* can only be cleared there.
*/
device_printf(sc->msk_dev,
"PCI Express protocol violation error\n");
}
if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
uint16_t v16;
if ((status & Y2_IS_MST_ERR) != 0)
device_printf(sc->msk_dev,
"unexpected IRQ Status error\n");
else
device_printf(sc->msk_dev,
"unexpected IRQ Master error\n");
/* Reset all bits in the PCI status register. */
v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
/* Check for PCI Express Uncorrectable Error. */
if ((status & Y2_IS_PCI_EXP) != 0) {
uint32_t v32;
/*
* On PCI Express bus bridges are called root complexes (RC).
* PCI Express errors are recognized by the root complex too,
* which requests the system to handle the problem. After
* error occurence it may be that no access to the adapter
* may be performed any longer.
*/
v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
if ((v32 & PEX_UNSUP_REQ) != 0) {
/* Ignore unsupported request error. */
device_printf(sc->msk_dev,
"Uncorrectable PCI Express error\n");
}
if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
int i;
/* Get TLP header form Log Registers. */
for (i = 0; i < 4; i++)
tlphead[i] = CSR_PCI_READ_4(sc,
PEX_HEADER_LOG + i * 4);
/* Check for vendor defined broadcast message. */
if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
CSR_WRITE_4(sc, B0_HWE_IMSK,
sc->msk_intrhwemask);
CSR_READ_4(sc, B0_HWE_IMSK);
}
}
/* Clear the interrupt. */
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
}
static __inline void
msk_rxput(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
sc = sc_if->msk_softc;
if (sc_if->msk_framesize >(MCLBYTES - ETHER_HDR_LEN))
bus_dmamap_sync(
sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
sc_if->msk_cdata.msk_jumbo_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
else
bus_dmamap_sync(
sc_if->msk_cdata.msk_rx_ring_tag,
sc_if->msk_cdata.msk_rx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
}
static int
msk_handle_events(struct msk_softc *sc)
{
struct msk_if_softc *sc_if;
int rxput[2];
struct msk_stat_desc *sd;
uint32_t control, status;
int cons, idx, len, port, rxprog;
idx = CSR_READ_2(sc, STAT_PUT_IDX);
if (idx == sc->msk_stat_cons)
return (0);
/* Sync status LEs. */
bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* XXX Sync Rx LEs here. */
rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
rxprog = 0;
for (cons = sc->msk_stat_cons; cons != idx;) {
sd = &sc->msk_stat_ring[cons];
control = le32toh(sd->msk_control);
if ((control & HW_OWNER) == 0)
break;
/*
* Marvell's FreeBSD driver updates status LE after clearing
* HW_OWNER. However we don't have a way to sync single LE
* with bus_dma(9) API. bus_dma(9) provides a way to sync
* an entire DMA map. So don't sync LE until we have a better
* way to sync LEs.
*/
control &= ~HW_OWNER;
sd->msk_control = htole32(control);
status = le32toh(sd->msk_status);
len = control & STLE_LEN_MASK;
port = (control >> 16) & 0x01;
sc_if = sc->msk_if[port];
if (sc_if == NULL) {
device_printf(sc->msk_dev, "invalid port opcode "
"0x%08x\n", control & STLE_OP_MASK);
continue;
}
switch (control & STLE_OP_MASK) {
case OP_RXVLAN:
sc_if->msk_vtag = ntohs(len);
break;
case OP_RXCHKSVLAN:
sc_if->msk_vtag = ntohs(len);
break;
case OP_RXSTAT:
if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
msk_jumbo_rxeof(sc_if, status, len);
else
msk_rxeof(sc_if, status, len);
rxprog++;
/*
* Because there is no way to sync single Rx LE
* put the DMA sync operation off until the end of
* event processing.
*/
rxput[port]++;
/* Update prefetch unit if we've passed water mark. */
if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
msk_rxput(sc_if);
rxput[port] = 0;
}
break;
case OP_TXINDEXLE:
if (sc->msk_if[MSK_PORT_A] != NULL)
msk_txeof(sc->msk_if[MSK_PORT_A],
status & STLE_TXA1_MSKL);
if (sc->msk_if[MSK_PORT_B] != NULL)
msk_txeof(sc->msk_if[MSK_PORT_B],
((status & STLE_TXA2_MSKL) >>
STLE_TXA2_SHIFTL) |
((len & STLE_TXA2_MSKH) <<
STLE_TXA2_SHIFTH));
break;
default:
device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
control & STLE_OP_MASK);
break;
}
MSK_INC(cons, MSK_STAT_RING_CNT);
if (rxprog > sc->msk_process_limit)
break;
}
sc->msk_stat_cons = cons;
/* XXX We should sync status LEs here. See above notes. */
if (rxput[MSK_PORT_A] > 0)
msk_rxput(sc->msk_if[MSK_PORT_A]);
if (rxput[MSK_PORT_B] > 0)
msk_rxput(sc->msk_if[MSK_PORT_B]);
return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
}
static void
msk_intr(void *xsc)
{
struct msk_softc *sc;
uint32_t status;
sc = xsc;
status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
if (status == 0 || status == 0xffffffff) {
CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
return;
}
taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
}
static void
msk_int_task(void *arg, int pending)
{
struct msk_softc *sc;
struct msk_if_softc *sc_if0, *sc_if1;
struct ifnet *ifp0, *ifp1;
uint32_t status;
int domore;
sc = arg;
MSK_LOCK(sc);
/* Get interrupt source. */
status = CSR_READ_4(sc, B0_ISRC);
if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
(status & sc->msk_intrmask) == 0)
goto done;
sc_if0 = sc->msk_if[MSK_PORT_A];
sc_if1 = sc->msk_if[MSK_PORT_B];
ifp0 = ifp1 = NULL;
if (sc_if0 != NULL)
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
ifp0 = sc_if0->msk_ifp;
if (sc_if1 != NULL)
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
ifp1 = sc_if1->msk_ifp;
if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
msk_intr_phy(sc_if0);
if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
msk_intr_phy(sc_if1);
if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
msk_intr_gmac(sc_if0);
if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
msk_intr_gmac(sc_if1);
if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
device_printf(sc->msk_dev, "Rx descriptor error\n");
sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
CSR_READ_4(sc, B0_IMSK);
}
if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
device_printf(sc->msk_dev, "Tx descriptor error\n");
sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
CSR_READ_4(sc, B0_IMSK);
}
if ((status & Y2_IS_HW_ERR) != 0)
msk_intr_hwerr(sc);
domore = msk_handle_events(sc);
if ((status & Y2_IS_STAT_BMU) != 0)
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
!IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
!IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
if (domore > 0) {
taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
MSK_UNLOCK(sc);
return;
}
done:
MSK_UNLOCK(sc);
/* Reenable interrupts. */
CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
}
static void
msk_init(void *xsc)
{
struct msk_if_softc *sc_if = xsc;
MSK_IF_LOCK(sc_if);
msk_init_locked(sc_if);
MSK_IF_UNLOCK(sc_if);
}
static void
msk_init_locked(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
uint16_t eaddr[ETHER_ADDR_LEN / 2];
uint16_t gmac;
int error, i;
MSK_IF_LOCK_ASSERT(sc_if);
ifp = sc_if->msk_ifp;
sc = sc_if->msk_softc;
mii = device_get_softc(sc_if->msk_miibus);
error = 0;
/* Cancel pending I/O and free all Rx/Tx buffers. */
msk_stop(sc_if);
sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN +
ETHER_VLAN_ENCAP_LEN;
/*
* Initialize GMAC first.
* Without this initialization, Rx MAC did not work as expected
* and Rx MAC garbled status LEs and it resulted in out-of-order
* or duplicated frame delivery which in turn showed very poor
* Rx performance.(I had to write a packet analysis code that
* could be embeded in driver to diagnose this issue.)
* I've spent almost 2 months to fix this issue. If I have had
* datasheet for Yukon II I wouldn't have encountered this. :-(
*/
gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
/* Dummy read the Interrupt Source Register. */
CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
/* Set MIB Clear Counter Mode. */
gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
/* Read all MIB Counters with Clear Mode set. */
for (i = 0; i < GM_MIB_CNT_SIZE; i++)
GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
/* Clear MIB Clear Counter Mode. */
gmac &= ~GM_PAR_MIB_CLR;
GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
/* Disable FCS. */
GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
/* Setup Transmit Control Register. */
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
/* Setup Transmit Flow Control Register. */
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
/* Setup Transmit Parameter Register. */
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
gmac |= GM_SMOD_JUMBO_ENA;
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
/* Set station address. */
bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
for (i = 0; i < ETHER_ADDR_LEN /2; i++)
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
eaddr[i]);
for (i = 0; i < ETHER_ADDR_LEN /2; i++)
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
eaddr[i]);
/* Disable interrupts for counter overflows. */
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
/* Configure Rx MAC FIFO. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
GMF_OPER_ON | GMF_RX_F_FL_ON);
/* Set promiscuous mode. */
msk_setpromisc(sc_if);
/* Set multicast filter. */
msk_setmulti(sc_if);
/* Flush Rx MAC FIFO on any flow control or error. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
GMR_FS_ANY_ERR);
/* Set Rx FIFO flush threshold to 64 bytes. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
RX_GMF_FL_THR_DEF);
/* Configure Tx MAC FIFO. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
/* Configure hardware VLAN tag insertion/stripping. */
msk_setvlan(sc_if, ifp);
/* XXX It seems STFW is requried for all cases. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), TX_STFW_ENA);
if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
/* Set Rx Pause threshould. */
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
MSK_ECU_LLPP);
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
MSK_ECU_ULPP);
if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) {
/*
* Can't sure the following code is needed as Yukon
* Yukon EC Ultra may not support jumbo frames.
*
* Set Tx GMAC FIFO Almost Empty Threshold.
*/
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
MSK_ECU_AE_THR);
/* Disable Store & Forward mode for Tx. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
TX_STFW_DIS);
}
}
/*
* Disable Force Sync bit and Alloc bit in Tx RAM interface
* arbiter as we don't use Sync Tx queue.
*/
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Enable the RAM Interface Arbiter. */
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
/* Setup RAM buffer. */
msk_set_rambuffer(sc_if);
/* Disable Tx sync Queue. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
/* Setup Tx Queue Bus Memory Interface. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
/* Increase IPID when hardware generates IP packets in TSO. */
if ((ifp->if_hwassist & CSUM_TSO) != 0)
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
BMU_TX_IPIDINCR_ON);
else
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
BMU_TX_IPIDINCR_OFF);
CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
/* Fix for Yukon-EC Ultra: set BMU FIFO level */
CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
}
/* Setup Rx Queue Bus Memory Interface. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
/* MAC Rx RAM Read is controlled by hardware. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
}
msk_set_prefetch(sc, sc_if->msk_txq,
sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
msk_init_tx_ring(sc_if);
/* Disable Rx checksum offload and RSS hash. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
msk_set_prefetch(sc, sc_if->msk_rxq,
sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
MSK_JUMBO_RX_RING_CNT - 1);
error = msk_init_jumbo_rx_ring(sc_if);
} else {
msk_set_prefetch(sc, sc_if->msk_rxq,
sc_if->msk_rdata.msk_rx_ring_paddr,
MSK_RX_RING_CNT - 1);
error = msk_init_rx_ring(sc_if);
}
if (error != 0) {
device_printf(sc_if->msk_if_dev,
"initialization failed: no memory for Rx buffers\n");
msk_stop(sc_if);
return;
}
/* Configure interrupt handling. */
if (sc_if->msk_port == MSK_PORT_A) {
sc->msk_intrmask |= Y2_IS_PORT_A;
sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
} else {
sc->msk_intrmask |= Y2_IS_PORT_B;
sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
}
CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
CSR_READ_4(sc, B0_HWE_IMSK);
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
CSR_READ_4(sc, B0_IMSK);
sc_if->msk_link = 0;
mii_mediachg(mii);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
}
static void
msk_set_rambuffer(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
int ltpp, utpp;
sc = sc_if->msk_softc;
/* Setup Rx Queue. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
sc->msk_rxqstart[sc_if->msk_port] / 8);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
sc->msk_rxqend[sc_if->msk_port] / 8);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
sc->msk_rxqstart[sc_if->msk_port] / 8);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
sc->msk_rxqstart[sc_if->msk_port] / 8);
utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
/* Setup Tx Queue. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
sc->msk_txqstart[sc_if->msk_port] / 8);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
sc->msk_txqend[sc_if->msk_port] / 8);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
sc->msk_txqstart[sc_if->msk_port] / 8);
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
sc->msk_txqstart[sc_if->msk_port] / 8);
/* Enable Store & Forward for Tx side. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
}
static void
msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
uint32_t count)
{
/* Reset the prefetch unit. */
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
PREF_UNIT_RST_SET);
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
PREF_UNIT_RST_CLR);
/* Set LE base address. */
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
MSK_ADDR_LO(addr));
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
MSK_ADDR_HI(addr));
/* Set the list last index. */
CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
count);
/* Turn on prefetch unit. */
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
PREF_UNIT_OP_ON);
/* Dummy read to ensure write. */
CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
}
static void
msk_stop(struct msk_if_softc *sc_if)
{
struct msk_softc *sc;
struct msk_txdesc *txd;
struct msk_rxdesc *rxd;
struct msk_rxdesc *jrxd;
struct ifnet *ifp;
uint32_t val;
int i;
MSK_IF_LOCK_ASSERT(sc_if);
sc = sc_if->msk_softc;
ifp = sc_if->msk_ifp;
callout_stop(&sc_if->msk_tick_ch);
sc_if->msk_watchdog_timer = 0;
Add msk(4), a driver for Marvell/SysKonnect Yukon II Gigabit Ethernet controller. Due to lack of documentation, this driver is based on the code from sk(4) and Marvell's myk(4) driver for FreeBSD. I've also adopted the OpenBSD interface name, msk(4) in order to reduce naming differences between BSDs. The msk(4) driver supports the following Gigabit Ethernet adapters. o SysKonnect SK-9Sxx Gigabit Ethernet o SysKonnect SK-9Exx Gigabit Ethernet o Marvell Yukon 88E8021CU Gigabit Ethernet o Marvell Yukon 88E8021 SX/LX Gigabit Ethernet o Marvell Yukon 88E8022CU Gigabit Ethernet o Marvell Yukon 88E8022 SX/LX Gigabit Ethernet o Marvell Yukon 88E8061CU Gigabit Ethernet o Marvell Yukon 88E8061 SX/LX Gigabit Ethernet o Marvell Yukon 88E8062CU Gigabit Ethernet o Marvell Yukon 88E8062 SX/LX Gigabit Ethernet o Marvell Yukon 88E8035 Gigabit Ethernet o Marvell Yukon 88E8036 Gigabit Ethernet o Marvell Yukon 88E8038 Gigabit Ethernet o Marvell Yukon 88E8050 Gigabit Ethernet o Marvell Yukon 88E8052 Gigabit Ethernet o Marvell Yukon 88E8053 Gigabit Ethernet o Marvell Yukon 88E8055 Gigabit Ethernet o Marvell Yukon 88E8056 Gigabit Ethernet o D-Link 550SX Gigabit Ethernet o D-Link 560T Gigabit Ethernet Unlike OpenBSD/NetBSD msk(4), the msk(4) driver supports all hardware features including TCP/UDP checksum offload for transmit, MSI, TCP segmentation offload(TSO), hardware VLAN tag stripping/insertion, and jumbo frames(up to 9022 bytes). The only unsupported hardware feature except RLMT is Rx checksum offload which I don't know how to make it work reliably. Known Issues: It seems msk(4) does not work on the second port of dual port NIC. (The first port works without problems.) Thanks to Marvell for releasing the BSD licensed myk(4) driver and thanks to all users helped fixing bugs. Tested by: bz, philip, bms, YAMAMOTO Shigeru < shigeru AT iij DOT ad DOT jp >, Dmitry Pryanishnikov < dmitry AT atlantis DOT dp DOT ua >, Jia-Shiun Li < jiashiun AT gmail DOT com >, David Duchscher < daved AT tamu DOT edu >, Arno J. Klaassen < arno AT heho DOT snv DOT jussieu DOT fr>, Nicolae Namolovan < adrenalinup AT gmail DOT com>, Andre Guibert de Bruet < andy AT siliconlandmark DOT com > current ML Tested on: i386, amd64
2006-12-13 02:30:11 +00:00
/* Disable interrupts. */
if (sc_if->msk_port == MSK_PORT_A) {
sc->msk_intrmask &= ~Y2_IS_PORT_A;
sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
} else {
sc->msk_intrmask &= ~Y2_IS_PORT_B;
sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
}
CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
CSR_READ_4(sc, B0_HWE_IMSK);
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
CSR_READ_4(sc, B0_IMSK);
/* Disable Tx/Rx MAC. */
val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
/* Read again to ensure writing. */
GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
/* Stop Tx BMU. */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
for (i = 0; i < MSK_TIMEOUT; i++) {
if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
BMU_STOP);
CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
} else
break;
DELAY(1);
}
if (i == MSK_TIMEOUT)
device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
RB_RST_SET | RB_DIS_OP_MD);
/* Disable all GMAC interrupt. */
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
/* Disable PHY interrupt. */
if (sc->msk_marvell_phy)
msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
/* Disable the RAM Interface Arbiter. */
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
/* Reset the PCI FIFO of the async Tx queue */
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
BMU_RST_SET | BMU_FIFO_RST);
/* Reset the Tx prefetch units. */
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
PREF_UNIT_RST_SET);
/* Reset the RAM Buffer async Tx queue. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
/* Reset Tx MAC FIFO. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
/* Set Pause Off. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
/*
* The Rx Stop command will not work for Yukon-2 if the BMU does not
* reach the end of packet and since we can't make sure that we have
* incoming data, we must reset the BMU while it is not during a DMA
* transfer. Since it is possible that the Rx path is still active,
* the Rx RAM buffer will be stopped first, so any possible incoming
* data will not trigger a DMA. After the RAM buffer is stopped, the
* BMU is polled until any DMA in progress is ended and only then it
* will be reset.
*/
/* Disable the RAM Buffer receive queue. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
for (i = 0; i < MSK_TIMEOUT; i++) {
if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
break;
DELAY(1);
}
if (i == MSK_TIMEOUT)
device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
BMU_RST_SET | BMU_FIFO_RST);
/* Reset the Rx prefetch unit. */
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
PREF_UNIT_RST_SET);
/* Reset the RAM Buffer receive queue. */
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
/* Reset Rx MAC FIFO. */
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
/* Free Rx and Tx mbufs still in the queues. */
for (i = 0; i < MSK_RX_RING_CNT; i++) {
rxd = &sc_if->msk_cdata.msk_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
if (jrxd->rx_m != NULL) {
bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
jrxd->rx_dmamap);
m_freem(jrxd->rx_m);
jrxd->rx_m = NULL;
}
}
for (i = 0; i < MSK_TX_RING_CNT; i++) {
txd = &sc_if->msk_cdata.msk_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
/*
* Mark the interface down.
*/
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc_if->msk_link = 0;
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (!arg1)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
MSK_PROC_MAX));
}