freebsd-skq/sys/dev/nfe/if_nfe.c

2145 lines
53 KiB
C
Raw Normal View History

/* $OpenBSD: if_nfe.c,v 1.54 2006/04/07 12:38:12 jsg Exp $ */
/*-
* Copyright (c) 2006 Shigeaki Tagashira <shigeaki@se.hiroshima-u.ac.jp>
* Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/* Uncomment the following line to enable polling. */
/* #define DEVICE_POLLING */
#define NFE_NO_JUMBO
#define NFE_CSUM
#define NFE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
#define NVLAN 0
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/taskqueue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/nfe/if_nfereg.h>
#include <dev/nfe/if_nfevar.h>
MODULE_DEPEND(nfe, pci, 1, 1, 1);
MODULE_DEPEND(nfe, ether, 1, 1, 1);
MODULE_DEPEND(nfe, miibus, 1, 1, 1);
#include "miibus_if.h"
static int nfe_probe (device_t);
static int nfe_attach (device_t);
static int nfe_detach (device_t);
static void nfe_shutdown(device_t);
static int nfe_miibus_readreg (device_t, int, int);
static int nfe_miibus_writereg (device_t, int, int, int);
static void nfe_miibus_statchg (device_t);
static int nfe_ioctl(struct ifnet *, u_long, caddr_t);
static void nfe_intr(void *);
static void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
static void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
static void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
static void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
static void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
static void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
static void nfe_rxeof(struct nfe_softc *);
static void nfe_txeof(struct nfe_softc *);
static int nfe_encap(struct nfe_softc *, struct mbuf *);
static struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
static void nfe_jfree(void *, void *);
static int nfe_jpool_alloc(struct nfe_softc *);
static void nfe_jpool_free(struct nfe_softc *);
static void nfe_setmulti(struct nfe_softc *);
static void nfe_start(struct ifnet *);
static void nfe_start_locked(struct ifnet *);
static void nfe_watchdog(struct ifnet *);
static void nfe_init(void *);
static void nfe_init_locked(void *);
static void nfe_stop(struct ifnet *, int);
static int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
static void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
static void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
static int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
static void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
static void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
static int nfe_ifmedia_upd(struct ifnet *);
static int nfe_ifmedia_upd_locked(struct ifnet *);
static void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void nfe_tick(void *);
static void nfe_tick_locked(struct nfe_softc *);
static void nfe_get_macaddr(struct nfe_softc *, u_char *);
static void nfe_set_macaddr(struct nfe_softc *, u_char *);
static void nfe_dma_map_segs (void *, bus_dma_segment_t *, int, int);
#ifdef DEVICE_POLLING
static void nfe_poll_locked(struct ifnet *, enum poll_cmd, int);
#endif
#ifdef NFE_DEBUG
int nfedebug = 0;
#define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
#define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#define NFE_LOCK(_sc) mtx_lock(&(_sc)->nfe_mtx)
#define NFE_UNLOCK(_sc) mtx_unlock(&(_sc)->nfe_mtx)
#define NFE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->nfe_mtx, MA_OWNED)
#define letoh16(x) le16toh(x)
#define NV_RID 0x10
static device_method_t nfe_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, nfe_probe),
DEVMETHOD(device_attach, nfe_attach),
DEVMETHOD(device_detach, nfe_detach),
DEVMETHOD(device_shutdown, nfe_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, nfe_miibus_readreg),
DEVMETHOD(miibus_writereg, nfe_miibus_writereg),
DEVMETHOD(miibus_statchg, nfe_miibus_statchg),
{ 0, 0 }
};
static driver_t nfe_driver = {
"nfe",
nfe_methods,
sizeof(struct nfe_softc)
};
static devclass_t nfe_devclass;
DRIVER_MODULE(nfe, pci, nfe_driver, nfe_devclass, 0, 0);
DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
static struct nfe_type nfe_devs[] = {
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
"NVIDIA nForce Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
"NVIDIA nForce2 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
"NVIDIA nForce3 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1,
"NVIDIA nForce2 400 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2,
"NVIDIA nForce2 400 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN,
"NVIDIA nForce3 250 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
"NVIDIA nForce3 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN1,
"NVIDIA nForce4 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE4_LAN2,
"NVIDIA nForce4 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
"NVIDIA nForce MCP04 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
"NVIDIA nForce MCP04 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN1,
"NVIDIA nForce 430 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE430_LAN2,
"NVIDIA nForce 430 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
"NVIDIA nForce MCP55 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
"NVIDIA nForce MCP55 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
"NVIDIA nForce MCP61 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
"NVIDIA nForce MCP65 Networking Adapter"},
{PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
"NVIDIA nForce MCP65 Networking Adapter"},
{0, 0, NULL}
};
/* Probe for supported hardware ID's */
static int
nfe_probe(device_t dev)
{
struct nfe_type *t;
t = nfe_devs;
/* Check for matching PCI DEVICE ID's */
while (t->name != NULL) {
if ((pci_get_vendor(dev) == t->vid_id) &&
(pci_get_device(dev) == t->dev_id)) {
device_set_desc(dev, t->name);
return (0);
}
t++;
}
return (ENXIO);
}
static int
nfe_attach(device_t dev)
{
struct nfe_softc *sc;
struct ifnet *ifp;
int unit, error = 0, rid;
sc = device_get_softc(dev);
unit = device_get_unit(dev);
sc->nfe_dev = dev;
sc->nfe_unit = unit;
mtx_init(&sc->nfe_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
callout_init_mtx(&sc->nfe_stat_ch, &sc->nfe_mtx, 0);
pci_enable_busmaster(dev);
rid = NV_RID;
sc->nfe_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->nfe_res == NULL) {
printf ("nfe%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->nfe_memt = rman_get_bustag(sc->nfe_res);
sc->nfe_memh = rman_get_bushandle(sc->nfe_res);
/* Allocate interrupt */
rid = 0;
sc->nfe_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
if (sc->nfe_irq == NULL) {
printf("nfe%d: couldn't map interrupt\n", unit);
error = ENXIO;
goto fail;
}
nfe_get_macaddr(sc, sc->eaddr);
sc->nfe_flags = 0;
switch (pci_get_device(dev)) {
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
break;
case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
sc->nfe_flags |= NFE_40BIT_ADDR;
break;
case PCI_PRODUCT_NVIDIA_CK804_LAN1:
case PCI_PRODUCT_NVIDIA_CK804_LAN2:
case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
break;
case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_HW_VLAN;
break;
case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
sc->nfe_flags |= NFE_40BIT_ADDR;
break;
case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
sc->nfe_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
break;
}
#ifndef NFE_NO_JUMBO
/* enable jumbo frames for adapters that support it */
if (sc->nfe_flags & NFE_JUMBO_SUP)
sc->nfe_flags |= NFE_USE_JUMBO;
#endif
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
#define NFE_NSEG_NEW 32
error = bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, NFE_NSEG_NEW, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->nfe_parent_tag);
if (error)
goto fail;
/*
* Allocate Tx and Rx rings.
*/
if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
printf("nfe%d: could not allocate Tx ring\n", unit);
error = ENXIO;
goto fail;
}
if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
printf("nfe%d: could not allocate Rx ring\n", unit);
nfe_free_tx_ring(sc, &sc->txq);
error = ENXIO;
goto fail;
}
ifp = sc->nfe_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
printf("nfe%d: can not if_alloc()\n", unit);
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = nfe_ioctl;
ifp->if_start = nfe_start;
/* ifp->if_hwassist = NFE_CSUM_FEATURES; */
ifp->if_watchdog = nfe_watchdog;
ifp->if_init = nfe_init;
ifp->if_baudrate = IF_Gbps(1);
ifp->if_snd.ifq_maxlen = NFE_IFQ_MAXLEN;
ifp->if_capabilities = IFCAP_VLAN_MTU;
#if NVLAN > 0
if (sc->nfe_flags & NFE_HW_VLAN)
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
#endif
#ifdef NFE_CSUM
if (sc->nfe_flags & NFE_HW_CSUM) {
ifp->if_capabilities |= IFCAP_HWCSUM;
}
#endif
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/* Do MII setup */
if (mii_phy_probe(dev, &sc->nfe_miibus, nfe_ifmedia_upd, nfe_ifmedia_sts)) {
printf("nfe%d: MII without any phy!\n", unit);
error = ENXIO;
goto fail;
}
ether_ifattach(ifp, sc->eaddr);
error = bus_setup_intr(dev, sc->nfe_irq, INTR_TYPE_NET|INTR_MPSAFE,
nfe_intr, sc, &sc->nfe_intrhand);
if (error) {
printf("nfe%d: couldn't set up irq\n", unit);
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
nfe_detach(dev);
return (error);
}
static int
nfe_detach(device_t dev)
{
struct nfe_softc *sc;
struct ifnet *ifp;
u_char eaddr[ETHER_ADDR_LEN];
int i;
sc = device_get_softc(dev);
KASSERT(mtx_initialized(&sc->nfe_mtx), ("nfe mutex not initialized"));
ifp = sc->nfe_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
for (i = 0; i < ETHER_ADDR_LEN; i++) {
eaddr[i] = sc->eaddr[5 - i];
}
nfe_set_macaddr(sc, eaddr);
if (device_is_attached(dev)) {
nfe_stop(ifp, 1);
ifp->if_flags &= ~IFF_UP;
callout_drain(&sc->nfe_stat_ch);
ether_ifdetach(ifp);
}
if (ifp)
if_free(ifp);
if (sc->nfe_miibus)
device_delete_child(dev, sc->nfe_miibus);
bus_generic_detach(dev);
if (sc->nfe_intrhand)
bus_teardown_intr(dev, sc->nfe_irq, sc->nfe_intrhand);
if (sc->nfe_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nfe_irq);
if (sc->nfe_res)
bus_release_resource(dev, SYS_RES_MEMORY, NV_RID, sc->nfe_res);
nfe_free_tx_ring(sc, &sc->txq);
nfe_free_rx_ring(sc, &sc->rxq);
if (sc->nfe_parent_tag)
bus_dma_tag_destroy(sc->nfe_parent_tag);
mtx_destroy(&sc->nfe_mtx);
return (0);
}
static void
nfe_miibus_statchg(device_t dev)
{
struct nfe_softc *sc;
struct mii_data *mii;
u_int32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
sc = device_get_softc(dev);
mii = device_get_softc(sc->nfe_miibus);
phy = NFE_READ(sc, NFE_PHY_IFACE);
phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
seed = NFE_READ(sc, NFE_RNDSEED);
seed &= ~NFE_SEED_MASK;
if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
phy |= NFE_PHY_HDX; /* half-duplex */
misc |= NFE_MISC1_HDX;
}
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T: /* full-duplex only */
link |= NFE_MEDIA_1000T;
seed |= NFE_SEED_1000T;
phy |= NFE_PHY_1000T;
break;
case IFM_100_TX:
link |= NFE_MEDIA_100TX;
seed |= NFE_SEED_100TX;
phy |= NFE_PHY_100TX;
break;
case IFM_10_T:
link |= NFE_MEDIA_10T;
seed |= NFE_SEED_10T;
break;
}
NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
NFE_WRITE(sc, NFE_PHY_IFACE, phy);
NFE_WRITE(sc, NFE_MISC1, misc);
NFE_WRITE(sc, NFE_LINKSPEED, link);
}
static int
nfe_miibus_readreg(device_t dev, int phy, int reg)
{
struct nfe_softc *sc = device_get_softc(dev);
u_int32_t val;
int ntries;
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
DELAY(100);
}
NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
for (ntries = 0; ntries < 1000; ntries++) {
DELAY(100);
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
break;
}
if (ntries == 1000) {
DPRINTFN(2, ("nfe%d: timeout waiting for PHY\n", sc->nfe_unit));
return 0;
}
if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
DPRINTFN(2, ("nfe%d: could not read PHY\n", sc->nfe_unit));
return 0;
}
val = NFE_READ(sc, NFE_PHY_DATA);
if (val != 0xffffffff && val != 0)
sc->mii_phyaddr = phy;
DPRINTFN(2, ("nfe%d: mii read phy %d reg 0x%x ret 0x%x\n", sc->nfe_unit, phy, reg, val));
return val;
}
static int
nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct nfe_softc *sc = device_get_softc(dev);
u_int32_t ctl;
int ntries;
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
DELAY(100);
}
NFE_WRITE(sc, NFE_PHY_DATA, val);
ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
NFE_WRITE(sc, NFE_PHY_CTL, ctl);
for (ntries = 0; ntries < 1000; ntries++) {
DELAY(100);
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
break;
}
#ifdef NFE_DEBUG
if (nfedebug >= 2 && ntries == 1000)
printf("could not write to PHY\n");
#endif
return 0;
}
static int
nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_rx_data *data;
struct nfe_jbuf *jbuf;
void **desc;
bus_addr_t physaddr;
int i, error, descsize;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = (void **)&ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = (void **)&ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
ring->cur = ring->next = 0;
ring->bufsz = MCLBYTES;
error = bus_dma_tag_create(sc->nfe_parent_tag,
PAGE_SIZE, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
NFE_RX_RING_COUNT * descsize, 1, /* maxsize, nsegments */
NFE_RX_RING_COUNT * descsize, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->rx_desc_tag);
if (error != 0) {
printf("nfe%d: could not create desc DMA tag\n", sc->nfe_unit);
goto fail;
}
/* allocate memory to desc */
error = bus_dmamem_alloc(ring->rx_desc_tag, (void **)desc, BUS_DMA_NOWAIT, &ring->rx_desc_map);
if (error != 0) {
printf("nfe%d: could not create desc DMA map\n", sc->nfe_unit);
goto fail;
}
/* map desc to device visible address space */
error = bus_dmamap_load(ring->rx_desc_tag, ring->rx_desc_map, *desc,
NFE_RX_RING_COUNT * descsize, nfe_dma_map_segs, &ring->rx_desc_segs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("nfe%d: could not load desc DMA map\n", sc->nfe_unit);
goto fail;
}
bzero(*desc, NFE_RX_RING_COUNT * descsize);
ring->rx_desc_addr = ring->rx_desc_segs.ds_addr;
ring->physaddr = ring->rx_desc_addr;
if (sc->nfe_flags & NFE_USE_JUMBO) {
ring->bufsz = NFE_JBYTES;
if ((error = nfe_jpool_alloc(sc)) != 0) {
printf("nfe%d: could not allocate jumbo frames\n", sc->nfe_unit);
goto fail;
}
}
/*
* Pre-allocate Rx buffers and populate Rx ring.
*/
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
data = &sc->rxq.data[i];
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
printf("nfe%d: could not allocate rx mbuf\n", sc->nfe_unit);
error = ENOMEM;
goto fail;
}
if (sc->nfe_flags & NFE_USE_JUMBO) {
if ((jbuf = nfe_jalloc(sc)) == NULL) {
printf("nfe%d: could not allocate jumbo buffer\n", sc->nfe_unit);
goto fail;
}
data->m->m_data = (void *)jbuf->buf;
data->m->m_len = data->m->m_pkthdr.len = NFE_JBYTES;
MEXTADD(data->m, jbuf->buf, NFE_JBYTES, nfe_jfree, (struct nfe_softc *)sc, 0, EXT_NET_DRV);
/* m_adj(data->m, ETHER_ALIGN); */
physaddr = jbuf->physaddr;
} else {
error = bus_dma_tag_create(sc->nfe_parent_tag,
ETHER_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, 1, /* maxsize, nsegments */
MCLBYTES, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&data->rx_data_tag);
if (error != 0) {
printf("nfe%d: could not create DMA map\n", sc->nfe_unit);
goto fail;
}
error = bus_dmamap_create(data->rx_data_tag, 0, &data->rx_data_map);
if (error != 0) {
printf("nfe%d: could not allocate mbuf cluster\n", sc->nfe_unit);
goto fail;
}
MCLGET(data->m, M_DONTWAIT);
if (!(data->m->m_flags & M_EXT)) {
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(data->rx_data_tag, data->rx_data_map, mtod(data->m, void *),
MCLBYTES, nfe_dma_map_segs, &data->rx_data_segs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("nfe%d: could not load rx buf DMA map\n", sc->nfe_unit);
goto fail;
}
data->rx_data_addr = data->rx_data_segs.ds_addr;
physaddr = data->rx_data_addr;
}
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->rxq.desc64[i];
#if defined(__LP64__)
desc64->physaddr[0] = htole32(physaddr >> 32);
#endif
desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
desc64->length = htole16(sc->rxq.bufsz);
desc64->flags = htole16(NFE_RX_READY);
} else {
desc32 = &sc->rxq.desc32[i];
desc32->physaddr = htole32(physaddr);
desc32->length = htole16(sc->rxq.bufsz);
desc32->flags = htole16(NFE_RX_READY);
}
}
bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map, BUS_DMASYNC_PREWRITE);
return 0;
fail: nfe_free_rx_ring(sc, ring);
return error;
}
static int
nfe_jpool_alloc(struct nfe_softc *sc)
{
struct nfe_rx_ring *ring = &sc->rxq;
struct nfe_jbuf *jbuf;
bus_addr_t physaddr;
caddr_t buf;
int i, error;
/*
* Allocate a big chunk of DMA'able memory.
*/
error = bus_dma_tag_create(sc->nfe_parent_tag,
PAGE_SIZE, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
NFE_JPOOL_SIZE, 1, /* maxsize, nsegments */
NFE_JPOOL_SIZE, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->rx_jumbo_tag);
if (error != 0) {
printf("nfe%d: could not create jumbo DMA tag\n", sc->nfe_unit);
goto fail;
}
error = bus_dmamem_alloc(ring->rx_jumbo_tag, (void **)&ring->jpool, BUS_DMA_NOWAIT, &ring->rx_jumbo_map);
if (error != 0) {
printf("nfe%d: could not create jumbo DMA memory\n", sc->nfe_unit);
goto fail;
}
error = bus_dmamap_load(ring->rx_jumbo_tag, ring->rx_jumbo_map, ring->jpool,
NFE_JPOOL_SIZE, nfe_dma_map_segs, &ring->rx_jumbo_segs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("nfe%d: could not load jumbo DMA map\n", sc->nfe_unit);
goto fail;
}
/* ..and split it into 9KB chunks */
SLIST_INIT(&ring->jfreelist);
buf = ring->jpool;
ring->rx_jumbo_addr = ring->rx_jumbo_segs.ds_addr;
physaddr = ring->rx_jumbo_addr;
for (i = 0; i < NFE_JPOOL_COUNT; i++) {
jbuf = &ring->jbuf[i];
jbuf->buf = buf;
jbuf->physaddr = physaddr;
SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
buf += NFE_JBYTES;
physaddr += NFE_JBYTES;
}
return 0;
fail: nfe_jpool_free(sc);
return error;
}
static void
nfe_jpool_free(struct nfe_softc *sc)
{
struct nfe_rx_ring *ring = &sc->rxq;
if (ring->jpool != NULL) {
#if 0
bus_dmamem_unmap(ring->rx_jumbo_tag, ring->jpool, NFE_JPOOL_SIZE);
#endif
bus_dmamem_free(ring->rx_jumbo_tag, &ring->rx_jumbo_segs, ring->rx_jumbo_map);
}
if (ring->rx_jumbo_map != NULL) {
bus_dmamap_sync(ring->rx_jumbo_tag, ring->rx_jumbo_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->rx_jumbo_tag, ring->rx_jumbo_map);
bus_dmamap_destroy(ring->rx_jumbo_tag, ring->rx_jumbo_map);
}
}
static struct nfe_jbuf *
nfe_jalloc(struct nfe_softc *sc)
{
struct nfe_jbuf *jbuf;
jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
if (jbuf == NULL)
return NULL;
SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
return jbuf;
}
/*
* This is called automatically by the network stack when the mbuf is freed.
* Caution must be taken that the NIC might be reset by the time the mbuf is
* freed.
*/
static void
nfe_jfree(void *buf, void *arg)
{
struct nfe_softc *sc = arg;
struct nfe_jbuf *jbuf;
int i;
/* find the jbuf from the base pointer */
i = ((vm_offset_t)buf - (vm_offset_t)sc->rxq.jpool) / NFE_JBYTES;
if (i < 0 || i >= NFE_JPOOL_COUNT) {
printf("nfe%d: request to free a buffer (%p) not managed by us\n", sc->nfe_unit, buf);
return;
}
jbuf = &sc->rxq.jbuf[i];
/* ..and put it back in the free list */
SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
}
static void
nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
int i;
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
if (sc->nfe_flags & NFE_40BIT_ADDR) {
ring->desc64[i].length = htole16(ring->bufsz);
ring->desc64[i].flags = htole16(NFE_RX_READY);
} else {
ring->desc32[i].length = htole16(ring->bufsz);
ring->desc32[i].flags = htole16(NFE_RX_READY);
}
}
bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map, BUS_DMASYNC_PREWRITE);
ring->cur = ring->next = 0;
}
static void
nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
struct nfe_rx_data *data;
void *desc;
int i, descsize;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
if (desc != NULL) {
bus_dmamap_sync(ring->rx_desc_tag, ring->rx_desc_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->rx_desc_tag, ring->rx_desc_map);
bus_dmamem_free(ring->rx_desc_tag, desc, ring->rx_desc_map);
bus_dma_tag_destroy(ring->rx_desc_tag);
}
if (sc->nfe_flags & NFE_USE_JUMBO) {
nfe_jpool_free(sc);
} else {
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->rx_data_map != NULL) {
bus_dmamap_sync(data->rx_data_tag, data->rx_data_map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(data->rx_data_tag, data->rx_data_map);
bus_dmamap_destroy(data->rx_data_tag, data->rx_data_map);
bus_dma_tag_destroy(data->rx_data_tag);
}
if (data->m != NULL)
m_freem(data->m);
}
}
}
static int
nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
int i, error;
void **desc;
int descsize;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = (void **)&ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = (void **)&ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
ring->queued = 0;
ring->cur = ring->next = 0;
error = bus_dma_tag_create(sc->nfe_parent_tag,
PAGE_SIZE, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
NFE_TX_RING_COUNT * descsize, 1, /* maxsize, nsegments */
NFE_TX_RING_COUNT * descsize, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ring->tx_desc_tag);
if (error != 0) {
printf("nfe%d: could not create desc DMA tag\n", sc->nfe_unit);
goto fail;
}
error = bus_dmamem_alloc(ring->tx_desc_tag, (void **)desc, BUS_DMA_NOWAIT, &ring->tx_desc_map);
if (error != 0) {
printf("nfe%d: could not create desc DMA map\n", sc->nfe_unit);
goto fail;
}
error = bus_dmamap_load(ring->tx_desc_tag, ring->tx_desc_map, *desc,
NFE_TX_RING_COUNT * descsize, nfe_dma_map_segs, &ring->tx_desc_segs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("nfe%d: could not load desc DMA map\n", sc->nfe_unit);
goto fail;
}
bzero(*desc, NFE_TX_RING_COUNT * descsize);
ring->tx_desc_addr = ring->tx_desc_segs.ds_addr;
ring->physaddr = ring->tx_desc_addr;
error = bus_dma_tag_create(sc->nfe_parent_tag,
ETHER_ALIGN, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
NFE_JBYTES, NFE_MAX_SCATTER,
NFE_JBYTES,
BUS_DMA_ALLOCNOW,
NULL, NULL,
&ring->tx_data_tag);
if (error != 0) {
printf("nfe%d: could not create DMA tag\n", sc->nfe_unit);
goto fail;
}
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
error = bus_dmamap_create(ring->tx_data_tag, 0, &ring->data[i].tx_data_map);
if (error != 0) {
printf("nfe%d: could not create DMA map\n", sc->nfe_unit);
goto fail;
}
}
return 0;
fail: nfe_free_tx_ring(sc, ring);
return error;
}
static void
nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
struct nfe_tx_data *data;
int i;
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
if (sc->nfe_flags & NFE_40BIT_ADDR)
ring->desc64[i].flags = 0;
else
ring->desc32[i].flags = 0;
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->tx_data_tag, data->active, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->tx_data_tag, data->active);
m_freem(data->m);
data->m = NULL;
}
}
bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map, BUS_DMASYNC_PREWRITE);
ring->queued = 0;
ring->cur = ring->next = 0;
}
static void
nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
struct nfe_tx_data *data;
void *desc;
int i, descsize;
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
if (desc != NULL) {
bus_dmamap_sync(ring->tx_desc_tag, ring->tx_desc_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->tx_desc_tag, ring->tx_desc_map);
bus_dmamem_free(ring->tx_desc_tag, desc, ring->tx_desc_map);
bus_dma_tag_destroy(ring->tx_desc_tag);
}
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->tx_data_tag, data->active, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->tx_data_tag, data->active);
m_freem(data->m);
}
}
/* ..and now actually destroy the DMA mappings */
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->tx_data_map == NULL)
continue;
bus_dmamap_destroy(ring->tx_data_tag, data->tx_data_map);
}
bus_dma_tag_destroy(ring->tx_data_tag);
}
#ifdef DEVICE_POLLING
static poll_handler_t nfe_poll;
static void
nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct nfe_softc *sc = ifp->if_softc;
NFE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
nfe_poll_locked(ifp, cmd, count);
NFE_UNLOCK(sc);
}
static void
nfe_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct nfe_softc *sc = ifp->if_softc;
u_int32_t r;
NFE_LOCK_ASSERT(sc);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
return;
}
sc->rxcycles = count;
nfe_rxeof(sc);
nfe_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
nfe_start_locked(ifp);
if (cmd == POLL_AND_CHECK_STATUS) {
if ((r = NFE_READ(sc, NFE_IRQ_STATUS)) == 0) {
return;
}
NFE_WRITE(sc, NFE_IRQ_STATUS, r);
if (r & NFE_IRQ_LINK) {
NFE_READ(sc, NFE_PHY_STATUS);
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
DPRINTF(("nfe%d: link state changed\n", sc->nfe_unit));
}
}
}
#endif /* DEVICE_POLLING */
static int
nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
int error = 0;
struct nfe_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN ||
((sc->nfe_flags & NFE_USE_JUMBO) &&
ifr->ifr_mtu > ETHERMTU_JUMBO) ||
(!(sc->nfe_flags & NFE_USE_JUMBO) &&
ifr->ifr_mtu > ETHERMTU))
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
ifp->if_mtu = ifr->ifr_mtu;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
nfe_init(sc);
}
break;
case SIOCSIFFLAGS:
NFE_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
/*
* If only the PROMISC or ALLMULTI flag changes, then
* don't do a full re-init of the chip, just update
* the Rx filter.
*/
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) &&
((ifp->if_flags ^ sc->nfe_if_flags) &
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
nfe_setmulti(sc);
else
nfe_init_locked(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
nfe_stop(ifp, 1);
}
sc->nfe_if_flags = ifp->if_flags;
NFE_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
NFE_LOCK(sc);
nfe_setmulti(sc);
NFE_UNLOCK(sc);
error = 0;
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->nfe_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
{
int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(nfe_poll, ifp);
if (error)
return(error);
NFE_LOCK(sc);
NFE_WRITE(sc, NFE_IRQ_MASK, 0);
ifp->if_capenable |= IFCAP_POLLING;
NFE_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupt even in error case */
NFE_LOCK(sc);
NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
ifp->if_capenable &= ~IFCAP_POLLING;
NFE_UNLOCK(sc);
}
}
#endif
if (mask & IFCAP_HWCSUM) {
ifp->if_capenable ^= IFCAP_HWCSUM;
if (IFCAP_HWCSUM & ifp->if_capenable &&
IFCAP_HWCSUM & ifp->if_capabilities)
ifp->if_hwassist = NFE_CSUM_FEATURES;
else
ifp->if_hwassist = 0;
}
}
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return error;
}
static void nfe_intr(void *arg)
{
struct nfe_softc *sc = arg;
struct ifnet *ifp = sc->nfe_ifp;
u_int32_t r;
NFE_LOCK(sc);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
NFE_UNLOCK(sc);
return;
}
#endif
if ((r = NFE_READ(sc, NFE_IRQ_STATUS)) == 0) {
NFE_UNLOCK(sc);
return; /* not for us */
}
NFE_WRITE(sc, NFE_IRQ_STATUS, r);
DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
NFE_WRITE(sc, NFE_IRQ_MASK, 0);
if (r & NFE_IRQ_LINK) {
NFE_READ(sc, NFE_PHY_STATUS);
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
DPRINTF(("nfe%d: link state changed\n", sc->nfe_unit));
}
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* check Rx ring */
nfe_rxeof(sc);
/* check Tx ring */
nfe_txeof(sc);
}
NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
nfe_start_locked(ifp);
NFE_UNLOCK(sc);
return;
}
static void
nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
{
bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, ops);
}
static void
nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
{
bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, ops);
}
static void
nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
{
bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, ops);
}
static void
nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
{
bus_dmamap_sync(sc->txq.tx_desc_tag, sc->txq.tx_desc_map, ops);
}
static void
nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
{
bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map, ops);
}
static void
nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
{
bus_dmamap_sync(sc->rxq.rx_desc_tag, sc->rxq.rx_desc_map, ops);
}
static void nfe_rxeof(struct nfe_softc *sc)
{
struct ifnet *ifp = sc->nfe_ifp;
struct nfe_desc32 *desc32=NULL;
struct nfe_desc64 *desc64=NULL;
struct nfe_rx_data *data;
struct nfe_jbuf *jbuf;
struct mbuf *m, *mnew;
bus_addr_t physaddr;
u_int16_t flags;
int error, len;
#if NVLAN > 1
u_int16_t vlan_tag = 0;
int have_tag = 0;
#endif
NFE_LOCK_ASSERT(sc);
for (;;) {
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif
data = &sc->rxq.data[sc->rxq.cur];
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->rxq.desc64[sc->rxq.cur];
nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
flags = letoh16(desc64->flags);
len = letoh16(desc64->length) & 0x3fff;
#if NVLAN > 1
if (flags & NFE_TX_VLAN_TAG) {
have_tag = 1;
vlan_tag = desc64->vtag;
}
#endif
} else {
desc32 = &sc->rxq.desc32[sc->rxq.cur];
nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
flags = letoh16(desc32->flags);
len = letoh16(desc32->length) & 0x3fff;
}
if (flags & NFE_RX_READY)
break;
if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
if (!(flags & NFE_RX_VALID_V1))
goto skip;
if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
} else {
if (!(flags & NFE_RX_VALID_V2))
goto skip;
if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
}
if (flags & NFE_RX_ERROR) {
ifp->if_ierrors++;
goto skip;
}
/*
* Try to allocate a new mbuf for this ring element and load
* it before processing the current mbuf. If the ring element
* cannot be loaded, drop the received packet and reuse the
* old mbuf. In the unlikely case that the old mbuf can't be
* reloaded either, explicitly panic.
*/
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
ifp->if_ierrors++;
goto skip;
}
if (sc->nfe_flags & NFE_USE_JUMBO) {
if ((jbuf = nfe_jalloc(sc)) == NULL) {
m_freem(mnew);
ifp->if_ierrors++;
goto skip;
}
mnew->m_data = (void *)jbuf->buf;
mnew->m_len = mnew->m_pkthdr.len = NFE_JBYTES;
MEXTADD(mnew, jbuf->buf, NFE_JBYTES, nfe_jfree,
(struct nfe_softc *)sc, 0 , EXT_NET_DRV);
bus_dmamap_sync(sc->rxq.rx_jumbo_tag,
sc->rxq.rx_jumbo_map, BUS_DMASYNC_POSTREAD);
physaddr = jbuf->physaddr;
} else {
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_freem(mnew);
ifp->if_ierrors++;
goto skip;
}
bus_dmamap_sync(data->rx_data_tag, data->rx_data_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(data->rx_data_tag, data->rx_data_map);
error = bus_dmamap_load(data->rx_data_tag,
data->rx_data_map, mtod(mnew, void *), MCLBYTES,
nfe_dma_map_segs, &data->rx_data_segs,
BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(data->rx_data_tag,
data->rx_data_map, mtod(data->m, void *),
MCLBYTES, nfe_dma_map_segs,
&data->rx_data_segs, BUS_DMA_NOWAIT);
if (error != 0) {
/* very unlikely that it will fail.. */
panic("nfe%d: could not load old rx mbuf",
sc->nfe_unit);
}
ifp->if_ierrors++;
goto skip;
}
data->rx_data_addr = data->rx_data_segs.ds_addr;
physaddr = data->rx_data_addr;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = data->m;
data->m = mnew;
/* finalize mbuf */
m->m_pkthdr.len = m->m_len = len;
m->m_pkthdr.rcvif = ifp;
#if defined(NFE_CSUM)
if ((sc->nfe_flags & NFE_HW_CSUM) && (flags & NFE_RX_CSUMOK)) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if (flags & NFE_RX_IP_CSUMOK_V2) {
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}
if (flags & NFE_RX_UDP_CSUMOK_V2 ||
flags & NFE_RX_TCP_CSUMOK_V2) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
#endif
#if NVLAN > 1
if (have_tag) {
m->m_pkthdr.ether_vtag = vlan_tag;
m->m_flags |= M_VLANTAG;
}
#endif
ifp->if_ipackets++;
NFE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
NFE_LOCK(sc);
/* update mapping address in h/w descriptor */
if (sc->nfe_flags & NFE_40BIT_ADDR) {
#if defined(__LP64__)
desc64->physaddr[0] = htole32(physaddr >> 32);
#endif
desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
} else {
desc32->physaddr = htole32(physaddr);
}
skip: if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64->length = htole16(sc->rxq.bufsz);
desc64->flags = htole16(NFE_RX_READY);
nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE);
} else {
desc32->length = htole16(sc->rxq.bufsz);
desc32->flags = htole16(NFE_RX_READY);
nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE);
}
sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT;
}
}
static void nfe_txeof(struct nfe_softc *sc)
{
struct ifnet *ifp = sc->nfe_ifp;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_tx_data *data = NULL;
u_int16_t flags;
NFE_LOCK_ASSERT(sc);
while (sc->txq.next != sc->txq.cur) {
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->txq.desc64[sc->txq.next];
nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
flags = letoh16(desc64->flags);
} else {
desc32 = &sc->txq.desc32[sc->txq.next];
nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
flags = letoh16(desc32->flags);
}
if (flags & NFE_TX_VALID)
break;
data = &sc->txq.data[sc->txq.next];
if ((sc->nfe_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
goto skip;
if ((flags & NFE_TX_ERROR_V1) != 0) {
printf("nfe%d: tx v1 error 0x%4b\n",
sc->nfe_unit, flags, NFE_V1_TXERR);
ifp->if_oerrors++;
} else
ifp->if_opackets++;
} else {
if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
goto skip;
if ((flags & NFE_TX_ERROR_V2) != 0) {
printf("nfe%d: tx v1 error 0x%4b\n",
sc->nfe_unit, flags, NFE_V2_TXERR);
ifp->if_oerrors++;
} else
ifp->if_opackets++;
}
if (data->m == NULL) { /* should not get there */
printf("nfe%d: last fragment bit w/o associated mbuf!\n",
sc->nfe_unit);
goto skip;
}
/* last fragment of the mbuf chain transmitted */
bus_dmamap_sync(sc->txq.tx_data_tag, data->active,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txq.tx_data_tag, data->active);
m_freem(data->m);
data->m = NULL;
ifp->if_timer = 0;
skip: sc->txq.queued--;
sc->txq.next = (sc->txq.next + 1) % NFE_TX_RING_COUNT;
}
if (data != NULL) { /* at least one slot freed */
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
nfe_start_locked(ifp);
}
}
static int nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
{
struct nfe_desc32 *desc32=NULL;
struct nfe_desc64 *desc64=NULL;
struct nfe_tx_data *data=NULL;
bus_dmamap_t map;
u_int16_t flags = NFE_TX_VALID;
bus_dma_segment_t segs[NFE_MAX_SCATTER];
int nsegs;
int error, i;
map = sc->txq.data[sc->txq.cur].tx_data_map;
error = bus_dmamap_load_mbuf_sg(sc->txq.tx_data_tag, map, m0, segs,
&nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("nfe%d: could not map mbuf (error %d)\n", sc->nfe_unit,
error);
return error;
}
if (sc->txq.queued + nsegs >= NFE_TX_RING_COUNT - 1) {
bus_dmamap_unload(sc->txq.tx_data_tag, map);
return ENOBUFS;
}
#ifdef NFE_CSUM
if (m0->m_pkthdr.csum_flags & CSUM_IP)
flags |= NFE_TX_IP_CSUM;
if (m0->m_pkthdr.csum_flags & CSUM_TCP)
flags |= NFE_TX_TCP_CSUM;
if (m0->m_pkthdr.csum_flags & CSUM_UDP)
flags |= NFE_TX_TCP_CSUM;
#endif
for (i = 0; i < nsegs; i++) {
data = &sc->txq.data[sc->txq.cur];
if (sc->nfe_flags & NFE_40BIT_ADDR) {
desc64 = &sc->txq.desc64[sc->txq.cur];
#if defined(__LP64__)
desc64->physaddr[0] = htole32(segs[i].ds_addr >> 32);
#endif
desc64->physaddr[1] = htole32(segs[i].ds_addr &
0xffffffff);
desc64->length = htole16(segs[i].ds_len - 1);
desc64->flags = htole16(flags);
#if NVLAN > 0
if (m0->m_flags & M_VLANTAG)
desc64->vtag = htole32(NFE_TX_VTAG |
m0->m_pkthdr.ether_vtag);
#endif
} else {
desc32 = &sc->txq.desc32[sc->txq.cur];
desc32->physaddr = htole32(segs[i].ds_addr);
desc32->length = htole16(segs[i].ds_len - 1);
desc32->flags = htole16(flags);
}
/* csum flags and vtag belong to the first fragment only */
if (nsegs > 1) {
flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
}
sc->txq.queued++;
sc->txq.cur = (sc->txq.cur + 1) % NFE_TX_RING_COUNT;
}
/* the whole mbuf chain has been DMA mapped, fix last descriptor */
if (sc->nfe_flags & NFE_40BIT_ADDR) {
flags |= NFE_TX_LASTFRAG_V2;
desc64->flags = htole16(flags);
} else {
if (sc->nfe_flags & NFE_JUMBO_SUP)
flags |= NFE_TX_LASTFRAG_V2;
else
flags |= NFE_TX_LASTFRAG_V1;
desc32->flags = htole16(flags);
}
data->m = m0;
data->active = map;
data->nsegs = nsegs;
bus_dmamap_sync(sc->txq.tx_data_tag, map, BUS_DMASYNC_PREWRITE);
return 0;
}
static void nfe_setmulti(struct nfe_softc *sc)
{
struct ifnet *ifp = sc->nfe_ifp;
struct ifmultiaddr *ifma;
u_int8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
u_int32_t filter = NFE_RXFILTER_MAGIC;
u_int8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
int i;
NFE_LOCK_ASSERT(sc);
if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
bzero(addr, ETHER_ADDR_LEN);
bzero(mask, ETHER_ADDR_LEN);
goto done;
}
bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
u_char *addrp;
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
addrp = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
for (i = 0; i < ETHER_ADDR_LEN; i++) {
u_int8_t mcaddr = addrp[i];
addr[i] &= mcaddr;
mask[i] &= ~mcaddr;
}
}
IF_ADDR_UNLOCK(ifp);
for (i = 0; i < ETHER_ADDR_LEN; i++) {
mask[i] |= addr[i];
}
done:
addr[0] |= 0x01; /* make sure multicast bit is set */
NFE_WRITE(sc, NFE_MULTIADDR_HI,
addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
NFE_WRITE(sc, NFE_MULTIADDR_LO,
addr[5] << 8 | addr[4]);
NFE_WRITE(sc, NFE_MULTIMASK_HI,
mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
NFE_WRITE(sc, NFE_MULTIMASK_LO,
mask[5] << 8 | mask[4]);
filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
NFE_WRITE(sc, NFE_RXFILTER, filter);
}
static void nfe_start(struct ifnet *ifp)
{
struct nfe_softc *sc;
sc = ifp->if_softc;
NFE_LOCK(sc);
nfe_start_locked(ifp);
NFE_UNLOCK(sc);
}
static void nfe_start_locked(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
int old = sc->txq.cur;
struct mbuf *m0;
if (!sc->nfe_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
return;
}
for (;;) {
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (nfe_encap(sc, m0) != 0) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
/* packet put in h/w queue, remove from s/w queue */
IFQ_DEQUEUE(&ifp->if_snd, m0);
BPF_MTAP(ifp, m0);
}
if (sc->txq.cur == old) { /* nothing sent */
return;
}
if (sc->nfe_flags & NFE_40BIT_ADDR)
nfe_txdesc64_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
else
nfe_txdesc32_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
/* kick Tx */
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void nfe_watchdog(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
printf("nfe%d: watchdog timeout\n", sc->nfe_unit);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
nfe_init(sc);
ifp->if_oerrors++;
return;
}
static void nfe_init(void *xsc)
{
struct nfe_softc *sc = xsc;
NFE_LOCK(sc);
nfe_init_locked(sc);
NFE_UNLOCK(sc);
return;
}
static void nfe_init_locked(void *xsc)
{
struct nfe_softc *sc = xsc;
struct ifnet *ifp = sc->nfe_ifp;
struct mii_data *mii;
u_int32_t tmp;
NFE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->nfe_miibus);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
return;
}
nfe_stop(ifp, 0);
NFE_WRITE(sc, NFE_TX_UNK, 0);
NFE_WRITE(sc, NFE_STATUS, 0);
sc->rxtxctl = NFE_RXTX_BIT2;
if (sc->nfe_flags & NFE_40BIT_ADDR)
sc->rxtxctl |= NFE_RXTX_V3MAGIC;
else if (sc->nfe_flags & NFE_JUMBO_SUP)
sc->rxtxctl |= NFE_RXTX_V2MAGIC;
#ifdef NFE_CSUM
if (sc->nfe_flags & NFE_HW_CSUM)
sc->rxtxctl |= NFE_RXTX_RXCSUM;
#endif
#if NVLAN > 0
/*
* Although the adapter is capable of stripping VLAN tags from received
* frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
* purpose. This will be done in software by our network stack.
*/
if (sc->nfe_flags & NFE_HW_VLAN)
sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
#endif
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
DELAY(10);
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
#if NVLAN
if (sc->nfe_flags & NFE_HW_VLAN)
NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
#endif
NFE_WRITE(sc, NFE_SETUP_R6, 0);
/* set MAC address */
nfe_set_macaddr(sc, sc->eaddr);
/* tell MAC where rings are in memory */
#ifdef __LP64__
NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
#endif
NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
#ifdef __LP64__
NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
#endif
NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
NFE_WRITE(sc, NFE_RING_SIZE,
(NFE_RX_RING_COUNT - 1) << 16 |
(NFE_TX_RING_COUNT - 1));
NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
/* force MAC to wakeup */
tmp = NFE_READ(sc, NFE_PWR_STATE);
NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
DELAY(10);
tmp = NFE_READ(sc, NFE_PWR_STATE);
NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
#if 1
/* configure interrupts coalescing/mitigation */
NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
#else
/* no interrupt mitigation: one interrupt per packet */
NFE_WRITE(sc, NFE_IMTIMER, 970);
#endif
NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
sc->rxtxctl &= ~NFE_RXTX_BIT2;
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
DELAY(10);
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
/* set Rx filter */
nfe_setmulti(sc);
nfe_ifmedia_upd(ifp);
nfe_tick_locked(sc);
/* enable Rx */
NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
/* enable Tx */
NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
NFE_WRITE(sc, NFE_IRQ_MASK, 0);
else
#endif
NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); /* enable interrupts */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->nfe_link = 0;
return;
}
static void nfe_stop(struct ifnet *ifp, int disable)
{
struct nfe_softc *sc = ifp->if_softc;
struct mii_data *mii;
NFE_LOCK_ASSERT(sc);
ifp->if_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
mii = device_get_softc(sc->nfe_miibus);
callout_stop(&sc->nfe_stat_ch);
/* abort Tx */
NFE_WRITE(sc, NFE_TX_CTL, 0);
/* disable Rx */
NFE_WRITE(sc, NFE_RX_CTL, 0);
/* disable interrupts */
NFE_WRITE(sc, NFE_IRQ_MASK, 0);
sc->nfe_link = 0;
/* reset Tx and Rx rings */
nfe_reset_tx_ring(sc, &sc->txq);
nfe_reset_rx_ring(sc, &sc->rxq);
return;
}
static int nfe_ifmedia_upd(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
NFE_LOCK(sc);
nfe_ifmedia_upd_locked(ifp);
NFE_UNLOCK(sc);
return (0);
}
static int nfe_ifmedia_upd_locked(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
struct mii_data *mii;
NFE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->nfe_miibus);
if (mii->mii_instance) {
struct mii_softc *miisc;
for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
miisc = LIST_NEXT(miisc, mii_list)) {
mii_phy_reset(miisc);
}
}
mii_mediachg(mii);
return (0);
}
static void nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct nfe_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
NFE_LOCK(sc);
mii = device_get_softc(sc->nfe_miibus);
mii_pollstat(mii);
NFE_UNLOCK(sc);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static void
nfe_tick(void *xsc)
{
struct nfe_softc *sc;
sc = xsc;
NFE_LOCK(sc);
nfe_tick_locked(sc);
NFE_UNLOCK(sc);
}
void nfe_tick_locked(struct nfe_softc *arg)
{
struct nfe_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
sc = arg;
NFE_LOCK_ASSERT(sc);
ifp = sc->nfe_ifp;
mii = device_get_softc(sc->nfe_miibus);
mii_tick(mii);
if (!sc->nfe_link) {
if (mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->nfe_link++;
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T
&& bootverbose)
if_printf(sc->nfe_ifp, "gigabit link up\n");
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
nfe_start_locked(ifp);
}
}
callout_reset(&sc->nfe_stat_ch, hz, nfe_tick, sc);
return;
}
static void nfe_shutdown(device_t dev)
{
struct nfe_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
NFE_LOCK(sc);
ifp = sc->nfe_ifp;
nfe_stop(ifp,0);
/* nfe_reset(sc); */
NFE_UNLOCK(sc);
return;
}
static void nfe_get_macaddr(struct nfe_softc *sc, u_char *addr)
{
uint32_t tmp;
tmp = NFE_READ(sc, NFE_MACADDR_LO);
addr[0] = (tmp >> 8) & 0xff;
addr[1] = (tmp & 0xff);
tmp = NFE_READ(sc, NFE_MACADDR_HI);
addr[2] = (tmp >> 24) & 0xff;
addr[3] = (tmp >> 16) & 0xff;
addr[4] = (tmp >> 8) & 0xff;
addr[5] = (tmp & 0xff);
}
static void nfe_set_macaddr(struct nfe_softc *sc, u_char *addr)
{
NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] << 8 | addr[4]);
NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 |
addr[1] << 8 | addr[0]);
}
/*
* Map a single buffer address.
*/
static void
nfe_dma_map_segs(arg, segs, nseg, error)
void *arg;
bus_dma_segment_t *segs;
int error, nseg;
{
if (error)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
*(bus_dma_segment_t *)arg = *segs;
return;
}