freebsd-skq/share/man/man4/crypto.4

364 lines
11 KiB
Groff
Raw Normal View History

2014-12-12 19:56:36 +00:00
.\" $NetBSD: crypto.4,v 1.24 2014/01/27 21:23:59 pgoyette Exp $
.\"
2014-12-12 19:56:36 +00:00
.\" Copyright (c) 2008 The NetBSD Foundation, Inc.
.\" Copyright (c) 2014 The FreeBSD Foundation
.\" All rights reserved.
.\"
2014-12-12 19:56:36 +00:00
.\" Portions of this documentation were written by John-Mark Gurney
.\" under sponsorship of the FreeBSD Foundation and
.\" Rubicon Communications, LLC (Netgate).
.\"
.\" This code is derived from software contributed to The NetBSD Foundation
.\" by Coyote Point Systems, Inc.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
2014-12-12 19:56:36 +00:00
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
.\" ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
.\" TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
.\" PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
.\" BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
.\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
.\" POSSIBILITY OF SUCH DAMAGE.
.\"
2014-12-12 19:56:36 +00:00
.\"
.\"
.\" Copyright (c) 2004
.\" Jonathan Stone <jonathan@dsg.stanford.edu>. All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY Jonathan Stone AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL Jonathan Stone OR THE VOICES IN HIS HEAD
.\" BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
.\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
.\" THE POSSIBILITY OF SUCH DAMAGE.
.\"
.\" $FreeBSD$
.\"
.Dd April 12, 2021
.Dt CRYPTO 4
.Os
.Sh NAME
.Nm crypto ,
.Nm cryptodev
2014-12-12 19:56:36 +00:00
.Nd user-mode access to hardware-accelerated cryptography
.Sh SYNOPSIS
.Cd device crypto
.Cd device cryptodev
2014-12-12 19:56:36 +00:00
.Pp
.In sys/ioctl.h
.In sys/time.h
.In crypto/cryptodev.h
.Sh DESCRIPTION
The
.Nm
2014-12-12 19:56:36 +00:00
driver gives user-mode applications access to hardware-accelerated
cryptographic transforms as implemented by the
.Xr crypto 9
2014-12-12 19:56:36 +00:00
in-kernel interface.
.Pp
The
.Pa /dev/crypto
2014-12-12 19:56:36 +00:00
special device provides an
.Xr ioctl 2
based interface.
User-mode applications open the special device and
2014-12-12 19:56:36 +00:00
then issue
.Xr ioctl 2
2014-12-12 19:56:36 +00:00
calls on the descriptor.
User-mode access to
.Pa /dev/crypto
is controlled by the
.Ic kern.cryptodevallowsoft
2014-12-12 19:56:36 +00:00
.Xr sysctl 8
variable.
If this variable is zero,
then user-mode sessions are only permitted to use cryptography coprocessors.
2014-12-12 19:56:36 +00:00
.Sh THEORY OF OPERATION
Use of the device requires a basic series of steps:
2014-12-12 19:56:36 +00:00
.Bl -enum
.It
Open the
.Pa /dev/crypto
device.
.It
Create a session with
.Dv CIOCGSESSION
or
.Dv CIOCGSESSION2 .
Applications will require at least one symmetric session.
2014-12-12 19:56:36 +00:00
Since cipher and MAC keys are tied to sessions, many
applications will require more.
.It
Submit requests, synchronously with
.Dv CIOCCRYPT
or
.Dv CIOCCRYPTAEAD .
2014-12-12 19:56:36 +00:00
.It
Optionally destroy a session with
2014-12-12 19:56:36 +00:00
.Dv CIOCFSESSION .
.It
Close the
.Pa /dev/crypto
device.
This will automatically close any remaining sessions associated with the
file desriptor.
2014-12-12 19:56:36 +00:00
.El
.Sh SYMMETRIC-KEY OPERATION
.Nm cryptodev
provides a context-based API
2014-12-12 19:56:36 +00:00
to traditional symmetric-key encryption (or privacy) algorithms,
keyed and unkeyed one-way hash (HMAC and MAC) algorithms,
encrypt-then-authenticate (ETA) fused operations,
and authenticated encryption with additional data (AEAD) operations.
For ETA operations,
drivers perform both a privacy algorithm and an integrity-check
2014-12-12 19:56:36 +00:00
algorithm in a single pass over the data: either a fused
encrypt/HMAC-generate operation, or a fused HMAC-verify/decrypt operation.
Similarly, for AEAD operations,
drivers perform either an encrypt/MAC-generate operation
or a MAC-verify/decrypt operation.
2014-12-12 19:56:36 +00:00
.Pp
The algorithm(s) and key(s) to use are specified when a session is
created.
Individual requests are able to specify per-request initialization vectors
or nonces.
2014-12-12 19:56:36 +00:00
.Ss Algorithms
For a list of supported algorithms, see
.Xr crypto 7 .
2014-12-12 19:56:36 +00:00
.Ss IOCTL Request Descriptions
.\"
.Bl -tag -width CIOCGSESSION
.\"
.It Dv CIOCFINDDEV Fa struct crypt_find_op *fop
.Bd -literal
struct crypt_find_op {
int crid; /* driver id + flags */
char name[32]; /* device/driver name */
};
.Ed
If
.Fa crid
is -1, then find the driver named
.Fa name
and return the id in
.Fa crid .
If
.Fa crid
is not -1, return the name of the driver with
.Fa crid
in
.Fa name .
In either case, if the driver is not found,
.Dv ENOENT
is returned.
.It Dv CIOCGSESSION Fa struct session_op *sessp
.Bd -literal
struct session_op {
uint32_t cipher; /* e.g. CRYPTO_AES_CBC */
uint32_t mac; /* e.g. CRYPTO_SHA2_256_HMAC */
2014-12-12 19:56:36 +00:00
uint32_t keylen; /* cipher key */
const void *key;
2014-12-12 19:56:36 +00:00
int mackeylen; /* mac key */
const void *mackey;
2014-12-12 19:56:36 +00:00
uint32_t ses; /* returns: ses # */
2014-12-12 19:56:36 +00:00
};
.Ed
Create a new cryptographic session on a file descriptor for the device;
that is, a persistent object specific to the chosen
privacy algorithm, integrity algorithm, and keys specified in
.Fa sessp .
The special value 0 for either privacy or integrity
is reserved to indicate that the indicated operation (privacy or integrity)
is not desired for this session.
ETA sessions specify both privacy and integrity algorithms.
AEAD sessions specify only a privacy algorithm.
2014-12-12 19:56:36 +00:00
.Pp
Multiple sessions may be bound to a single file descriptor.
The session ID returned in
.Fa sessp-\*[Gt]ses
is supplied as a required field in the operation structure
2014-12-12 19:56:36 +00:00
.Fa crypt_op
for future encryption or hashing requests.
.\" .Pp
.\" This implementation will never return a session ID of 0 for a successful
.\" creation of a session, which is a
.\" .Nx
.\" extension.
.Pp
For non-zero privacy algorithms, the privacy algorithm
2014-12-12 19:56:36 +00:00
must be specified in
.Fa sessp-\*[Gt]cipher ,
the key length in
.Fa sessp-\*[Gt]keylen ,
and the key value in the octets addressed by
.Fa sessp-\*[Gt]key .
.Pp
2014-12-12 19:56:36 +00:00
For keyed one-way hash algorithms, the one-way hash must be specified
in
.Fa sessp-\*[Gt]mac ,
the key length in
.Fa sessp-\*[Gt]mackey ,
and the key value in the octets addressed by
.Fa sessp-\*[Gt]mackeylen .
.\"
.Pp
Support for a specific combination of fused privacy and
2014-12-12 19:56:36 +00:00
integrity-check algorithms depends on whether the underlying
hardware supports that combination.
Not all combinations are supported
by all hardware, even if the hardware supports each operation as a
stand-alone non-fused operation.
.It Dv CIOCGSESSION2 Fa struct session2_op *sessp
.Bd -literal
struct session2_op {
uint32_t cipher; /* e.g. CRYPTO_AES_CBC */
uint32_t mac; /* e.g. CRYPTO_SHA2_256_HMAC */
uint32_t keylen; /* cipher key */
const void *key;
int mackeylen; /* mac key */
const void *mackey;
uint32_t ses; /* returns: ses # */
int crid; /* driver id + flags (rw) */
int pad[4]; /* for future expansion */
};
.Ed
This request is similar to CIOGSESSION except that
.Fa sessp-\*[Gt]crid
requests either a specific crypto device or a class of devices (software vs
hardware).
The
.Fa sessp-\*[Gt]pad
field must be initialized to zero.
2014-12-12 19:56:36 +00:00
.It Dv CIOCCRYPT Fa struct crypt_op *cr_op
.Bd -literal
struct crypt_op {
uint32_t ses;
uint16_t op; /* e.g. COP_ENCRYPT */
uint16_t flags;
2014-12-12 19:56:36 +00:00
u_int len;
const void *src;
void *dst;
void *mac; /* must be large enough for result */
const void *iv;
2014-12-12 19:56:36 +00:00
};
.Ed
Request an encryption/decryption (or hash) operation.
2014-12-12 19:56:36 +00:00
To encrypt, set
.Fa cr_op-\*[Gt]op
to
.Dv COP_ENCRYPT .
To decrypt, set
.Fa cr_op-\*[Gt]op
to
.Dv COP_DECRYPT .
The field
.Fa cr_op-\*[Gt]len
supplies the length of the input buffer; the fields
.Fa cr_op-\*[Gt]src ,
.Fa cr_op-\*[Gt]dst ,
.Fa cr_op-\*[Gt]mac ,
.Fa cr_op-\*[Gt]iv
supply the addresses of the input buffer, output buffer,
one-way hash, and initialization vector, respectively.
Refactor driver and consumer interfaces for OCF (in-kernel crypto). - The linked list of cryptoini structures used in session initialization is replaced with a new flat structure: struct crypto_session_params. This session includes a new mode to define how the other fields should be interpreted. Available modes include: - COMPRESS (for compression/decompression) - CIPHER (for simply encryption/decryption) - DIGEST (computing and verifying digests) - AEAD (combined auth and encryption such as AES-GCM and AES-CCM) - ETA (combined auth and encryption using encrypt-then-authenticate) Additional modes could be added in the future (e.g. if we wanted to support TLS MtE for AES-CBC in the kernel we could add a new mode for that. TLS modes might also affect how AAD is interpreted, etc.) The flat structure also includes the key lengths and algorithms as before. However, code doesn't have to walk the linked list and switch on the algorithm to determine which key is the auth key vs encryption key. The 'csp_auth_*' fields are always used for auth keys and settings and 'csp_cipher_*' for cipher. (Compression algorithms are stored in csp_cipher_alg.) - Drivers no longer register a list of supported algorithms. This doesn't quite work when you factor in modes (e.g. a driver might support both AES-CBC and SHA2-256-HMAC separately but not combined for ETA). Instead, a new 'crypto_probesession' method has been added to the kobj interface for symmteric crypto drivers. This method returns a negative value on success (similar to how device_probe works) and the crypto framework uses this value to pick the "best" driver. There are three constants for hardware (e.g. ccr), accelerated software (e.g. aesni), and plain software (cryptosoft) that give preference in that order. One effect of this is that if you request only hardware when creating a new session, you will no longer get a session using accelerated software. Another effect is that the default setting to disallow software crypto via /dev/crypto now disables accelerated software. Once a driver is chosen, 'crypto_newsession' is invoked as before. - Crypto operations are now solely described by the flat 'cryptop' structure. The linked list of descriptors has been removed. A separate enum has been added to describe the type of data buffer in use instead of using CRYPTO_F_* flags to make it easier to add more types in the future if needed (e.g. wired userspace buffers for zero-copy). It will also make it easier to re-introduce separate input and output buffers (in-kernel TLS would benefit from this). Try to make the flags related to IV handling less insane: - CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv' member of the operation structure. If this flag is not set, the IV is stored in the data buffer at the 'crp_iv_start' offset. - CRYPTO_F_IV_GENERATE means that a random IV should be generated and stored into the data buffer. This cannot be used with CRYPTO_F_IV_SEPARATE. If a consumer wants to deal with explicit vs implicit IVs, etc. it can always generate the IV however it needs and store partial IVs in the buffer and the full IV/nonce in crp_iv and set CRYPTO_F_IV_SEPARATE. The layout of the buffer is now described via fields in cryptop. crp_aad_start and crp_aad_length define the boundaries of any AAD. Previously with GCM and CCM you defined an auth crd with this range, but for ETA your auth crd had to span both the AAD and plaintext (and they had to be adjacent). crp_payload_start and crp_payload_length define the boundaries of the plaintext/ciphertext. Modes that only do a single operation (COMPRESS, CIPHER, DIGEST) should only use this region and leave the AAD region empty. If a digest is present (or should be generated), it's starting location is marked by crp_digest_start. Instead of using the CRD_F_ENCRYPT flag to determine the direction of the operation, cryptop now includes an 'op' field defining the operation to perform. For digests I've added a new VERIFY digest mode which assumes a digest is present in the input and fails the request with EBADMSG if it doesn't match the internally-computed digest. GCM and CCM already assumed this, and the new AEAD mode requires this for decryption. The new ETA mode now also requires this for decryption, so IPsec and GELI no longer do their own authentication verification. Simple DIGEST operations can also do this, though there are no in-tree consumers. To eventually support some refcounting to close races, the session cookie is now passed to crypto_getop() and clients should no longer set crp_sesssion directly. - Assymteric crypto operation structures should be allocated via crypto_getkreq() and freed via crypto_freekreq(). This permits the crypto layer to track open asym requests and close races with a driver trying to unregister while asym requests are in flight. - crypto_copyback, crypto_copydata, crypto_apply, and crypto_contiguous_subsegment now accept the 'crp' object as the first parameter instead of individual members. This makes it easier to deal with different buffer types in the future as well as separate input and output buffers. It's also simpler for driver writers to use. - bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer. This understands the various types of buffers so that drivers that use DMA do not have to be aware of different buffer types. - Helper routines now exist to build an auth context for HMAC IPAD and OPAD. This reduces some duplicated work among drivers. - Key buffers are now treated as const throughout the framework and in device drivers. However, session key buffers provided when a session is created are expected to remain alive for the duration of the session. - GCM and CCM sessions now only specify a cipher algorithm and a cipher key. The redundant auth information is not needed or used. - For cryptosoft, split up the code a bit such that the 'process' callback now invokes a function pointer in the session. This function pointer is set based on the mode (in effect) though it simplifies a few edge cases that would otherwise be in the switch in 'process'. It does split up GCM vs CCM which I think is more readable even if there is some duplication. - I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC as an auth algorithm and updated cryptocheck to work with it. - Combined cipher and auth sessions via /dev/crypto now always use ETA mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored. This was actually documented as being true in crypto(4) before, but the code had not implemented this before I added the CIPHER_FIRST flag. - I have not yet updated /dev/crypto to be aware of explicit modes for sessions. I will probably do that at some point in the future as well as teach it about IV/nonce and tag lengths for AEAD so we can support all of the NIST KAT tests for GCM and CCM. - I've split up the exising crypto.9 manpage into several pages of which many are written from scratch. - I have converted all drivers and consumers in the tree and verified that they compile, but I have not tested all of them. I have tested the following drivers: - cryptosoft - aesni (AES only) - blake2 - ccr and the following consumers: - cryptodev - IPsec - ktls_ocf - GELI (lightly) I have not tested the following: - ccp - aesni with sha - hifn - kgssapi_krb5 - ubsec - padlock - safe - armv8_crypto (aarch64) - glxsb (i386) - sec (ppc) - cesa (armv7) - cryptocteon (mips64) - nlmsec (mips64) Discussed with: cem Relnotes: yes Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D23677
2020-03-27 18:25:23 +00:00
.Pp
If a session is using either fused encrypt-then-authenticate or
an AEAD algorithm,
decryption operations require the associated hash as an input.
If the hash is incorrect, the
operation will fail with
.Dv EBADMSG
and the output buffer will remain unchanged.
2014-12-12 19:56:36 +00:00
.It Dv CIOCCRYPTAEAD Fa struct crypt_aead *cr_aead
.Bd -literal
struct crypt_aead {
uint32_t ses;
uint16_t op; /* e.g. COP_ENCRYPT */
uint16_t flags;
2014-12-12 19:56:36 +00:00
u_int len;
u_int aadlen;
u_int ivlen;
const void *src;
void *dst;
const void *aad; /* additional authenticated data */
void *tag; /* must fit for chosen TAG length */
const void *iv;
2014-12-12 19:56:36 +00:00
};
.Ed
The
.Dv CIOCCRYPTAEAD
is similar to the
.Dv CIOCCRYPT
but provides additional data in
.Fa cr_aead-\*[Gt]aad
to include in the authentication mode.
.It Dv CIOCFSESSION Fa u_int32_t ses_id
Destroys the session identified by
.Fa ses_id .
.El
.Sh SEE ALSO
2010-09-09 21:39:06 +00:00
.Xr aesni 4 ,
.Xr hifn 4 ,
.Xr ipsec 4 ,
.Xr padlock 4 ,
.Xr safe 4 ,
2014-12-12 19:56:36 +00:00
.Xr crypto 7 ,
.Xr geli 8 ,
.Xr crypto 9
.Sh HISTORY
The
.Nm
driver first appeared in
.Ox 3.0 .
The
.Nm
driver was imported to
.Fx 5.0 .
2014-12-12 19:56:36 +00:00
.Sh BUGS
Error checking and reporting is weak.
.Pp
The values specified for symmetric-key key sizes to
.Dv CIOCGSESSION
must exactly match the values expected by
.Xr opencrypto 9 .
The output buffer and MAC buffers supplied to
.Dv CIOCCRYPT
must follow whether privacy or integrity algorithms were specified for
session: if you request a
.No non- Ns Dv NULL
algorithm, you must supply a suitably-sized buffer.