freebsd-skq/usr.bin/top/machine.c

1575 lines
41 KiB
C
Raw Normal View History

/*
* top - a top users display for Unix
*
* DESCRIPTION:
* Originally written for BSD4.4 system by Christos Zoulas.
* Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
* Order support hacked in from top-3.5beta6/machine/m_aix41.c
* by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
*
* AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
* Steven Wallace <swallace@FreeBSD.org>
* Wolfram Schneider <wosch@FreeBSD.org>
* Thomas Moestl <tmoestl@gmx.net>
* Eitan Adler <eadler@FreeBSD.org>
*
1999-08-28 01:08:13 +00:00
* $FreeBSD$
*/
#include <sys/errno.h>
#include <sys/fcntl.h>
#include <sys/param.h>
#include <sys/priority.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/user.h>
#include <assert.h>
#include <err.h>
#include <libgen.h>
#include <kvm.h>
#include <math.h>
#include <paths.h>
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <vis.h>
#include "top.h"
#include "display.h"
#include "machine.h"
#include "loadavg.h"
#include "screen.h"
#include "utils.h"
#include "layout.h"
#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
extern struct timeval timeout;
static int smpmode;
enum displaymodes displaymode;
static const int namelength = 10;
/* TOP_JID_LEN based on max of 999999 */
#define TOP_JID_LEN 6
#define TOP_SWAP_LEN 5
/* get_process_info passes back a handle. This is what it looks like: */
struct handle {
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
/* define what weighted cpu is. */
#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
/* what we consider to be process size: */
#define PROCSIZE(pp) ((pp)->ki_size / 1024)
#define RU(pp) (&(pp)->ki_rusage)
#define PCTCPU(pp) (pcpu[pp - pbase])
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
the processor number when needed */
static const char *state_abbrev[] = {
"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
};
static kvm_t *kd;
/* values that we stash away in _init and use in later routines */
static double logcpu;
/* these are retrieved from the kernel in _init */
static load_avg ccpu;
/* these are used in the get_ functions */
static int lastpid;
/* these are for calculating cpu state percentages */
static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];
/* these are for detailing the process states */
static const char *procstatenames[] = {
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
" zombie, ", " waiting, ", " lock, ",
NULL
};
static int process_states[nitems(procstatenames)];
/* these are for detailing the cpu states */
2018-05-21 03:36:16 +00:00
static int cpu_states[CPUSTATES];
static const char *cpustatenames[] = {
"user", "nice", "system", "interrupt", "idle", NULL
};
/* these are for detailing the memory statistics */
static const char *memorynames[] = {
"K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ",
"K Free", NULL
};
static int memory_stats[nitems(memorynames)];
static const char *arcnames[] = {
"K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other",
NULL
};
static int arc_stats[nitems(arcnames)];
static const char *carcnames[] = {
"K Compressed, ", "K Uncompressed, ", ":1 Ratio, ",
NULL
};
static int carc_stats[nitems(carcnames)];
static const char *swapnames[] = {
"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
NULL
};
static int swap_stats[nitems(swapnames)];
static int has_swap;
/* these are for keeping track of the proc array */
static int nproc;
static int onproc = -1;
static int pref_len;
static struct kinfo_proc *pbase;
static struct kinfo_proc **pref;
static struct kinfo_proc *previous_procs;
static struct kinfo_proc **previous_pref;
static int previous_proc_count = 0;
static int previous_proc_count_max = 0;
static int previous_thread;
/* data used for recalculating pctcpu */
static double *pcpu;
static struct timespec proc_uptime;
static struct timeval proc_wall_time;
static struct timeval previous_wall_time;
static uint64_t previous_interval = 0;
/* total number of io operations */
static long total_inblock;
static long total_oublock;
static long total_majflt;
/* these are for getting the memory statistics */
static int arc_enabled;
static int carc_enabled;
static int pageshift; /* log base 2 of the pagesize */
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
/* swap usage */
#define ki_swap(kip) \
((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0)
/*
* Sorting orders. The first element is the default.
*/
static const char *ordernames[] = {
"cpu", "size", "res", "time", "pri", "threads",
"total", "read", "write", "fault", "vcsw", "ivcsw",
"jid", "swap", "pid", NULL
};
/* Per-cpu time states */
static int maxcpu;
static int maxid;
static int ncpus;
static unsigned long cpumask;
static long *times;
static long *pcpu_cp_time;
static long *pcpu_cp_old;
static long *pcpu_cp_diff;
static int *pcpu_cpu_states;
/* Battery units and states */
static int battery_units;
static int battery_life;
static int compare_swap(const void *a, const void *b);
static int compare_jid(const void *a, const void *b);
static int compare_pid(const void *a, const void *b);
static int compare_tid(const void *a, const void *b);
static const char *format_nice(const struct kinfo_proc *pp);
static void getsysctl(const char *name, void *ptr, size_t len);
static int swapmode(int *retavail, int *retfree);
static void update_layout(void);
static int find_uid(uid_t needle, int *haystack);
static int
find_uid(uid_t needle, int *haystack)
{
size_t i = 0;
for (; i < TOP_MAX_UIDS; ++i)
if ((uid_t)haystack[i] == needle)
return 1;
return (0);
}
void
toggle_pcpustats(void)
{
if (ncpus == 1)
return;
update_layout();
}
/* Adjust display based on ncpus and the ARC state. */
static void
update_layout(void)
{
y_mem = 3;
y_arc = 4;
y_carc = 5;
y_swap = 3 + arc_enabled + carc_enabled + has_swap;
y_idlecursor = 4 + arc_enabled + carc_enabled + has_swap;
y_message = 4 + arc_enabled + carc_enabled + has_swap;
y_header = 5 + arc_enabled + carc_enabled + has_swap;
y_procs = 6 + arc_enabled + carc_enabled + has_swap;
Header_lines = 6 + arc_enabled + carc_enabled + has_swap;
if (pcpu_stats) {
y_mem += ncpus - 1;
y_arc += ncpus - 1;
y_carc += ncpus - 1;
y_swap += ncpus - 1;
y_idlecursor += ncpus - 1;
y_message += ncpus - 1;
y_header += ncpus - 1;
y_procs += ncpus - 1;
Header_lines += ncpus - 1;
}
}
int
machine_init(struct statics *statics)
{
int i, j, empty, pagesize;
uint64_t arc_size;
int carc_en, nswapdev;
size_t size;
size = sizeof(smpmode);
if (sysctlbyname("kern.smp.active", &smpmode, &size, NULL, 0) != 0 ||
size != sizeof(smpmode))
smpmode = 0;
size = sizeof(arc_size);
if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size,
NULL, 0) == 0 && arc_size != 0)
arc_enabled = 1;
size = sizeof(carc_en);
if (arc_enabled &&
sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size,
NULL, 0) == 0 && carc_en == 1)
carc_enabled = 1;
kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
if (kd == NULL)
return (-1);
size = sizeof(nswapdev);
if (sysctlbyname("vm.nswapdev", &nswapdev, &size, NULL,
0) == 0 && nswapdev != 0)
has_swap = 1;
GETSYSCTL("kern.ccpu", ccpu);
/* this is used in calculating WCPU -- calculate it ahead of time */
logcpu = log(loaddouble(ccpu));
pbase = NULL;
pref = NULL;
pcpu = NULL;
nproc = 0;
onproc = -1;
/* get the page size and calculate pageshift from it */
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1) {
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
if (arc_enabled)
statics->arc_names = arcnames;
else
statics->arc_names = NULL;
if (carc_enabled)
statics->carc_names = carcnames;
else
statics->carc_names = NULL;
if (has_swap)
statics->swap_names = swapnames;
else
statics->swap_names = NULL;
statics->order_names = ordernames;
/* Allocate state for per-CPU stats. */
cpumask = 0;
ncpus = 0;
GETSYSCTL("kern.smp.maxcpus", maxcpu);
times = calloc(maxcpu * CPUSTATES, sizeof(long));
if (times == NULL)
err(1, "calloc for kern.smp.maxcpus");
size = sizeof(long) * maxcpu * CPUSTATES;
if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
err(1, "sysctlbyname kern.cp_times");
pcpu_cp_time = calloc(1, size);
maxid = (size / CPUSTATES / sizeof(long)) - 1;
for (i = 0; i <= maxid; i++) {
empty = 1;
for (j = 0; empty && j < CPUSTATES; j++) {
if (times[i * CPUSTATES + j] != 0)
empty = 0;
}
if (!empty) {
cpumask |= (1ul << i);
ncpus++;
}
}
assert(ncpus > 0);
pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long));
pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long));
pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int));
statics->ncpus = ncpus;
/* Allocate state of battery units reported via ACPI. */
battery_units = 0;
size = sizeof(int);
sysctlbyname("hw.acpi.battery.units", &battery_units, &size, NULL, 0);
statics->nbatteries = battery_units;
update_layout();
/* all done! */
return (0);
}
char *
format_header(const char *uname_field)
{
static struct sbuf* header = NULL;
/* clean up from last time. */
if (header != NULL) {
sbuf_clear(header);
} else {
header = sbuf_new_auto();
}
switch (displaymode) {
case DISP_CPU: {
sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID");
sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0,
ps.jail ? " JID" : "");
sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field);
if (!ps.thread) {
sbuf_cat(header, "THR ");
}
sbuf_cat(header, "PRI NICE SIZE RES ");
if (ps.swap) {
sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP");
}
sbuf_cat(header, "STATE ");
if (smpmode) {
sbuf_cat(header, "C ");
}
sbuf_cat(header, "TIME ");
sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU");
sbuf_cat(header, "COMMAND");
sbuf_finish(header);
break;
}
case DISP_IO: {
sbuf_printf(header, " %s%*s %-*.*s",
2018-06-19 23:30:55 +00:00
ps.thread_id ? " THR" : "PID",
ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "",
namelength, namelength, uname_field);
sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND");
sbuf_finish(header);
break;
}
case DISP_MAX:
assert("displaymode must not be set to DISP_MAX");
}
return sbuf_data(header);
}
static int swappgsin = -1;
static int swappgsout = -1;
void
2004-07-05 13:03:35 +00:00
get_system_info(struct system_info *si)
{
struct loadavg sysload;
int mib[2];
struct timeval boottime;
uint64_t arc_stat, arc_stat2;
int i, j;
size_t size;
/* get the CPU stats */
size = (maxid + 1) * CPUSTATES * sizeof(long);
if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
err(1, "sysctlbyname kern.cp_times");
GETSYSCTL("kern.cp_time", cp_time);
GETSYSCTL("vm.loadavg", sysload);
GETSYSCTL("kern.lastpid", lastpid);
/* convert load averages to doubles */
for (i = 0; i < 3; i++)
si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
/* convert cp_time counts to percentages */
for (i = j = 0; i <= maxid; i++) {
if ((cpumask & (1ul << i)) == 0)
continue;
percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
&pcpu_cp_time[j * CPUSTATES],
&pcpu_cp_old[j * CPUSTATES],
&pcpu_cp_diff[j * CPUSTATES]);
j++;
}
percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
/* sum memory & swap statistics */
{
static unsigned int swap_delay = 0;
static int swapavail = 0;
static int swapfree = 0;
static long bufspace = 0;
static uint64_t nspgsin, nspgsout;
GETSYSCTL("vfs.bufspace", bufspace);
GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]);
GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]);
GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(memory_stats[0]);
memory_stats[1] = pagetok(memory_stats[1]);
memory_stats[2] = pagetok(memory_stats[2]);
memory_stats[3] = pagetok(memory_stats[3]);
memory_stats[4] = bufspace / 1024;
memory_stats[5] = pagetok(memory_stats[5]);
memory_stats[6] = -1;
/* first interval */
if (swappgsin < 0) {
swap_stats[4] = 0;
swap_stats[5] = 0;
}
/* compute differences between old and new swap statistic */
else {
swap_stats[4] = pagetok(((nspgsin - swappgsin)));
swap_stats[5] = pagetok(((nspgsout - swappgsout)));
}
swappgsin = nspgsin;
swappgsout = nspgsout;
/* call CPU heavy swapmode() only for changes */
if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
swap_stats[3] = swapmode(&swapavail, &swapfree);
swap_stats[0] = swapavail;
swap_stats[1] = swapavail - swapfree;
swap_stats[2] = swapfree;
}
swap_delay = 1;
swap_stats[6] = -1;
}
if (arc_enabled) {
GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat);
arc_stats[0] = arc_stat >> 10;
GETSYSCTL("vfs.zfs.mfu_size", arc_stat);
arc_stats[1] = arc_stat >> 10;
GETSYSCTL("vfs.zfs.mru_size", arc_stat);
arc_stats[2] = arc_stat >> 10;
GETSYSCTL("vfs.zfs.anon_size", arc_stat);
arc_stats[3] = arc_stat >> 10;
GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat);
GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2);
arc_stats[4] = (arc_stat + arc_stat2) >> 10;
2018-08-11 22:11:12 +00:00
GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat);
arc_stats[5] = arc_stat >> 10;
2018-08-11 22:11:12 +00:00
GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat);
arc_stats[5] += arc_stat >> 10;
GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat);
arc_stats[5] += arc_stat >> 10;
si->arc = arc_stats;
}
if (carc_enabled) {
GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat);
carc_stats[0] = arc_stat >> 10;
carc_stats[2] = arc_stat >> 10; /* For ratio */
GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat);
carc_stats[1] = arc_stat >> 10;
si->carc = carc_stats;
}
/* set arrays and strings */
if (pcpu_stats) {
si->cpustates = pcpu_cpu_states;
si->ncpus = ncpus;
} else {
si->cpustates = cpu_states;
si->ncpus = 1;
}
si->memory = memory_stats;
si->swap = swap_stats;
if (lastpid > 0) {
si->last_pid = lastpid;
} else {
si->last_pid = -1;
}
/*
* Print how long system has been up.
* (Found by looking getting "boottime" from the kernel)
*/
mib[0] = CTL_KERN;
mib[1] = KERN_BOOTTIME;
size = sizeof(boottime);
if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 &&
boottime.tv_sec != 0) {
si->boottime = boottime;
} else {
si->boottime.tv_sec = -1;
}
battery_life = 0;
if (battery_units > 0) {
GETSYSCTL("hw.acpi.battery.life", battery_life);
}
si->battery = battery_life;
}
#define NOPROC ((void *)-1)
2004-08-01 09:19:41 +00:00
/*
* We need to compare data from the old process entry with the new
* process entry.
* To facilitate doing this quickly we stash a pointer in the kinfo_proc
* structure to cache the mapping. We also use a negative cache pointer
* of NOPROC to avoid duplicate lookups.
* XXX: this could be done when the actual processes are fetched, we do
* it here out of laziness.
*/
static const struct kinfo_proc *
get_old_proc(struct kinfo_proc *pp)
{
const struct kinfo_proc * const *oldpp, *oldp;
2004-08-01 09:19:41 +00:00
/*
* If this is the first fetch of the kinfo_procs then we don't have
* any previous entries.
*/
if (previous_proc_count == 0)
return (NULL);
2004-08-01 09:19:41 +00:00
/* negative cache? */
if (pp->ki_udata == NOPROC)
return (NULL);
2004-08-01 09:19:41 +00:00
/* cached? */
if (pp->ki_udata != NULL)
return (pp->ki_udata);
2004-08-01 09:19:41 +00:00
/*
* Not cached,
* 1) look up based on pid.
* 2) compare process start.
* If we fail here, then setup a negative cache entry, otherwise
* cache it.
*/
oldpp = bsearch(&pp, previous_pref, previous_proc_count,
sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid);
if (oldpp == NULL) {
pp->ki_udata = NOPROC;
return (NULL);
}
oldp = *oldpp;
if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
pp->ki_udata = NOPROC;
return (NULL);
}
pp->ki_udata = __DECONST(void *, oldp);
return (oldp);
}
2004-08-01 09:19:41 +00:00
/*
* Return the total amount of IO done in blocks in/out and faults.
* store the values individually in the pointers passed in.
*/
static long
get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp,
long *vcsw, long *ivcsw)
{
const struct kinfo_proc *oldp;
static struct kinfo_proc dummy;
long ret;
oldp = get_old_proc(__DECONST(struct kinfo_proc *, pp));
if (oldp == NULL) {
memset(&dummy, 0, sizeof(dummy));
oldp = &dummy;
}
*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
ret =
(RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
(RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
(RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
return (ret);
}
/*
* If there was a previous update, use the delta in ki_runtime over
* the previous interval to calculate pctcpu. Otherwise, fall back
* to using the kernel's ki_pctcpu.
*/
static double
proc_calc_pctcpu(struct kinfo_proc *pp)
{
const struct kinfo_proc *oldp;
if (previous_interval != 0) {
oldp = get_old_proc(pp);
if (oldp != NULL)
return ((double)(pp->ki_runtime - oldp->ki_runtime)
/ previous_interval);
/*
* If this process/thread was created during the previous
* interval, charge it's total runtime to the previous
* interval.
*/
else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec ||
(pp->ki_start.tv_sec == previous_wall_time.tv_sec &&
pp->ki_start.tv_usec >= previous_wall_time.tv_usec))
return ((double)pp->ki_runtime / previous_interval);
}
return (pctdouble(pp->ki_pctcpu));
}
/*
* Return true if this process has used any CPU time since the
* previous update.
*/
static int
proc_used_cpu(struct kinfo_proc *pp)
{
const struct kinfo_proc *oldp;
oldp = get_old_proc(pp);
if (oldp == NULL)
return (PCTCPU(pp) != 0);
return (pp->ki_runtime != oldp->ki_runtime ||
RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw ||
RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw);
}
2004-08-01 09:19:41 +00:00
/*
* Return the total number of block in/out and faults by a process.
*/
static long
get_io_total(const struct kinfo_proc *pp)
{
long dummy;
return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
}
static struct handle handle;
void *
2004-07-05 13:03:35 +00:00
get_process_info(struct system_info *si, struct process_select *sel,
int (*compare)(const void *, const void *))
{
int i;
int total_procs;
long p_io;
long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
long nsec;
int active_procs;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
struct timespec previous_proc_uptime;
/*
* If thread state was toggled, don't cache the previous processes.
*/
if (previous_thread != sel->thread)
nproc = 0;
previous_thread = sel->thread;
/*
* Save the previous process info.
*/
if (previous_proc_count_max < nproc) {
free(previous_procs);
previous_procs = calloc(nproc, sizeof(*previous_procs));
free(previous_pref);
previous_pref = calloc(nproc, sizeof(*previous_pref));
if (previous_procs == NULL || previous_pref == NULL) {
fprintf(stderr, "top: Out of memory.\n");
quit(TOP_EX_SYS_ERROR);
}
previous_proc_count_max = nproc;
}
if (nproc) {
for (i = 0; i < nproc; i++)
previous_pref[i] = &previous_procs[i];
2018-06-04 04:59:24 +00:00
memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs));
qsort(previous_pref, nproc, sizeof(*previous_pref),
ps.thread ? compare_tid : compare_pid);
}
previous_proc_count = nproc;
previous_proc_uptime = proc_uptime;
previous_wall_time = proc_wall_time;
previous_interval = 0;
pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC,
0, &nproc);
gettimeofday(&proc_wall_time, NULL);
if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0)
memset(&proc_uptime, 0, sizeof(proc_uptime));
else if (previous_proc_uptime.tv_sec != 0 &&
previous_proc_uptime.tv_nsec != 0) {
previous_interval = (proc_uptime.tv_sec -
previous_proc_uptime.tv_sec) * 1000000;
nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec;
if (nsec < 0) {
previous_interval -= 1000000;
nsec += 1000000000;
}
previous_interval += nsec / 1000;
}
if (nproc > onproc) {
pref = realloc(pref, sizeof(*pref) * nproc);
pcpu = realloc(pcpu, sizeof(*pcpu) * nproc);
onproc = nproc;
}
if (pref == NULL || pbase == NULL || pcpu == NULL) {
fprintf(stderr, "top: Out of memory.\n");
quit(TOP_EX_SYS_ERROR);
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
total_inblock = 0;
total_oublock = 0;
total_majflt = 0;
memset(process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++) {
if (pp->ki_stat == 0)
/* not in use */
continue;
if (!sel->self && pp->ki_pid == mypid && sel->pid == -1)
/* skip self */
continue;
if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1)
/* skip system process */
continue;
p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
&p_vcsw, &p_ivcsw);
total_inblock += p_inblock;
total_oublock += p_oublock;
total_majflt += p_majflt;
total_procs++;
2018-05-21 00:32:48 +00:00
process_states[(unsigned char)pp->ki_stat]++;
if (pp->ki_stat == SZOMB)
/* skip zombies */
continue;
if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1)
/* skip kernel idle process */
continue;
PCTCPU(pp) = proc_calc_pctcpu(pp);
if (sel->thread && PCTCPU(pp) > 1.0)
PCTCPU(pp) = 1.0;
if (displaymode == DISP_CPU && !sel->idle &&
(!proc_used_cpu(pp) ||
pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
/* skip idle or non-running processes */
continue;
if (displaymode == DISP_IO && !sel->idle && p_io == 0)
/* skip processes that aren't doing I/O */
continue;
if (sel->jid != -1 && pp->ki_jid != sel->jid)
/* skip proc. that don't belong to the selected JID */
continue;
if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid))
/* skip proc. that don't belong to the selected UID */
continue;
if (sel->pid != -1 && pp->ki_pid != sel->pid)
continue;
*prefp++ = pp;
active_procs++;
}
/* if requested, sort the "interesting" processes */
if (compare != NULL)
qsort(pref, active_procs, sizeof(*pref), compare);
/* remember active and total counts */
si->p_total = total_procs;
si->p_pactive = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return (&handle);
}
2004-06-30 04:19:23 +00:00
char *
format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags)
{
struct kinfo_proc *pp;
const struct kinfo_proc *oldp;
long cputime;
char status[22];
size_t state;
struct rusage ru, *rup;
long p_tot, s_tot;
char *cmdbuf = NULL;
char **args;
static struct sbuf* procbuf = NULL;
/* clean up from last time. */
if (procbuf != NULL) {
sbuf_clear(procbuf);
} else {
procbuf = sbuf_new_auto();
}
/* find and remember the next proc structure */
pp = *(xhandle->next_proc++);
xhandle->remaining--;
/* get the process's command name */
if ((pp->ki_flag & P_INMEM) == 0) {
/*
* Print swapped processes as <pname>
*/
size_t len;
len = strlen(pp->ki_comm);
if (len > sizeof(pp->ki_comm) - 3)
len = sizeof(pp->ki_comm) - 3;
memmove(pp->ki_comm + 1, pp->ki_comm, len);
pp->ki_comm[0] = '<';
pp->ki_comm[len + 1] = '>';
pp->ki_comm[len + 2] = '\0';
}
/*
* Convert the process's runtime from microseconds to seconds. This
* time includes the interrupt time although that is not wanted here.
* ps(1) is similarly sloppy.
*/
cputime = (pp->ki_runtime + 500000) / 1000000;
/* generate "STATE" field */
switch (state = pp->ki_stat) {
case SRUN:
if (smpmode && pp->ki_oncpu != NOCPU)
sprintf(status, "CPU%d", pp->ki_oncpu);
else
strcpy(status, "RUN");
2004-07-05 12:51:35 +00:00
break;
case SLOCK:
if (pp->ki_kiflag & KI_LOCKBLOCK) {
sprintf(status, "*%.6s", pp->ki_lockname);
break;
}
/* fall through */
case SSLEEP:
sprintf(status, "%.6s", pp->ki_wmesg);
break;
default:
if (state < nitems(state_abbrev)) {
sprintf(status, "%.6s", state_abbrev[state]);
} else {
sprintf(status, "?%5zu", state);
}
break;
}
cmdbuf = calloc(screen_width + 1, 1);
if (cmdbuf == NULL) {
warn("calloc(%d)", screen_width + 1);
return NULL;
}
if (!(flags & FMT_SHOWARGS)) {
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
pp->ki_tdname[0]) {
snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm,
pp->ki_tdname, pp->ki_moretdname);
} else {
snprintf(cmdbuf, screen_width, "%s", pp->ki_comm);
}
} else {
if (pp->ki_flag & P_SYSTEM ||
(args = kvm_getargv(kd, pp, screen_width)) == NULL ||
!(*args)) {
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
pp->ki_tdname[0]) {
snprintf(cmdbuf, screen_width,
"[%s{%s%s}]", pp->ki_comm, pp->ki_tdname,
pp->ki_moretdname);
} else {
snprintf(cmdbuf, screen_width,
"[%s]", pp->ki_comm);
}
} else {
const char *src;
char *dst, *argbuf;
const char *cmd;
size_t argbuflen;
size_t len;
argbuflen = screen_width * 4;
argbuf = calloc(argbuflen + 1, 1);
if (argbuf == NULL) {
warn("calloc(%zu)", argbuflen + 1);
free(cmdbuf);
return NULL;
}
dst = argbuf;
/* Extract cmd name from argv */
cmd = basename(*args);
for (; (src = *args++) != NULL; ) {
if (*src == '\0')
continue;
len = (argbuflen - (dst - argbuf) - 1) / 4;
strvisx(dst, src,
MIN(strlen(src), len),
VIS_NL | VIS_TAB | VIS_CSTYLE | VIS_OCTAL);
while (*dst != '\0')
dst++;
if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
*dst++ = ' '; /* add delimiting space */
}
if (dst != argbuf && dst[-1] == ' ')
dst--;
*dst = '\0';
if (strcmp(cmd, pp->ki_comm) != 0) {
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
pp->ki_tdname[0])
snprintf(cmdbuf, screen_width,
"%s (%s){%s%s}", argbuf,
pp->ki_comm, pp->ki_tdname,
pp->ki_moretdname);
else
snprintf(cmdbuf, screen_width,
"%s (%s)", argbuf, pp->ki_comm);
} else {
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
pp->ki_tdname[0])
snprintf(cmdbuf, screen_width,
"%s{%s%s}", argbuf, pp->ki_tdname,
pp->ki_moretdname);
else
strlcpy(cmdbuf, argbuf, screen_width);
}
free(argbuf);
}
}
if (displaymode == DISP_IO) {
oldp = get_old_proc(pp);
if (oldp != NULL) {
ru.ru_inblock = RU(pp)->ru_inblock -
RU(oldp)->ru_inblock;
ru.ru_oublock = RU(pp)->ru_oublock -
RU(oldp)->ru_oublock;
ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
rup = &ru;
} else {
rup = RU(pp);
}
p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
s_tot = total_inblock + total_oublock + total_majflt;
sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid);
if (ps.jail) {
sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid);
}
sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid));
sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw);
sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw);
sbuf_printf(procbuf, "%6ld ", rup->ru_inblock);
sbuf_printf(procbuf, "%6ld ", rup->ru_oublock);
sbuf_printf(procbuf, "%6ld ", rup->ru_majflt);
sbuf_printf(procbuf, "%6ld ", p_tot);
sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot));
} else {
sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid);
if (ps.jail) {
sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid);
}
sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid));
if (!ps.thread) {
sbuf_printf(procbuf, "%4d ", pp->ki_numthreads);
} else {
sbuf_printf(procbuf, " ");
}
sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO);
sbuf_printf(procbuf, "%4s", format_nice(pp));
sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp)));
sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize)));
if (ps.swap) {
sbuf_printf(procbuf, "%*s ",
TOP_SWAP_LEN - 1,
format_k(pagetok(ki_swap(pp))));
}
sbuf_printf(procbuf, "%-6.6s ", status);
if (smpmode) {
int cpu;
if (state == SRUN && pp->ki_oncpu != NOCPU) {
cpu = pp->ki_oncpu;
} else {
cpu = pp->ki_lastcpu;
}
sbuf_printf(procbuf, "%3d ", cpu);
}
sbuf_printf(procbuf, "%6s ", format_time(cputime));
sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp));
}
sbuf_printf(procbuf, "%s", cmdbuf);
free(cmdbuf);
return (sbuf_data(procbuf));
}
2004-06-30 04:19:23 +00:00
static void
getsysctl(const char *name, void *ptr, size_t len)
{
size_t nlen = len;
if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
strerror(errno));
quit(TOP_EX_SYS_ERROR);
}
if (nlen != len) {
fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
name, (unsigned long)len, (unsigned long)nlen);
quit(TOP_EX_SYS_ERROR);
}
}
static const char *
format_nice(const struct kinfo_proc *pp)
{
const char *fifo, *kproc;
int rtpri;
static char nicebuf[4 + 1];
fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
kproc = (pp->ki_flag & P_KPROC) ? "k" : "";
switch (PRI_BASE(pp->ki_pri.pri_class)) {
case PRI_ITHD:
return ("-");
case PRI_REALTIME:
/*
* XXX: the kernel doesn't tell us the original rtprio and
* doesn't really know what it was, so to recover it we
* must be more chummy with the implementation than the
* implementation is with itself. pri_user gives a
* constant "base" priority, but is only initialized
* properly for user threads. pri_native gives what the
* kernel calls the "base" priority, but it isn't constant
* since it is changed by priority propagation. pri_native
* also isn't properly initialized for all threads, but it
* is properly initialized for kernel realtime and idletime
* threads. Thus we use pri_user for the base priority of
* user threads (it is always correct) and pri_native for
* the base priority of kernel realtime and idletime threads
* (there is nothing better, and it is usually correct).
*
* The field width and thus the buffer are too small for
* values like "kr31F", but such values shouldn't occur,
* and if they do then the tailing "F" is not displayed.
*/
rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
kproc, rtpri, fifo);
break;
case PRI_TIMESHARE:
if (pp->ki_flag & P_KPROC)
return ("-");
snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
break;
case PRI_IDLE:
/* XXX: as above. */
rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
pp->ki_pri.pri_user) - PRI_MIN_IDLE;
snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
kproc, rtpri, fifo);
break;
default:
return ("?");
}
return (nicebuf);
}
/* comparison routines for qsort */
static int
2004-07-05 13:03:35 +00:00
compare_pid(const void *p1, const void *p2)
{
const struct kinfo_proc * const *pp1 = p1;
const struct kinfo_proc * const *pp2 = p2;
assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0);
return ((*pp1)->ki_pid - (*pp2)->ki_pid);
}
static int
compare_tid(const void *p1, const void *p2)
{
const struct kinfo_proc * const *pp1 = p1;
const struct kinfo_proc * const *pp2 = p2;
assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0);
return ((*pp1)->ki_tid - (*pp2)->ki_tid);
}
/*
* proc_compare - comparison function for "qsort"
* Compares the resource consumption of two processes using five
2004-07-05 12:51:35 +00:00
* distinct keys. The keys (in descending order of importance) are:
* percent cpu, cpu ticks, state, resident set size, total virtual
* memory usage. The process states are ordered as follows (from least
* to most important): WAIT, zombie, sleep, stop, start, run. The
* array declaration below maps a process state index into a number
* that reflects this ordering.
*/
static int sorted_state[] = {
0, /* not used */
3, /* sleep */
1, /* ABANDONED (WAIT) */
6, /* run */
5, /* start */
2, /* zombie */
4 /* stop */
};
2004-07-05 12:51:35 +00:00
#define ORDERKEY_PCTCPU(a, b) do { \
double diff; \
if (ps.wcpu) \
diff = weighted_cpu(PCTCPU((b)), (b)) - \
weighted_cpu(PCTCPU((a)), (a)); \
else \
diff = PCTCPU((b)) - PCTCPU((a)); \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_CPTICKS(a, b) do { \
int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_STATE(a, b) do { \
2018-05-21 00:32:48 +00:00
int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_PRIO(a, b) do { \
int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_THREADS(a, b) do { \
int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_RSSIZE(a, b) do { \
long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_MEM(a, b) do { \
long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_JID(a, b) do { \
int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
#define ORDERKEY_SWAP(a, b) do { \
int diff = (int)ki_swap(b) - (int)ki_swap(a); \
if (diff != 0) \
return (diff > 0 ? 1 : -1); \
} while (0)
/* compare_cpu - the comparison function for sorting by cpu percentage */
static int
compare_cpu(const void *arg1, const void *arg2)
{
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
/* compare_size - the comparison function for sorting by total memory usage */
static int
compare_size(const void *arg1, const void *arg2)
{
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
ORDERKEY_MEM(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
return (0);
}
/* compare_res - the comparison function for sorting by resident set size */
static int
compare_res(const void *arg1, const void *arg2)
{
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
return (0);
}
/* compare_time - the comparison function for sorting by total cpu time */
static int
compare_time(const void *arg1, const void *arg2)
{
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2;
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
2004-06-30 04:19:23 +00:00
/* compare_prio - the comparison function for sorting by priority */
static int
compare_prio(const void *arg1, const void *arg2)
{
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
ORDERKEY_PRIO(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
/* compare_threads - the comparison function for sorting by threads */
static int
compare_threads(const void *arg1, const void *arg2)
{
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
ORDERKEY_THREADS(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
/* compare_jid - the comparison function for sorting by jid */
static int
compare_jid(const void *arg1, const void *arg2)
{
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
ORDERKEY_JID(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
/* compare_swap - the comparison function for sorting by swap */
static int
compare_swap(const void *arg1, const void *arg2)
{
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
ORDERKEY_SWAP(p1, p2);
ORDERKEY_PCTCPU(p1, p2);
ORDERKEY_CPTICKS(p1, p2);
ORDERKEY_STATE(p1, p2);
ORDERKEY_PRIO(p1, p2);
ORDERKEY_RSSIZE(p1, p2);
ORDERKEY_MEM(p1, p2);
return (0);
}
/* assorted comparison functions for sorting by i/o */
static int
compare_iototal(const void *arg1, const void *arg2)
{
const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2;
return (get_io_total(p2) - get_io_total(p1));
}
static int
compare_ioread(const void *arg1, const void *arg2)
{
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
long dummy, inp1, inp2;
(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
return (inp2 - inp1);
}
static int
compare_iowrite(const void *arg1, const void *arg2)
{
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
long dummy, oup1, oup2;
(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
return (oup2 - oup1);
}
static int
compare_iofault(const void *arg1, const void *arg2)
{
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
long dummy, flp1, flp2;
(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
return (flp2 - flp1);
}
static int
compare_vcsw(const void *arg1, const void *arg2)
{
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
long dummy, flp1, flp2;
(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
return (flp2 - flp1);
}
static int
compare_ivcsw(const void *arg1, const void *arg2)
{
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
long dummy, flp1, flp2;
(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
return (flp2 - flp1);
}
int (*compares[])(const void *arg1, const void *arg2) = {
compare_cpu,
compare_size,
compare_res,
compare_time,
compare_prio,
compare_threads,
compare_iototal,
compare_ioread,
compare_iowrite,
compare_iofault,
compare_vcsw,
compare_ivcsw,
compare_jid,
compare_swap,
NULL
};
static int
2004-07-05 13:03:35 +00:00
swapmode(int *retavail, int *retfree)
{
int n;
struct kvm_swap swapary[1];
static int pagesize = 0;
static unsigned long swap_maxpages = 0;
*retavail = 0;
*retfree = 0;
#define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
n = kvm_getswapinfo(kd, swapary, 1, 0);
if (n < 0 || swapary[0].ksw_total == 0)
return (0);
if (pagesize == 0)
pagesize = getpagesize();
if (swap_maxpages == 0)
GETSYSCTL("vm.swap_maxpages", swap_maxpages);
/* ksw_total contains the total size of swap all devices which may
exceed the maximum swap size allocatable in the system */
if ( swapary[0].ksw_total > swap_maxpages )
swapary[0].ksw_total = swap_maxpages;
*retavail = CONVERT(swapary[0].ksw_total);
*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
#undef CONVERT
n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
return (n);
}