freebsd-skq/sys/vm/vm_radix.c

891 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
* Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Radix tree implementation.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/ktr.h>
#include <vm/uma.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#ifndef UMA_MD_SMALL_ALLOC
#include <vm/vm_map.h>
#endif
#include <vm/vm_radix.h>
#include <vm/vm_object.h>
#include <sys/kdb.h>
#ifndef UMA_MD_SMALL_ALLOC
#define VM_RADIX_RNODE_MAP_SCALE (1024 * 1024 / 2)
#define VM_RADIX_WIDTH 4
/*
* Bits of height in root.
* The mask of smaller power of 2 containing VM_RADIX_LIMIT.
*/
#define VM_RADIX_HEIGHT 0x1f
#else
#define VM_RADIX_WIDTH 5
/* See the comment above. */
#define VM_RADIX_HEIGHT 0xf
#endif
#define VM_RADIX_COUNT (1 << VM_RADIX_WIDTH)
#define VM_RADIX_MASK (VM_RADIX_COUNT - 1)
#define VM_RADIX_MAXVAL ((vm_pindex_t)-1)
#define VM_RADIX_LIMIT howmany((sizeof(vm_pindex_t) * NBBY), VM_RADIX_WIDTH)
/* Flag bits stored in node pointers. */
#define VM_RADIX_FLAGS 0x3
/* Calculates maximum value for a tree of height h. */
#define VM_RADIX_MAX(h) \
((h) == VM_RADIX_LIMIT ? VM_RADIX_MAXVAL : \
(((vm_pindex_t)1 << ((h) * VM_RADIX_WIDTH)) - 1))
CTASSERT(VM_RADIX_HEIGHT >= VM_RADIX_LIMIT);
CTASSERT((sizeof(u_int) * NBBY) >= VM_RADIX_LIMIT);
struct vm_radix_node {
void *rn_child[VM_RADIX_COUNT]; /* Child nodes. */
volatile uint32_t rn_count; /* Valid children. */
};
CTASSERT(sizeof(struct vm_radix_node) < PAGE_SIZE);
static uma_zone_t vm_radix_node_zone;
#ifndef UMA_MD_SMALL_ALLOC
static vm_map_t rnode_map;
static u_long rnode_map_scale;
static void *
vm_radix_node_zone_allocf(uma_zone_t zone, int size, uint8_t *flags, int wait)
{
vm_offset_t addr;
vm_page_t m;
int pflags;
/* Inform UMA that this allocator uses rnode_map. */
*flags = UMA_SLAB_KERNEL;
pflags = VM_ALLOC_WIRED | VM_ALLOC_NOOBJ;
/*
* As kmem_alloc_nofault() can however fail, let just assume that
* M_NOWAIT is on and act accordingly.
*/
pflags |= ((wait & M_USE_RESERVE) != 0) ? VM_ALLOC_INTERRUPT :
VM_ALLOC_SYSTEM;
if ((wait & M_ZERO) != 0)
pflags |= VM_ALLOC_ZERO;
addr = kmem_alloc_nofault(rnode_map, size);
if (addr == 0)
return (NULL);
/* Just one page allocation is assumed here. */
m = vm_page_alloc(NULL, OFF_TO_IDX(addr - VM_MIN_KERNEL_ADDRESS),
pflags);
if (m == NULL) {
kmem_free(rnode_map, addr, size);
return (NULL);
}
if ((wait & M_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
pmap_qenter(addr, &m, 1);
return ((void *)addr);
}
static void
vm_radix_node_zone_freef(void *item, int size, uint8_t flags)
{
vm_page_t m;
vm_offset_t voitem;
MPASS((flags & UMA_SLAB_KERNEL) != 0);
/* Just one page allocation is assumed here. */
voitem = (vm_offset_t)item;
m = PHYS_TO_VM_PAGE(pmap_kextract(voitem));
pmap_qremove(voitem, 1);
vm_page_lock(m);
vm_page_unwire(m, 0);
vm_page_free(m);
vm_page_unlock(m);
kmem_free(rnode_map, voitem, size);
}
static void
init_vm_radix_alloc(void *dummy __unused)
{
uma_zone_set_max(vm_radix_node_zone, rnode_map_scale);
uma_zone_set_allocf(vm_radix_node_zone, vm_radix_node_zone_allocf);
uma_zone_set_freef(vm_radix_node_zone, vm_radix_node_zone_freef);
}
SYSINIT(vm_radix, SI_SUB_KMEM, SI_ORDER_SECOND, init_vm_radix_alloc, NULL);
#endif
/*
* Radix node zone destructor.
*/
#ifdef INVARIANTS
static void
vm_radix_node_zone_dtor(void *mem, int size, void *arg)
{
struct vm_radix_node *rnode;
rnode = mem;
KASSERT(rnode->rn_count == 0,
("vm_radix_node_put: Freeing a node with %d children\n",
rnode->rn_count));
}
#endif
/*
* Allocate a radix node. Initializes all elements to 0.
*/
static __inline struct vm_radix_node *
vm_radix_node_get(void)
{
return (uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO));
}
/*
* Free radix node.
*/
static __inline void
vm_radix_node_put(struct vm_radix_node *rnode)
{
uma_zfree(vm_radix_node_zone, rnode);
}
/*
* Return the position in the array for a given level.
*/
static __inline int
vm_radix_slot(vm_pindex_t index, int level)
{
return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
}
/*
* Initialize the radix node submap (for architectures not supporting
* direct-mapping) and the radix node zone.
*
* WITNESS reports a lock order reversal, for architectures not
* supporting direct-mapping, between the "system map" lock
* and the "vm object" lock. This is because the well established ordering
* "system map" -> "vm object" is not honoured in this case as allocating
* from the radix node submap ends up adding a mapping entry to it, meaning
* it is necessary to lock the submap. However, the radix node submap is
* a leaf and self-contained, thus a deadlock cannot happen here and
* adding MTX_NOWITNESS to all map locks would be largerly sub-optimal.
*/
void
vm_radix_init(void)
{
#ifndef UMA_MD_SMALL_ALLOC
vm_offset_t maxaddr, minaddr;
rnode_map_scale = VM_RADIX_RNODE_MAP_SCALE;
TUNABLE_ULONG_FETCH("hw.rnode_map_scale", &rnode_map_scale);
rnode_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
rnode_map_scale * sizeof(struct vm_radix_node), FALSE);
rnode_map->system_map = 1;
#endif
vm_radix_node_zone = uma_zcreate("RADIX NODE",
sizeof(struct vm_radix_node), NULL,
#ifdef INVARIANTS
vm_radix_node_zone_dtor,
#else
NULL,
#endif
NULL, NULL, VM_RADIX_HEIGHT, UMA_ZONE_VM);
}
/*
* Extract the root node and height from a radix tree with a single load.
*/
static __inline int
vm_radix_height(struct vm_radix *rtree, struct vm_radix_node **rnode)
{
uintptr_t root;
int height;
root = rtree->rt_root;
height = root & VM_RADIX_HEIGHT;
*rnode = (struct vm_radix_node *)(root - height);
return (height);
}
/*
* Set the root node and height for a radix tree.
*/
static inline void
vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode,
int height)
{
uintptr_t root;
root = (uintptr_t)rnode | height;
rtree->rt_root = root;
}
static inline void
vm_radix_unwind_heightup(struct vm_radix *rtree, struct vm_radix_node *root,
struct vm_radix_node *iroot, int ilevel)
{
struct vm_radix_node *rnode;
CTR4(KTR_VM, "unwind: tree %p, root %p, iroot %p, ilevel %d",
rtree, root, iroot, ilevel);
while (iroot != root && root != NULL) {
rnode = root;
MPASS(rnode->rn_count == 0 || rnode->rn_count == 1);
rnode->rn_count = 0;
root = rnode->rn_child[0];
vm_radix_node_put(rnode);
}
vm_radix_setroot(rtree, iroot, ilevel);
}
static inline void *
vm_radix_match(void *child, int color)
{
uintptr_t c;
c = (uintptr_t)child;
if ((c & color) == 0)
return (NULL);
return ((void *)(c & ~VM_RADIX_FLAGS));
}
static void
vm_radix_reclaim_allnodes_internal(struct vm_radix_node *rnode, int level)
{
int slot;
MPASS(rnode != NULL && level >= 0);
/*
* Level 0 just contains pages as children, thus make it a special
* case, free the node and return.
*/
if (level == 0) {
CTR2(KTR_VM, "reclaiming: node %p, level %d", rnode, level);
rnode->rn_count = 0;
vm_radix_node_put(rnode);
return;
}
for (slot = 0; slot < VM_RADIX_COUNT && rnode->rn_count != 0; slot++) {
if (rnode->rn_child[slot] == NULL)
continue;
CTR3(KTR_VM,
"reclaiming: node %p, level %d recursing in slot %d",
rnode, level, slot);
vm_radix_reclaim_allnodes_internal(rnode->rn_child[slot],
level - 1);
rnode->rn_count--;
}
MPASS(rnode->rn_count == 0);
CTR2(KTR_VM, "reclaiming: node %p, level %d", rnode, level);
vm_radix_node_put(rnode);
}
/*
* Inserts the key-value pair in to the radix tree. Returns errno.
* Panics if the key already exists.
*/
int
vm_radix_insert(struct vm_radix *rtree, vm_pindex_t index, void *val)
{
struct vm_radix_node *iroot, *rnode, *root;
u_int allocmsk;
int clev, ilevel, level, slot;
CTR3(KTR_VM,
"insert: tree %p, index %ju, val %p", rtree, (uintmax_t)index, val);
if (index == -1)
panic("vm_radix_insert: -1 is not a valid index.\n");
level = vm_radix_height(rtree, &root);
/*
* Increase the height by adding nodes at the root until
* there is sufficient space.
*/
ilevel = level;
iroot = root;
while (level == 0 || index > VM_RADIX_MAX(level)) {
CTR3(KTR_VM, "insert: expanding %ju > %ju height %d",
(uintmax_t)index, (uintmax_t)VM_RADIX_MAX(level), level);
level++;
KASSERT(level <= VM_RADIX_LIMIT,
("vm_radix_insert: Tree %p height %d too tall",
rtree, level));
/*
* Only allocate tree nodes if they are needed.
*/
if (root == NULL || root->rn_count != 0) {
rnode = vm_radix_node_get();
if (rnode == NULL) {
CTR4(KTR_VM,
"insert: tree %p, root %p, index: %ju, level: %d ENOMEM",
rtree, root, (uintmax_t)index, level);
vm_radix_unwind_heightup(rtree, root, iroot,
ilevel);
return (ENOMEM);
}
/*
* Store the new pointer with a memory barrier so
* that it is visible before the new root.
*/
if (root) {
atomic_store_rel_ptr((volatile uintptr_t *)
&rnode->rn_child[0], (uintptr_t)root);
rnode->rn_count = 1;
}
root = rnode;
}
vm_radix_setroot(rtree, root, level);
}
/* Now that the tree is tall enough, fill in the path to the index. */
allocmsk = 0;
clev = level;
rnode = root;
for (level = level - 1; level > 0; level--) {
slot = vm_radix_slot(index, level);
/* Add the required intermidiate nodes. */
if (rnode->rn_child[slot] == NULL) {
rnode->rn_child[slot] = vm_radix_node_get();
if (rnode->rn_child[slot] == NULL) {
CTR5(KTR_VM,
"insert: tree %p, index %ju, level %d, slot %d, rnode %p ENOMEM",
rtree, (uintmax_t)index, level, slot,
rnode);
CTR4(KTR_VM,
"insert: tree %p, rnode %p, child %p, count %u ENOMEM",
rtree, rnode, rnode->rn_child[slot],
rnode->rn_count);
MPASS(level != clev || allocmsk == 0);
while (allocmsk != 0) {
rnode = root;
level = clev;
level--;
slot = vm_radix_slot(index, level);
CTR4(KTR_VM,
"insert: unwind root %p, level %d, slot %d, allocmsk: 0x%x",
root, level, slot, allocmsk);
MPASS(level >= (ffs(allocmsk) - 1));
while (level > (ffs(allocmsk) - 1)) {
MPASS(level > 0);
slot = vm_radix_slot(index,
level);
rnode = rnode->rn_child[slot];
level--;
}
MPASS((allocmsk & (1 << level)) != 0);
allocmsk &= ~(1 << level);
rnode->rn_count--;
vm_radix_node_put(rnode->rn_child[slot]);
rnode->rn_child[slot] = NULL;
}
vm_radix_unwind_heightup(rtree, root, iroot,
ilevel);
return (ENOMEM);
}
rnode->rn_count++;
allocmsk |= (1 << level);
}
CTR5(KTR_VM,
"insert: tree %p, index %ju, level %d, slot %d, rnode %p",
rtree, (uintmax_t)index, level, slot, rnode);
CTR4(KTR_VM,
"insert: tree %p, rnode %p, child %p, count %u",
rtree, rnode, rnode->rn_child[slot], rnode->rn_count);
rnode = rnode->rn_child[slot];
}
slot = vm_radix_slot(index, 0);
MPASS(rnode != NULL);
KASSERT(rnode->rn_child[slot] == NULL,
("vm_radix_insert: Duplicate value %p at index: %lu\n",
rnode->rn_child[slot], (u_long)index));
val = (void *)((uintptr_t)val | VM_RADIX_BLACK);
rnode->rn_child[slot] = val;
atomic_add_32(&rnode->rn_count, 1);
CTR6(KTR_VM,
"insert: tree %p, index %ju, level %d, slot %d, rnode %p, count %u",
rtree, (uintmax_t)index, level, slot, rnode, rnode->rn_count);
return 0;
}
/*
* Returns the value stored at the index. If the index is not present
* NULL is returned.
*/
void *
vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index, int color)
{
struct vm_radix_node *rnode;
int slot;
int level;
level = vm_radix_height(rtree, &rnode);
if (index > VM_RADIX_MAX(level))
return NULL;
level--;
while (rnode) {
slot = vm_radix_slot(index, level);
CTR6(KTR_VM,
"lookup: tree %p, index %ju, level %d, slot %d, rnode %p, child %p",
rtree, (uintmax_t)index, level, slot, rnode,
rnode->rn_child[slot]);
if (level == 0)
return vm_radix_match(rnode->rn_child[slot], color);
rnode = rnode->rn_child[slot];
level--;
}
CTR2(KTR_VM, "lookup: tree %p, index %ju failed", rtree,
(uintmax_t)index);
return NULL;
}
void *
vm_radix_color(struct vm_radix *rtree, vm_pindex_t index, int color)
{
struct vm_radix_node *rnode;
uintptr_t child;
int slot;
int level;
level = vm_radix_height(rtree, &rnode);
if (index > VM_RADIX_MAX(level))
return NULL;
level--;
while (rnode) {
slot = vm_radix_slot(index, level);
CTR6(KTR_VM,
"color: tree %p, index %ju, level %d, slot %d, rnode %p, child %p",
rtree, (uintmax_t)index, level, slot, rnode,
rnode->rn_child[slot]);
if (level == 0)
break;
rnode = rnode->rn_child[slot];
level--;
}
if (rnode == NULL || rnode->rn_child[slot] == NULL)
return (NULL);
child = (uintptr_t)rnode->rn_child[slot];
child &= ~VM_RADIX_FLAGS;
rnode->rn_child[slot] = (void *)(child | color);
return (void *)child;
}
/*
* Find the first leaf with a valid node between *startp and end. Return
* the index of the first valid item in the leaf in *startp.
*/
static struct vm_radix_node *
vm_radix_leaf(struct vm_radix *rtree, vm_pindex_t *startp, vm_pindex_t end)
{
struct vm_radix_node *rnode;
vm_pindex_t start;
vm_pindex_t inc;
int slot;
int level;
start = *startp;
restart:
level = vm_radix_height(rtree, &rnode);
if (start > VM_RADIX_MAX(level) || (end && start >= end)) {
rnode = NULL;
goto out;
}
/*
* Search the tree from the top for any leaf node holding an index
* between start and end.
*/
for (level--; level; level--) {
slot = vm_radix_slot(start, level);
CTR6(KTR_VM,
"leaf: tree %p, index %ju, level %d, slot %d, rnode %p, child %p",
rtree, (uintmax_t)start, level, slot, rnode,
(rnode != NULL) ? rnode->rn_child[slot] : NULL);
if (rnode->rn_child[slot] != NULL) {
rnode = rnode->rn_child[slot];
continue;
}
/*
* Calculate how much to increment our index by
* based on the tree level. We must truncate the
* lower bits to start from the begnning of the
* next leaf.
*/
inc = 1LL << (level * VM_RADIX_WIDTH);
start &= ~VM_RADIX_MAX(level);
/* Avoid start address wrapping up. */
if ((VM_RADIX_MAXVAL - start) < inc) {
rnode = NULL;
goto out;
}
start += inc;
slot++;
CTR5(KTR_VM,
"leaf: start %ju end %ju inc %ju mask 0x%jX slot %d",
(uintmax_t)start, (uintmax_t)end, (uintmax_t)inc,
(uintmax_t)~VM_RADIX_MAX(level), slot);
for (; slot < VM_RADIX_COUNT; slot++, start += inc) {
if (end != 0 && start >= end) {
rnode = NULL;
goto out;
}
if (rnode->rn_child[slot]) {
rnode = rnode->rn_child[slot];
break;
}
if ((VM_RADIX_MAXVAL - start) < inc) {
rnode = NULL;
goto out;
}
}
if (slot == VM_RADIX_COUNT)
goto restart;
}
out:
*startp = start;
return (rnode);
}
/*
* Looks up as many as cnt values between start and end, and stores
* them in the caller allocated array out. The next index can be used
* to restart the scan. This optimizes forward scans in the tree.
*/
int
vm_radix_lookupn(struct vm_radix *rtree, vm_pindex_t start,
vm_pindex_t end, int color, void **out, int cnt, vm_pindex_t *next)
{
struct vm_radix_node *rnode;
void *val;
int slot;
int outidx;
CTR3(KTR_VM, "lookupn: tree %p, start %ju, end %ju",
rtree, (uintmax_t)start, (uintmax_t)end);
if (rtree->rt_root == 0)
return (0);
outidx = 0;
while ((rnode = vm_radix_leaf(rtree, &start, end)) != NULL) {
slot = vm_radix_slot(start, 0);
for (; slot < VM_RADIX_COUNT; slot++, start++) {
if (end != 0 && start >= end)
goto out;
val = vm_radix_match(rnode->rn_child[slot], color);
if (val == NULL)
continue;
CTR4(KTR_VM,
"lookupn: tree %p index %ju slot %d found child %p",
rtree, (uintmax_t)start, slot, val);
out[outidx] = val;
if (++outidx == cnt)
goto out;
}
if (end != 0 && start >= end)
break;
}
out:
*next = start;
return (outidx);
}
void
vm_radix_foreach(struct vm_radix *rtree, vm_pindex_t start, vm_pindex_t end,
int color, void (*iter)(void *))
{
struct vm_radix_node *rnode;
void *val;
int slot;
if (rtree->rt_root == 0)
return;
while ((rnode = vm_radix_leaf(rtree, &start, end)) != NULL) {
slot = vm_radix_slot(start, 0);
for (; slot < VM_RADIX_COUNT; slot++, start++) {
if (end != 0 && start >= end)
return;
val = vm_radix_match(rnode->rn_child[slot], color);
if (val)
iter(val);
}
if (end != 0 && start >= end)
return;
}
}
/*
* Look up any entry at a position less than or equal to index.
*/
void *
vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index, int color)
{
struct vm_radix_node *rnode;
struct vm_radix_node *child;
vm_pindex_t max;
vm_pindex_t inc;
void *val;
int slot;
int level;
CTR2(KTR_VM,
"lookup_le: tree %p, index %ju", rtree, (uintmax_t)index);
restart:
level = vm_radix_height(rtree, &rnode);
if (rnode == NULL)
return (NULL);
max = VM_RADIX_MAX(level);
if (index > max || index == 0)
index = max;
/*
* Search the tree from the top for any leaf node holding an index
* lower than 'index'.
*/
level--;
while (rnode) {
slot = vm_radix_slot(index, level);
CTR6(KTR_VM,
"lookup_le: tree %p, index %ju, level %d, slot %d, rnode %p, child %p",
rtree, (uintmax_t)index, level, slot, rnode,
rnode->rn_child[slot]);
if (level == 0)
break;
/*
* If we don't have an exact match we must start our search
* from the next leaf and adjust our index appropriately.
*/
if ((child = rnode->rn_child[slot]) == NULL) {
/*
* Calculate how much to decrement our index by
* based on the tree level. We must set the
* lower bits to start from the end of the next
* leaf.
*/
inc = 1LL << (level * VM_RADIX_WIDTH);
index |= VM_RADIX_MAX(level);
index -= inc;
slot--;
CTR4(KTR_VM,
"lookup_le: start %ju inc %ju mask 0x%jX slot %d",
(uintmax_t)index, (uintmax_t)inc,
(uintmax_t)VM_RADIX_MAX(level), slot);
for (; slot >= 0; slot--, index -= inc) {
child = rnode->rn_child[slot];
if (child)
break;
}
}
rnode = child;
level--;
}
if (rnode) {
for (; slot >= 0; slot--, index--) {
val = vm_radix_match(rnode->rn_child[slot], color);
if (val)
return (val);
}
}
if (index != -1)
goto restart;
return (NULL);
}
/*
* Remove the specified index from the tree. If possible the height of the
* tree is adjusted after deletion. The value stored at index is returned
* panics if the key is not present.
*/
void *
vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index, int color)
{
struct vm_radix_node *stack[VM_RADIX_LIMIT];
struct vm_radix_node *rnode, *root;
void *val;
int level;
int slot;
level = vm_radix_height(rtree, &root);
KASSERT(index <= VM_RADIX_MAX(level),
("vm_radix_remove: %p index %ju out of range %jd.",
rtree, (uintmax_t)index, VM_RADIX_MAX(level)));
rnode = root;
val = NULL;
level--;
/*
* Find the node and record the path in stack.
*/
while (level && rnode) {
stack[level] = rnode;
slot = vm_radix_slot(index, level);
CTR5(KTR_VM,
"remove: tree %p, index %ju, level %d, slot %d, rnode %p",
rtree, (uintmax_t)index, level, slot, rnode);
CTR4(KTR_VM, "remove: tree %p, rnode %p, child %p, count %u",
rtree, rnode, rnode->rn_child[slot], rnode->rn_count);
rnode = rnode->rn_child[slot];
level--;
}
KASSERT(rnode != NULL,
("vm_radix_remove: index %ju not present in the tree.\n",
(uintmax_t)index));
slot = vm_radix_slot(index, 0);
val = vm_radix_match(rnode->rn_child[slot], color);
KASSERT(val != NULL,
("vm_radix_remove: index %ju not present in the tree.\n",
(uintmax_t)index));
for (;;) {
CTR5(KTR_VM,
"remove: resetting tree %p, index %ju, level %d, slot %d, rnode %p",
rtree, (uintmax_t)index, level, slot, rnode);
CTR4(KTR_VM,
"remove: resetting tree %p, rnode %p, child %p, count %u",
rtree, rnode,
(rnode != NULL) ? rnode->rn_child[slot] : NULL,
(rnode != NULL) ? rnode->rn_count : 0);
rnode->rn_child[slot] = NULL;
/*
* Use atomics for the last level since red and black
* will both adjust it.
* Use a write memory barrier here in order to avoid
* rn_count reaching 0 before to fetch the actual pointer.
* Concurrent black removal, infact, may want to reclaim
* the radix node itself before to read it.
*/
if (level == 0)
atomic_add_rel_32(&rnode->rn_count, -1);
else
rnode->rn_count--;
/*
* Only allow black removes to prune the tree.
*/
if ((color & VM_RADIX_BLACK) == 0 || rnode->rn_count > 0)
break;
vm_radix_node_put(rnode);
if (rnode == root) {
vm_radix_setroot(rtree, NULL, 0);
break;
}
rnode = stack[++level];
slot = vm_radix_slot(index, level);
}
return (val);
}
/*
* Remove and free all the nodes from the radix tree.
* This function is recrusive but there is a tight control on it as the
* maximum depth of the tree is fixed.
*/
void
vm_radix_reclaim_allnodes(struct vm_radix *rtree)
{
struct vm_radix_node *root;
int level;
if (rtree->rt_root == 0)
return;
level = vm_radix_height(rtree, &root);
vm_radix_reclaim_allnodes_internal(root, level - 1);
rtree->rt_root = 0;
}
#ifdef notyet
/*
* Attempts to reduce the height of the tree.
*/
void
vm_radix_shrink(struct vm_radix *rtree)
{
struct vm_radix_node *tmp, *root;
int level;
if (rtree->rt_root == 0)
return;
level = vm_radix_height(rtree, &root);
/* Adjust the height of the tree. */
while (root->rn_count == 1 && root->rn_child[0] != NULL) {
tmp = root;
root->rn_count--;
root = root->rn_child[0];
level--;
vm_radix_node_put(tmp);
}
/* Finally see if we have an empty tree. */
if (root->rn_count == 0) {
vm_radix_node_put(root);
root = NULL;
level--;
}
vm_radix_setroot(rtree, root, level);
}
#endif