1825 lines
38 KiB
C
Raw Normal View History

/*
* sound/sequencer.c
*
* The sequencer personality manager.
*
* Copyright by Hannu Savolainen 1993
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer. 2.
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#define SEQUENCER_C
#include <i386/isa/sound/sound_config.h>
#if NSND > 0
#ifdef CONFIG_SEQUENCER
#include <sys/select.h>
#include <i386/isa/sound/midi_ctrl.h>
static void seq_drain_midi_queues(void);
int
sequencer_poll (int dev, struct fileinfo *file, int events, select_table * wait);
static int sequencer_ok = 0;
static struct sound_timer_operations *tmr;
static int tmr_no = -1; /* Currently selected timer */
static int pending_timer = -1; /* For timer change operation */
/*
* Local counts for number of synth and MIDI devices. These are initialized
* by the sequencer_open.
*/
static int max_mididev = 0;
static int max_synthdev = 0;
/*
* The seq_mode gives the operating mode of the sequencer: 1 = level1 (the
* default) 2 = level2 (extended capabilites)
*/
#define SEQ_1 1
#define SEQ_2 2
static int seq_mode = SEQ_1;
static int *seq_sleeper = NULL;
static volatile struct snd_wait seq_sleep_flag = {0};
static int *midi_sleeper = NULL;
static volatile struct snd_wait midi_sleep_flag = {0};
static int midi_opened[MAX_MIDI_DEV] = {0};
static int midi_written[MAX_MIDI_DEV] = {0};
static u_long prev_input_time = 0;
static int prev_event_time;
static u_long seq_time = 0;
#include <i386/isa/sound/tuning.h>
#define EV_SZ 8
#define IEV_SZ 8
static u_char *queue = NULL;
static u_char *iqueue = NULL;
static volatile int qhead = 0, qtail = 0, qlen = 0;
static volatile int iqhead = 0, iqtail = 0, iqlen = 0;
static volatile int seq_playing = 0;
static volatile int sequencer_busy = 0;
static int output_treshold;
static int pre_event_timeout;
static u_int synth_open_mask;
static int seq_queue(u_char *note, char nonblock);
static void seq_startplay(void);
static int seq_sync(void);
static void seq_reset(void);
static int pmgr_present[MAX_SYNTH_DEV] =
{0};
static struct callout_handle sequencertimeout_ch
= CALLOUT_HANDLE_INITIALIZER(&sequencertimeout_ch);
#if MAX_SYNTH_DEV > 15
#error Too many synthesizer devices enabled.
#endif
/*
* sound_timer stuff -- originally in soundcard.c
*
* A negative value means a relative timeout in |count| ticks.
* A positive value is used for what ?
*
* In any case, this is only used in sequencer.c
*/
static int timer_running = 0;
void
request_sound_timer(int count)
{
static int current = 0;
int tmp = count;
if (count < 0)
sequencertimeout_ch = timeout(sequencer_timer, 0, -count);
else {
if (count < current)
current = 0; /* Timer restarted */
count = count - current;
current = tmp;
if (!count)
count = 1;
sequencertimeout_ch = timeout(sequencer_timer, 0, count);
}
timer_running = 1;
}
void
sound_stop_timer(void)
{
if (timer_running)
untimeout( sequencer_timer, 0, sequencertimeout_ch);
timer_running = 0;
}
int
sequencer_read(int dev, struct fileinfo * file, snd_rw_buf * buf, int count)
{
int c = count, p = 0;
int ev_len;
u_long flags;
dev = dev >> 4;
ev_len = seq_mode == SEQ_1 ? 4 : 8;
if (dev) /* Patch manager device */
return pmgr_read(dev - 1, file, buf, count);
flags = splhigh();
if (!iqlen) {
int chn;
midi_sleeper = &chn;
DO_SLEEP(chn, midi_sleep_flag, pre_event_timeout);
if (!iqlen) {
splx(flags);
return 0;
}
}
while (iqlen && c >= ev_len) {
if (uiomove((char *) &iqueue[iqhead * IEV_SZ], ev_len, buf))
printf("sb: Bad copyout()!\n");
p += ev_len;
c -= ev_len;
iqhead = (iqhead + 1) % SEQ_MAX_QUEUE;
iqlen--;
}
splx(flags);
return count - c;
}
static void
sequencer_midi_output(int dev)
{
/*
* Currently NOP
*/
}
void
seq_copy_to_input(u_char *event, int len)
{
u_long flags;
/*
* Verify that the len is valid for the current mode.
*/
if (len != 4 && len != 8)
return;
if ((seq_mode == SEQ_1) != (len == 4))
return;
if (iqlen >= (SEQ_MAX_QUEUE - 1))
return; /* Overflow */
flags = splhigh();
bcopy(event, &iqueue[iqtail * IEV_SZ], len);
iqlen++;
iqtail = (iqtail + 1) % SEQ_MAX_QUEUE;
if ((midi_sleep_flag.mode & WK_SLEEP)) {
midi_sleep_flag.mode = WK_WAKEUP;
wakeup(midi_sleeper);
}
splx(flags);
}
static void
sequencer_midi_input(int dev, u_char data)
{
u_int tstamp;
u_char event[4];
if (data == 0xfe) /* Ignore active sensing */
return;
tstamp = get_time() - seq_time;
if (tstamp != prev_input_time) {
tstamp = (tstamp << 8) | SEQ_WAIT;
seq_copy_to_input((u_char *) &tstamp, 4);
prev_input_time = tstamp;
}
event[0] = SEQ_MIDIPUTC;
event[1] = data;
event[2] = dev;
event[3] = 0;
seq_copy_to_input(event, 4);
}
void
seq_input_event(u_char *event, int len)
{
u_long this_time;
if (seq_mode == SEQ_2)
this_time = tmr->get_time(tmr_no);
else
this_time = get_time() - seq_time;
if (this_time != prev_input_time) {
u_char tmp_event[8];
tmp_event[0] = EV_TIMING;
tmp_event[1] = TMR_WAIT_ABS;
tmp_event[2] = 0;
tmp_event[3] = 0;
*(u_long *) &tmp_event[4] = this_time;
seq_copy_to_input(tmp_event, 8);
prev_input_time = this_time;
}
seq_copy_to_input(event, len);
}
int
sequencer_write(int dev, struct fileinfo * file, snd_rw_buf * buf, int count)
{
u_char event[EV_SZ], ev_code;
int p = 0, c, ev_size;
int err;
int mode = file->mode & O_ACCMODE;
dev = dev >> 4;
DEB(printf("sequencer_write(dev=%d, count=%d)\n", dev, count));
if (mode == OPEN_READ)
return -(EIO);
if (dev)
return pmgr_write(dev - 1, file, buf, count);
c = count;
while (c >= 4) {
if (uiomove((char *) event, 4, buf))
printf("sb: Bad copyin()!\n");
ev_code = event[0];
if (ev_code == SEQ_FULLSIZE) {
int err;
dev = *(u_short *) &event[2];
if (dev < 0 || dev >= max_synthdev)
return -(ENXIO);
if (!(synth_open_mask & (1 << dev)))
return -(ENXIO);
err = synth_devs[dev]->load_patch(dev,
*(short *) &event[0], buf, p + 4, c, 0);
if (err < 0)
return err;
return err;
}
if (ev_code >= 128) {
if (seq_mode == SEQ_2 && ev_code == SEQ_EXTENDED) {
printf("Sequencer: Invalid level 2 event %x\n", ev_code);
return -(EINVAL);
}
ev_size = 8;
if (c < ev_size) {
if (!seq_playing)
seq_startplay();
return count - c;
}
if (uiomove((char *) &event[4], 4, buf))
printf("sb: Bad copyin()!\n");
} else {
if (seq_mode == SEQ_2) {
printf("Sequencer: 4 byte event in level 2 mode\n");
return -(EINVAL);
}
ev_size = 4;
}
if (event[0] == SEQ_MIDIPUTC) {
if (!midi_opened[event[2]]) {
int mode;
int dev = event[2];
if (dev >= max_mididev) {
printf("Sequencer Error: Nonexistent MIDI device %d\n",dev);
return -(ENXIO);
}
mode = file->mode & O_ACCMODE;
if ((err = midi_devs[dev]->open(dev, mode,
sequencer_midi_input, sequencer_midi_output)) < 0) {
seq_reset();
printf("Sequencer Error: Unable to open Midi #%d\n", dev);
return err;
}
midi_opened[dev] = 1;
}
}
if (!seq_queue(event, 0)) {
int processed = count - c;
if (!seq_playing)
seq_startplay();
if (!processed && 0)
return -(EAGAIN);
else
return processed;
}
p += ev_size;
c -= ev_size;
}
if (!seq_playing)
seq_startplay();
return count; /* This will "eat" chunks shorter than 4 bytes
* (if written alone) Should we really do that ?
*/
}
static int
seq_queue(u_char *note, char nonblock)
{
/*
* Test if there is space in the queue
*/
if (qlen >= SEQ_MAX_QUEUE)
if (!seq_playing)
seq_startplay(); /* Give chance to drain the queue */
if (!nonblock && qlen >= SEQ_MAX_QUEUE &&
!(seq_sleep_flag.mode & WK_SLEEP)) {
/*
* Sleep until there is enough space on the queue
*/
int chn;
seq_sleeper = &chn;
DO_SLEEP(chn, seq_sleep_flag, 0);
}
if (qlen >= SEQ_MAX_QUEUE)
return 0; /* To be sure */
bcopy(note, &queue[qtail * EV_SZ], EV_SZ);
qtail = (qtail + 1) % SEQ_MAX_QUEUE;
qlen++;
return 1;
}
static int
extended_event(u_char *q)
{
int dev = q[2];
if (dev < 0 || dev >= max_synthdev)
return -(ENXIO);
if (!(synth_open_mask & (1 << dev)))
return -(ENXIO);
switch (q[1]) {
case SEQ_NOTEOFF:
synth_devs[dev]->kill_note(dev, q[3], q[4], q[5]);
break;
case SEQ_NOTEON:
if (q[4] > 127 && q[4] != 255)
return 0;
synth_devs[dev]->start_note(dev, q[3], q[4], q[5]);
break;
case SEQ_PGMCHANGE:
synth_devs[dev]->set_instr(dev, q[3], q[4]);
break;
case SEQ_AFTERTOUCH:
synth_devs[dev]->aftertouch(dev, q[3], q[4]);
break;
case SEQ_BALANCE:
synth_devs[dev]->panning(dev, q[3], (char) q[4]);
break;
case SEQ_CONTROLLER:
synth_devs[dev]->controller(dev, q[3], q[4], *(short *) &q[5]);
break;
case SEQ_VOLMODE:
if (synth_devs[dev]->volume_method != NULL)
synth_devs[dev]->volume_method(dev, q[3]);
break;
default:
return -(EINVAL);
}
return 0;
}
static int
find_voice(int dev, int chn, int note)
{
u_short key;
int i;
key = (chn << 8) | (note + 1);
for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++)
if (synth_devs[dev]->alloc.map[i] == key)
return i;
return -1;
}
static int
alloc_voice(int dev, int chn, int note)
{
u_short key;
int voice;
key = (chn << 8) | (note + 1);
voice = synth_devs[dev]->alloc_voice(dev, chn, note,
&synth_devs[dev]->alloc);
synth_devs[dev]->alloc.map[voice] = key;
synth_devs[dev]->alloc.alloc_times[voice] =
synth_devs[dev]->alloc.timestamp++;
return voice;
}
static void
seq_chn_voice_event(u_char *event)
{
u_char dev = event[1];
u_char cmd = event[2];
u_char chn = event[3];
u_char note = event[4];
u_char parm = event[5];
int voice = -1;
if ((int) dev > max_synthdev)
return;
if (!(synth_open_mask & (1 << dev)))
return;
if (!synth_devs[dev])
return;
if (seq_mode == SEQ_2) {
if (synth_devs[dev]->alloc_voice)
voice = find_voice(dev, chn, note);
if (cmd == MIDI_NOTEON && parm == 0) {
cmd = MIDI_NOTEOFF;
parm = 64;
}
}
switch (cmd) {
case MIDI_NOTEON:
if (note > 127 && note != 255) /* Not a seq2 feature */
return;
if (voice == -1 && seq_mode == SEQ_2 && synth_devs[dev]->alloc_voice) {
/* Internal synthesizer (FM, GUS, etc) */
voice = alloc_voice(dev, chn, note);
}
if (voice == -1)
voice = chn;
if (seq_mode == SEQ_2 && (int) dev < num_synths) {
/*
* The MIDI channel 10 is a percussive channel. Use
* the note number to select the proper patch (128 to
* 255) to play.
*/
if (chn == 9) {
synth_devs[dev]->set_instr(dev, voice, 128 + note);
note = 60; /* Middle C */
}
}
if (seq_mode == SEQ_2)
synth_devs[dev]->setup_voice(dev, voice, chn);
synth_devs[dev]->start_note(dev, voice, note, parm);
break;
case MIDI_NOTEOFF:
if (voice == -1)
voice = chn;
synth_devs[dev]->kill_note(dev, voice, note, parm);
break;
case MIDI_KEY_PRESSURE:
if (voice == -1)
voice = chn;
synth_devs[dev]->aftertouch(dev, voice, parm);
break;
default:;
}
}
static void
seq_chn_common_event(u_char *event)
{
u_char dev = event[1];
u_char cmd = event[2];
u_char chn = event[3];
u_char p1 = event[4];
/* u_char p2 = event[5]; */
u_short w14 = *(short *) &event[6];
if ((int) dev > max_synthdev)
return;
if (!(synth_open_mask & (1 << dev)))
return;
if (!synth_devs[dev])
return;
switch (cmd) {
case MIDI_PGM_CHANGE:
if (seq_mode == SEQ_2) {
synth_devs[dev]->chn_info[chn].pgm_num = p1;
if ((int) dev >= num_synths)
synth_devs[dev]->set_instr(dev, chn, p1);
} else
synth_devs[dev]->set_instr(dev, chn, p1);
break;
case MIDI_CTL_CHANGE:
if (seq_mode == SEQ_2) {
if (chn > 15 || p1 > 127)
break;
synth_devs[dev]->chn_info[chn].controllers[p1] = w14 & 0x7f;
if (p1 < 32) /* Setting MSB should clear LSB to 0 */
synth_devs[dev]->chn_info[chn].controllers[p1 + 32] = 0;
if ((int) dev < num_synths) {
int val = w14 & 0x7f;
int i, key;
if (p1 < 64) { /* Combine MSB and LSB */
val = ((synth_devs[dev]->
chn_info[chn].controllers[p1 & ~32] & 0x7f) << 7)
| (synth_devs[dev]->
chn_info[chn].controllers[p1 | 32] & 0x7f);
p1 &= ~32;
}
/* Handle all playing notes on this channel */
key = ((int) chn << 8);
for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++)
if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key)
synth_devs[dev]->controller(dev, i, p1, val);
} else
synth_devs[dev]->controller(dev, chn, p1, w14);
} else /* Mode 1 */
synth_devs[dev]->controller(dev, chn, p1, w14);
break;
case MIDI_PITCH_BEND:
if (seq_mode == SEQ_2) {
synth_devs[dev]->chn_info[chn].bender_value = w14;
if ((int) dev < num_synths) { /* Handle all playing
* notes on this channel */
int i, key;
key = (chn << 8);
for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++)
if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key)
synth_devs[dev]->bender(dev, i, w14);
} else
synth_devs[dev]->bender(dev, chn, w14);
} else /* MODE 1 */
synth_devs[dev]->bender(dev, chn, w14);
break;
default:;
}
}
static int
seq_timing_event(u_char *event)
{
u_char cmd = event[1];
u_int parm = *(int *) &event[4];
if (seq_mode == SEQ_2) {
int ret;
if ((ret = tmr->event(tmr_no, event)) == TIMER_ARMED) {
if ((SEQ_MAX_QUEUE - qlen) >= output_treshold) {
u_long flags;
flags = splhigh();
if ((seq_sleep_flag.mode & WK_SLEEP)) {
seq_sleep_flag.mode = WK_WAKEUP;
wakeup(seq_sleeper);
}
splx(flags);
}
}
return ret;
}
switch (cmd) {
case TMR_WAIT_REL:
parm += prev_event_time;
/*
* NOTE! No break here. Execution of TMR_WAIT_REL continues
* in the next case (TMR_WAIT_ABS)
*/
case TMR_WAIT_ABS:
if (parm > 0) {
long time;
seq_playing = 1;
time = parm;
prev_event_time = time;
request_sound_timer(time);
if ((SEQ_MAX_QUEUE - qlen) >= output_treshold) {
u_long flags;
flags = splhigh();
if ((seq_sleep_flag.mode & WK_SLEEP)) {
seq_sleep_flag.mode = WK_WAKEUP;
wakeup(seq_sleeper);
}
splx(flags);
}
return TIMER_ARMED;
}
break;
case TMR_START:
seq_time = get_time();
prev_input_time = 0;
prev_event_time = 0;
break;
case TMR_STOP:
break;
case TMR_CONTINUE:
break;
case TMR_TEMPO:
break;
case TMR_ECHO:
if (seq_mode == SEQ_2)
seq_copy_to_input(event, 8);
else {
parm = (parm << 8 | SEQ_ECHO);
seq_copy_to_input((u_char *) &parm, 4);
}
break;
default:;
}
return TIMER_NOT_ARMED;
}
static void
seq_local_event(u_char *event)
{
u_char cmd = event[1];
u_int parm = *((u_int *) &event[4]);
switch (cmd) {
case LOCL_STARTAUDIO:
#ifdef CONFIG_AUDIO
DMAbuf_start_devices(parm);
#endif
break;
default:;
}
}
static void
seq_sysex_message(u_char *event)
{
int dev = event[1];
int i, l = 0;
u_char *buf = &event[2];
if ((int) dev > max_synthdev)
return;
if (!(synth_open_mask & (1 << dev)))
return;
if (!synth_devs[dev])
return;
if (!synth_devs[dev]->send_sysex)
return;
l = 0;
for (i = 0; i < 6 && buf[i] != 0xff; i++)
l = i + 1;
if (l > 0)
synth_devs[dev]->send_sysex(dev, buf, l);
}
static int
play_event(u_char *q)
{
/*
* NOTE! This routine returns 0 = normal event played. 1 = Timer
* armed. Suspend playback until timer callback. 2 = MIDI output
* buffer full. Restore queue and suspend until timer
*/
u_long *delay;
switch (q[0]) {
case SEQ_NOTEOFF:
if (synth_open_mask & (1 << 0))
if (synth_devs[0])
synth_devs[0]->kill_note(0, q[1], 255, q[3]);
break;
case SEQ_NOTEON:
if (q[4] < 128 || q[4] == 255)
if (synth_open_mask & (1 << 0))
if (synth_devs[0])
synth_devs[0]->start_note(0, q[1], q[2], q[3]);
break;
case SEQ_WAIT:
delay = (u_long *) q; /* Bytes 1 to 3 are
* containing the * delay in
* get_time() */
*delay = (*delay >> 8) & 0xffffff;
if (*delay > 0) {
long time;
seq_playing = 1;
time = *delay;
prev_event_time = time;
request_sound_timer(time);
if ((SEQ_MAX_QUEUE - qlen) >= output_treshold) {
u_long flags;
flags = splhigh();
if ((seq_sleep_flag.mode & WK_SLEEP)) {
seq_sleep_flag.mode = WK_WAKEUP;
wakeup(seq_sleeper);
}
splx(flags);
}
/*
* The timer is now active and will reinvoke this
* function after the timer expires. Return to the
* caller now.
*/
return 1;
}
break;
case SEQ_PGMCHANGE:
if (synth_open_mask & (1 << 0))
if (synth_devs[0])
synth_devs[0]->set_instr(0, q[1], q[2]);
break;
case SEQ_SYNCTIMER: /* Reset timer */
seq_time = get_time();
prev_input_time = 0;
prev_event_time = 0;
break;
case SEQ_MIDIPUTC: /* Put a midi character */
if (midi_opened[q[2]]) {
int dev;
dev = q[2];
if (!midi_devs[dev]->putc(dev, q[1])) {
/*
* Output FIFO is full. Wait one timer cycle and try again.
*/
seq_playing = 1;
request_sound_timer(-1);
return 2;
} else
midi_written[dev] = 1;
}
break;
case SEQ_ECHO:
seq_copy_to_input(q, 4); /* Echo back to the process */
break;
case SEQ_PRIVATE:
if ((int) q[1] < max_synthdev)
synth_devs[q[1]]->hw_control(q[1], q);
break;
case SEQ_EXTENDED:
extended_event(q);
break;
case EV_CHN_VOICE:
seq_chn_voice_event(q);
break;
case EV_CHN_COMMON:
seq_chn_common_event(q);
break;
case EV_TIMING:
if (seq_timing_event(q) == TIMER_ARMED) {
return 1;
}
break;
case EV_SEQ_LOCAL:
seq_local_event(q);
break;
case EV_SYSEX:
seq_sysex_message(q);
break;
default:;
}
return 0;
}
static void
seq_startplay(void)
{
u_long flags;
int this_one, action;
while (qlen > 0) {
flags = splhigh();
qhead = ((this_one = qhead) + 1) % SEQ_MAX_QUEUE;
qlen--;
splx(flags);
seq_playing = 1;
if ((action = play_event(&queue[this_one * EV_SZ]))) {
/*
* Suspend playback. Next timer routine invokes this routine again
*/
if (action == 2) {
qlen++;
qhead = this_one;
}
return;
}
}
seq_playing = 0;
if ((SEQ_MAX_QUEUE - qlen) >= output_treshold) {
u_long flags;
flags = splhigh();
if ((seq_sleep_flag.mode & WK_SLEEP)) {
seq_sleep_flag.mode = WK_WAKEUP;
wakeup(seq_sleeper);
}
splx(flags);
}
}
static void
reset_controllers(int dev, u_char *controller, int update_dev)
{
int i;
for (i = 0; i < 128; i++)
controller[i] = ctrl_def_values[i];
}
static void
setup_mode2(void)
{
int dev;
max_synthdev = num_synths;
for (dev = 0; dev < num_midis; dev++)
if (midi_devs[dev]->converter != NULL)
synth_devs[max_synthdev++] = midi_devs[dev]->converter;
for (dev = 0; dev < max_synthdev; dev++) {
int chn;
for (chn = 0; chn < 16; chn++) {
synth_devs[dev]->chn_info[chn].pgm_num = 0;
reset_controllers(dev,
synth_devs[dev]->chn_info[chn].controllers, 0);
synth_devs[dev]->chn_info[chn].bender_value = (1<<7); /* Neutral */
}
}
max_mididev = 0;
seq_mode = SEQ_2;
}
int
sequencer_open(int dev, struct fileinfo * file)
{
int retval, mode, i;
int level, tmp;
u_long flags;
level = ((dev & 0x0f) == SND_DEV_SEQ2) ? 2 : 1;
dev = dev >> 4;
mode = file->mode & O_ACCMODE;
DEB(printf("sequencer_open(dev=%d)\n", dev));
if (!sequencer_ok) {
printf("Soundcard: Sequencer not initialized\n");
return -(ENXIO);
}
if (dev) { /* Patch manager device */
int err;
printf("Patch manager interface is currently broken. Sorry\n");
return -(ENXIO);
dev--;
if (dev >= MAX_SYNTH_DEV)
return -(ENXIO);
if (pmgr_present[dev])
return -(EBUSY);
if ((err = pmgr_open(dev)) < 0)
return err;
pmgr_present[dev] = 1;
return err;
}
flags = splhigh();
if (sequencer_busy) {
printf("Sequencer busy\n");
splx(flags);
return -(EBUSY);
}
sequencer_busy = 1;
splx(flags);
max_mididev = num_midis;
max_synthdev = num_synths;
pre_event_timeout = 0;
seq_mode = SEQ_1;
if (pending_timer != -1) {
tmr_no = pending_timer;
pending_timer = -1;
}
if (tmr_no == -1) { /* Not selected yet */
int i, best;
best = -1;
for (i = 0; i < num_sound_timers; i++)
if (sound_timer_devs[i]->priority > best) {
tmr_no = i;
best = sound_timer_devs[i]->priority;
}
if (tmr_no == -1) /* Should not be */
tmr_no = 0;
}
tmr = sound_timer_devs[tmr_no];
if (level == 2) {
if (tmr == NULL) {
printf("sequencer: No timer for level 2\n");
sequencer_busy = 0;
return -(ENXIO);
}
setup_mode2();
}
if (seq_mode == SEQ_1 && (mode == OPEN_READ || mode == OPEN_READWRITE))
if (!max_mididev) {
printf("Sequencer: No Midi devices. Input not possible\n");
sequencer_busy = 0;
return -(ENXIO);
}
if (!max_synthdev && !max_mididev)
return -(ENXIO);
synth_open_mask = 0;
for (i = 0; i < max_mididev; i++) {
midi_opened[i] = 0;
midi_written[i] = 0;
}
/*
* if (mode == OPEN_WRITE || mode == OPEN_READWRITE)
*/
for (i = 0; i < max_synthdev; i++) /* Open synth devices */
if ((tmp = synth_devs[i]->open(i, mode)) < 0) {
printf("Sequencer: Warning! Cannot open synth device #%d (%d)\n",
i, tmp);
if (synth_devs[i]->midi_dev)
printf("(Maps to MIDI dev #%d)\n", synth_devs[i]->midi_dev);
} else {
synth_open_mask |= (1 << i);
if (synth_devs[i]->midi_dev) /* Is a midi interface */
midi_opened[synth_devs[i]->midi_dev] = 1;
}
seq_time = get_time();
prev_input_time = 0;
prev_event_time = 0;
if (seq_mode == SEQ_1 && (mode == OPEN_READ || mode == OPEN_READWRITE)) {
/* Initialize midi input devices */
for (i = 0; i < max_mididev; i++)
if (!midi_opened[i]) {
if ((retval = midi_devs[i]->open(i, mode,
sequencer_midi_input, sequencer_midi_output)) >= 0)
midi_opened[i] = 1;
}
}
if (seq_mode == SEQ_2) {
tmr->open(tmr_no, seq_mode);
}
seq_sleep_flag.aborting = 0;
seq_sleep_flag.mode = WK_NONE;
midi_sleep_flag.aborting = 0;
midi_sleep_flag.mode = WK_NONE;
output_treshold = SEQ_MAX_QUEUE / 2;
for (i = 0; i < num_synths; i++)
if (pmgr_present[i])
pmgr_inform(i, PM_E_OPENED, 0, 0, 0, 0);
return 0;
}
static void
seq_drain_midi_queues(void)
{
int i, n;
/*
* Give the Midi drivers time to drain their output queues
*/
n = 1;
while (!(seq_sleep_flag.aborting) && n) {
n = 0;
for (i = 0; i < max_mididev; i++)
if (midi_opened[i] && midi_written[i])
if (midi_devs[i]->buffer_status != NULL)
if (midi_devs[i]->buffer_status(i))
n++;
/*
* Let's have a delay
*/
if (n) {
int chn;
seq_sleeper = &chn;
DO_SLEEP(chn, seq_sleep_flag, hz / 10);
}
}
}
void
sequencer_release(int dev, struct fileinfo * file)
{
int i;
int mode = file->mode & O_ACCMODE;
dev = dev >> 4;
DEB(printf("sequencer_release(dev=%d)\n", dev));
if (dev) { /* Patch manager device */
dev--;
pmgr_release(dev);
pmgr_present[dev] = 0;
return;
}
/*
* Wait until the queue is empty (if we don't have nonblock)
*/
if (mode != OPEN_READ && !0)
while (!(seq_sleep_flag.aborting) && qlen) {
seq_sync();
}
if (mode != OPEN_READ)
seq_drain_midi_queues(); /* Ensure the output queues are empty */
seq_reset();
if (mode != OPEN_READ)
seq_drain_midi_queues(); /* Flush the all notes off messages */
for (i = 0; i < max_synthdev; i++)
if (synth_open_mask & (1 << i)) /* Actually opened */
if (synth_devs[i]) {
synth_devs[i]->close(i);
if (synth_devs[i]->midi_dev)
midi_opened[synth_devs[i]->midi_dev] = 0;
}
for (i = 0; i < num_synths; i++)
if (pmgr_present[i])
pmgr_inform(i, PM_E_CLOSED, 0, 0, 0, 0);
for (i = 0; i < max_mididev; i++)
if (midi_opened[i])
midi_devs[i]->close(i);
if (seq_mode == SEQ_2)
tmr->close(tmr_no);
sequencer_busy = 0;
}
static int
seq_sync(void)
{
u_long flags;
if (qlen && !seq_playing && !(seq_sleep_flag.aborting))
seq_startplay();
flags = splhigh();
if (qlen && !(seq_sleep_flag.mode & WK_SLEEP)) {
int chn;
seq_sleeper = &chn;
DO_SLEEP(chn, seq_sleep_flag, 0);
}
splx(flags);
return qlen;
}
static void
midi_outc(int dev, u_char data)
{
/*
* NOTE! Calls sleep(). Don't call this from interrupt.
*/
int n;
u_long flags;
/*
* This routine sends one byte to the Midi channel. If the output
* Fifo is full, it waits until there is space in the queue
*/
n = 3 * hz; /* Timeout */
flags = splhigh();
while (n && !midi_devs[dev]->putc(dev, data)) {
int chn;
seq_sleeper = &chn;
DO_SLEEP(chn, seq_sleep_flag, 4);
n--;
}
splx(flags);
}
static void
seq_reset(void)
{
/*
* NOTE! Calls sleep(). Don't call this from interrupt.
*/
int i;
int chn;
u_long flags;
sound_stop_timer();
seq_time = get_time();
prev_input_time = 0;
prev_event_time = 0;
qlen = qhead = qtail = 0;
iqlen = iqhead = iqtail = 0;
for (i = 0; i < max_synthdev; i++)
if (synth_open_mask & (1 << i))
if (synth_devs[i])
synth_devs[i]->reset(i);
if (seq_mode == SEQ_2) {
for (chn = 0; chn < 16; chn++)
for (i = 0; i < max_synthdev; i++)
if ( (synth_open_mask & (1 << i)) && (synth_devs[i]) ) {
synth_devs[i]->controller(i, chn,123,0);/* All notes off */
synth_devs[i]->controller(i, chn,121,0);/* Reset all ctl */
synth_devs[i]->bender(i, chn, 1 << 13); /* Bender off */
}
} else { /* seq_mode == SEQ_1 */
for (i = 0; i < max_mididev; i++)
if (midi_written[i]) {
/* Midi used. Some notes may still be playing */
/*
* Sending just a ACTIVE SENSING message
* should be enough to stop all playing
* notes. Since there are devices not
* recognizing the active sensing, we have to
* send some all notes off messages also.
*/
midi_outc(i, 0xfe);
for (chn = 0; chn < 16; chn++) {
midi_outc(i, (u_char) (0xb0 + (chn & 0x0f))); /* control change */
midi_outc(i, 0x7b); /* All notes off */
midi_outc(i, 0); /* Dummy parameter */
}
midi_devs[i]->close(i);
midi_written[i] = 0;
midi_opened[i] = 0;
}
}
seq_playing = 0;
flags = splhigh();
if ((seq_sleep_flag.mode & WK_SLEEP)) {
seq_sleep_flag.mode = WK_WAKEUP;
wakeup(seq_sleeper);
}
splx(flags);
}
static void
seq_panic(void)
{
/*
* This routine is called by the application in case the user wants
* to reset the system to the default state.
*/
seq_reset();
/*
* Since some of the devices don't recognize the active sensing and
* all notes off messages, we have to shut all notes manually.
*
* TO BE IMPLEMENTED LATER
*/
/*
* Also return the controllers to their default states
*/
}
int
sequencer_ioctl(int dev, struct fileinfo * file,
u_int cmd, ioctl_arg arg)
{
int midi_dev, orig_dev;
int mode = file->mode & O_ACCMODE;
orig_dev = dev = dev >> 4;
switch (cmd) {
case SNDCTL_TMR_TIMEBASE:
case SNDCTL_TMR_TEMPO:
case SNDCTL_TMR_START:
case SNDCTL_TMR_STOP:
case SNDCTL_TMR_CONTINUE:
case SNDCTL_TMR_METRONOME:
case SNDCTL_TMR_SOURCE:
if (dev) /* Patch manager */
return -(EIO);
if (seq_mode != SEQ_2)
return -(EINVAL);
return tmr->ioctl(tmr_no, cmd, arg);
break;
case SNDCTL_TMR_SELECT:
if (dev) /* Patch manager */
return -(EIO);
if (seq_mode != SEQ_2)
return -(EINVAL);
pending_timer = (*(int *) arg);
if (pending_timer < 0 || pending_timer >= num_sound_timers) {
pending_timer = -1;
return -(EINVAL);
}
return *(int *) arg = pending_timer;
break;
case SNDCTL_SEQ_PANIC:
seq_panic();
break;
case SNDCTL_SEQ_SYNC:
if (dev) /* Patch manager */
return -(EIO);
if (mode == OPEN_READ)
return 0;
while (qlen && !(seq_sleep_flag.aborting))
seq_sync();
if (qlen)
return -(EINTR);
else
return 0;
break;
case SNDCTL_SEQ_RESET:
if (dev) /* Patch manager */
return -(EIO);
seq_reset();
return 0;
break;
case SNDCTL_SEQ_TESTMIDI:
if (dev) /* Patch manager */
return -(EIO);
midi_dev = (*(int *) arg);
if (midi_dev >= max_mididev)
return -(ENXIO);
if (!midi_opened[midi_dev]) {
int err, mode;
mode = file->mode & O_ACCMODE;
if ((err = midi_devs[midi_dev]->open(midi_dev, mode,
sequencer_midi_input, sequencer_midi_output)) < 0)
return err;
}
midi_opened[midi_dev] = 1;
return 0;
break;
case SNDCTL_SEQ_GETINCOUNT:
if (dev) /* Patch manager */
return -(EIO);
if (mode == OPEN_WRITE)
return 0;
return *(int *) arg = iqlen;
break;
case SNDCTL_SEQ_GETOUTCOUNT:
if (mode == OPEN_READ)
return 0;
return *(int *) arg = SEQ_MAX_QUEUE - qlen;
break;
case SNDCTL_SEQ_CTRLRATE:
if (dev) /* Patch manager */
return -(EIO);
/*
* If *arg == 0, just return the current rate
*/
if (seq_mode == SEQ_2)
return tmr->ioctl(tmr_no, cmd, arg);
if ((*(int *) arg) != 0)
return -(EINVAL);
return *(int *) arg = hz;
break;
case SNDCTL_SEQ_RESETSAMPLES:
{
int err;
dev = (*(int *) arg);
if (dev < 0 || dev >= num_synths)
return -(ENXIO);
if (!(synth_open_mask & (1 << dev)) && !orig_dev)
return -(EBUSY);
if (!orig_dev && pmgr_present[dev])
pmgr_inform(dev, PM_E_PATCH_RESET, 0, 0, 0, 0);
err = synth_devs[dev]->ioctl(dev, cmd, arg);
return err;
}
break;
case SNDCTL_SEQ_NRSYNTHS:
return *(int *) arg = max_synthdev;
break;
case SNDCTL_SEQ_NRMIDIS:
return *(int *) arg = max_mididev;
break;
case SNDCTL_SYNTH_MEMAVL:
{
int dev = (*(int *) arg);
if (dev < 0 || dev >= num_synths)
return -(ENXIO);
if (!(synth_open_mask & (1 << dev)) && !orig_dev)
return -(EBUSY);
return *(int *) arg = synth_devs[dev]->ioctl(dev, cmd, arg);
}
break;
case SNDCTL_FM_4OP_ENABLE:
{
int dev = (*(int *) arg);
if (dev < 0 || dev >= num_synths)
return -(ENXIO);
if (!(synth_open_mask & (1 << dev)))
return -(ENXIO);
synth_devs[dev]->ioctl(dev, cmd, arg);
return 0;
}
break;
case SNDCTL_SYNTH_INFO:
{
struct synth_info inf;
int dev;
bcopy(&(((char *) arg)[0]), (char *) &inf, sizeof(inf));
dev = inf.device;
if (dev < 0 || dev >= max_synthdev)
return -(ENXIO);
if (!(synth_open_mask & (1 << dev)) && !orig_dev)
return -(EBUSY);
return synth_devs[dev]->ioctl(dev, cmd, arg);
}
break;
case SNDCTL_SEQ_OUTOFBAND:
{
struct seq_event_rec event;
u_long flags;
bcopy(&(((char *) arg)[0]), (char *) &event, sizeof(event));
flags = splhigh();
play_event(event.arr);
splx(flags);
return 0;
}
break;
case SNDCTL_MIDI_INFO:
{
struct midi_info inf;
int dev;
bcopy(&(((char *) arg)[0]), (char *) &inf, sizeof(inf));
dev = inf.device;
if (dev < 0 || dev >= max_mididev)
return -(ENXIO);
bcopy((char *) &(midi_devs[dev]->info), &(((char *) arg)[0]), sizeof(inf));
return 0;
}
break;
case SNDCTL_PMGR_IFACE:
{
struct patmgr_info *inf;
int dev, err;
if ((inf = (struct patmgr_info *) malloc(sizeof(*inf), M_TEMP, M_WAITOK)) == NULL) {
printf("patmgr: Can't allocate memory for a message\n");
return -(EIO);
}
bcopy(&(((char *) arg)[0]), (char *) inf, sizeof(*inf));
dev = inf->device;
if (dev < 0 || dev >= num_synths) {
free(inf, M_TEMP);
return -(ENXIO);
}
if (!synth_devs[dev]->pmgr_interface) {
free(inf, M_TEMP);
return -(ENXIO);
}
if ((err = synth_devs[dev]->pmgr_interface(dev, inf)) == -1) {
free(inf, M_TEMP);
return err;
}
bcopy((char *) inf, &(((char *) arg)[0]), sizeof(*inf));
free(inf, M_TEMP);
return 0;
}
break;
case SNDCTL_PMGR_ACCESS:
{
struct patmgr_info *inf;
int dev, err;
if ((inf = (struct patmgr_info *) malloc(sizeof(*inf), M_TEMP, M_WAITOK)) == NULL) {
printf("patmgr: Can't allocate memory for a message\n");
return -(EIO);
}
bcopy(&(((char *) arg)[0]), (char *) inf, sizeof(*inf));
dev = inf->device;
if (dev < 0 || dev >= num_synths) {
free(inf, M_TEMP);
return -(ENXIO);
}
if (!pmgr_present[dev]) {
free(inf, M_TEMP);
return -(ESRCH);
}
if ((err = pmgr_access(dev, inf)) < 0) {
free(inf, M_TEMP);
return err;
}
bcopy((char *) inf, &(((char *) arg)[0]), sizeof(*inf));
free(inf, M_TEMP);
return 0;
}
break;
case SNDCTL_SEQ_THRESHOLD:
{
int tmp = (*(int *) arg);
if (dev)/* Patch manager */
return -(EIO);
if (tmp < 1)
tmp = 1;
if (tmp >= SEQ_MAX_QUEUE)
tmp = SEQ_MAX_QUEUE - 1;
output_treshold = tmp;
return 0;
}
break;
case SNDCTL_MIDI_PRETIME:
{
int val = (*(int *) arg);
if (val < 0)
val = 0;
val = (hz * val) / 10;
pre_event_timeout = val;
return *(int *) arg = val;
}
break;
default:
if (dev) /* Patch manager */
return -(EIO);
if (mode == OPEN_READ)
return -(EIO);
if (!synth_devs[0])
return -(ENXIO);
if (!(synth_open_mask & (1 << 0)))
return -(ENXIO);
return synth_devs[0]->ioctl(0, cmd, arg);
break;
}
return -(EINVAL);
}
#ifdef ALLOW_POLL
int
sequencer_poll (int dev, struct fileinfo *file, int events, select_table * wait)
{
unsigned long flags;
int revents = 0;
dev = dev >> 4;
flags = splhigh();
if (events & (POLLIN | POLLRDNORM))
if (!iqlen)
selrecord(wait, &selinfo[dev]);
else {
revents |= events & (POLLIN | POLLRDNORM);
midi_sleep_flag.mode &= ~WK_SLEEP;
}
if (events & (POLLOUT | POLLWRNORM))
if (qlen >= SEQ_MAX_QUEUE)
selrecord(wait, &selinfo[dev]);
else {
revents |= events & (POLLOUT | POLLWRNORM);
seq_sleep_flag.mode &= ~WK_SLEEP;
}
splx(flags);
return (revents);
}
#endif
void
sequencer_timer(void *dummy)
{
seq_startplay();
}
int
note_to_freq(int note_num)
{
/*
* This routine converts a midi note to a frequency (multiplied by
* 1000)
*/
int note, octave, note_freq;
int notes[] =
{
261632, 277189, 293671, 311132, 329632, 349232,
369998, 391998, 415306, 440000, 466162, 493880
};
#define BASE_OCTAVE 5
octave = note_num / 12;
note = note_num % 12;
note_freq = notes[note];
if (octave < BASE_OCTAVE)
note_freq >>= (BASE_OCTAVE - octave);
else if (octave > BASE_OCTAVE)
note_freq <<= (octave - BASE_OCTAVE);
/*
* note_freq >>= 1;
*/
return note_freq;
}
u_long
compute_finetune(u_long base_freq, int bend, int range)
{
u_long amount;
int negative, semitones, cents, multiplier = 1;
if (!bend)
return base_freq;
if (!range)
return base_freq;
if (!base_freq)
return base_freq;
if (range >= 8192)
range = 8192;
bend = bend * range / 8192;
if (!bend)
return base_freq;
negative = bend < 0 ? 1 : 0;
if (bend < 0)
bend *= -1;
if (bend > range)
bend = range;
/*
* if (bend > 2399) bend = 2399;
*/
while (bend > 2399) {
multiplier *= 4;
bend -= 2400;
}
semitones = bend / 100;
cents = bend % 100;
amount = (int) (semitone_tuning[semitones] * multiplier * cent_tuning[cents])
/ 10000;
if (negative)
return (base_freq * 10000) / amount; /* Bend down */
else
return (base_freq * amount) / 10000; /* Bend up */
}
void
sequencer_init()
{
sequencer_ok = 1;
queue = (u_char *) malloc(SEQ_MAX_QUEUE * EV_SZ, M_DEVBUF, M_NOWAIT);
if (!queue)
panic("SOUND: Cannot allocate memory\n");
iqueue = (u_char *) malloc(SEQ_MAX_QUEUE * IEV_SZ, M_DEVBUF, M_NOWAIT);
if (!iqueue)
panic("SOUND: Cannot allocate memory\n");
}
#endif
#endif