- Move jenkins.h to jenkins_hash.c
- Provide missing function that can do hashing of arbitrary sized buffer. - Refetch lookup3.c and do only minimal edits to it, so that diff between our jenkins_hash.c and lookup3.c is minimal. - Add declarations for jenkins_hash(), jenkins_hash32() to sys/hash.h. - Document these functions in hash(9) Obtained from: http://burtleburtle.net/bob/c/lookup3.c
This commit is contained in:
parent
7b532e0b89
commit
0259eae71d
@ -26,7 +26,7 @@
|
||||
.\" $OpenBSD: hash.9,v 1.5 2003/04/17 05:08:39 jmc Exp $
|
||||
.\" $FreeBSD$
|
||||
.\"
|
||||
.Dd April 3, 2007
|
||||
.Dd September 4, 2012
|
||||
.Dt HASH 9
|
||||
.Os
|
||||
.Sh NAME
|
||||
@ -36,7 +36,9 @@
|
||||
.Nm hash32_str ,
|
||||
.Nm hash32_strn ,
|
||||
.Nm hash32_stre ,
|
||||
.Nm hash32_strne
|
||||
.Nm hash32_strne ,
|
||||
.Nm jenkins_hash32 ,
|
||||
.Nm jenkins_hash
|
||||
.Nd general kernel hashing functions
|
||||
.Sh SYNOPSIS
|
||||
.In sys/hash.h
|
||||
@ -50,6 +52,10 @@
|
||||
.Fn hash32_stre "const void *buf" "int end" "const char **ep" "uint32_t hash"
|
||||
.Ft uint32_t
|
||||
.Fn hash32_strne "const void *buf" "size_t len" "int end" "const char **ep" "uint32_t hash"
|
||||
.Ft uint32_t
|
||||
.Fn jenkins_hash "const void *buf" "size_t len" "uint32_t hash"
|
||||
.Ft uint32_t
|
||||
.Fn jenkins_hash32 "const uint32_t *buf" "size_t count" "uint32_t hash"
|
||||
.Sh DESCRIPTION
|
||||
The
|
||||
.Fn hash32
|
||||
@ -107,6 +113,23 @@ is not
|
||||
.Dv NULL ,
|
||||
it is set to the point in the buffer at which the hash function
|
||||
terminated hashing.
|
||||
.Pp
|
||||
The
|
||||
.Fn jenkins_hash
|
||||
function has same semantics as the
|
||||
.Fn hash32_buf ,
|
||||
but provides more advanced hashing algorithm with better distribution.
|
||||
.Pp
|
||||
The
|
||||
.Fn jenkins_hash32
|
||||
uses same hashing algorithm as the
|
||||
.Fn jenkins_hash
|
||||
function, but works only on
|
||||
.Ft uint32_t
|
||||
sized arrays, thus is simplier and faster.
|
||||
It accepts an array of
|
||||
.Ft uint32_t
|
||||
values in its first argument and size of this array in the second argument.
|
||||
.Sh RETURN VALUES
|
||||
The
|
||||
.Fn hash32
|
||||
@ -150,12 +173,24 @@ be revisited.
|
||||
.Sh HISTORY
|
||||
The
|
||||
.Nm
|
||||
functions were first committed to
|
||||
functions first appeared in
|
||||
.Nx 1.6 .
|
||||
The current implementation of
|
||||
.Nm hash32
|
||||
functions was first committed to
|
||||
.Ox 3.2 ,
|
||||
and later imported to
|
||||
.Fx 6.1 .
|
||||
The
|
||||
.Ox
|
||||
versions were written and massaged for
|
||||
.Ox 2.3
|
||||
by Tobias Weingartner,
|
||||
and finally committed for
|
||||
.Ox 3.2 .
|
||||
.Nm jenkins_hash
|
||||
functions were added in
|
||||
.Fx 10.0 .
|
||||
.Sh AUTHORS
|
||||
The
|
||||
.Nm hash32
|
||||
functions were written by
|
||||
.An Tobias Weingartner .
|
||||
The
|
||||
.Nm jenkins_hash
|
||||
functions was written by
|
||||
Bob Jenkins .
|
||||
|
@ -2797,6 +2797,7 @@ libkern/inet_aton.c standard
|
||||
libkern/inet_ntoa.c standard
|
||||
libkern/inet_ntop.c standard
|
||||
libkern/inet_pton.c standard
|
||||
libkern/jenkins_hash.c standard
|
||||
libkern/mcount.c optional profiling-routine
|
||||
libkern/memcchr.c standard
|
||||
libkern/memcmp.c standard
|
||||
|
@ -1,185 +0,0 @@
|
||||
#ifndef __LIBKERN_JENKINS_H__
|
||||
#define __LIBKERN_JENKINS_H__
|
||||
/*
|
||||
* Taken from http://burtleburtle.net/bob/c/lookup3.c
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
||||
|
||||
These are functions for producing 32-bit hashes for hash table lookup.
|
||||
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
|
||||
are externally useful functions. Routines to test the hash are included
|
||||
if SELF_TEST is defined. You can use this free for any purpose. It's in
|
||||
the public domain. It has no warranty.
|
||||
|
||||
You probably want to use hashlittle(). hashlittle() and hashbig()
|
||||
hash byte arrays. hashlittle() is faster than hashbig() on
|
||||
little-endian machines. Intel and AMD are little-endian machines.
|
||||
On second thought, you probably want hashlittle2(), which is identical to
|
||||
hashlittle() except it returns two 32-bit hashes for the price of one.
|
||||
You could implement hashbig2() if you wanted but I haven't bothered here.
|
||||
|
||||
If you want to find a hash of, say, exactly 7 integers, do
|
||||
a = i1; b = i2; c = i3;
|
||||
mix(a,b,c);
|
||||
a += i4; b += i5; c += i6;
|
||||
mix(a,b,c);
|
||||
a += i7;
|
||||
final(a,b,c);
|
||||
then use c as the hash value. If you have a variable length array of
|
||||
4-byte integers to hash, use hashword(). If you have a byte array (like
|
||||
a character string), use hashlittle(). If you have several byte arrays, or
|
||||
a mix of things, see the comments above hashlittle().
|
||||
|
||||
Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
|
||||
then mix those integers. This is fast (you can do a lot more thorough
|
||||
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
|
||||
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
mix -- mix 3 32-bit values reversibly.
|
||||
|
||||
This is reversible, so any information in (a,b,c) before mix() is
|
||||
still in (a,b,c) after mix().
|
||||
|
||||
If four pairs of (a,b,c) inputs are run through mix(), or through
|
||||
mix() in reverse, there are at least 32 bits of the output that
|
||||
are sometimes the same for one pair and different for another pair.
|
||||
This was tested for:
|
||||
* pairs that differed by one bit, by two bits, in any combination
|
||||
of top bits of (a,b,c), or in any combination of bottom bits of
|
||||
(a,b,c).
|
||||
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
||||
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
||||
is commonly produced by subtraction) look like a single 1-bit
|
||||
difference.
|
||||
* the base values were pseudorandom, all zero but one bit set, or
|
||||
all zero plus a counter that starts at zero.
|
||||
|
||||
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
|
||||
satisfy this are
|
||||
4 6 8 16 19 4
|
||||
9 15 3 18 27 15
|
||||
14 9 3 7 17 3
|
||||
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
|
||||
for "differ" defined as + with a one-bit base and a two-bit delta. I
|
||||
used http://burtleburtle.net/bob/hash/avalanche.html to choose
|
||||
the operations, constants, and arrangements of the variables.
|
||||
|
||||
This does not achieve avalanche. There are input bits of (a,b,c)
|
||||
that fail to affect some output bits of (a,b,c), especially of a. The
|
||||
most thoroughly mixed value is c, but it doesn't really even achieve
|
||||
avalanche in c.
|
||||
|
||||
This allows some parallelism. Read-after-writes are good at doubling
|
||||
the number of bits affected, so the goal of mixing pulls in the opposite
|
||||
direction as the goal of parallelism. I did what I could. Rotates
|
||||
seem to cost as much as shifts on every machine I could lay my hands
|
||||
on, and rotates are much kinder to the top and bottom bits, so I used
|
||||
rotates.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define mix(a,b,c) \
|
||||
{ \
|
||||
a -= c; a ^= rot(c, 4); c += b; \
|
||||
b -= a; b ^= rot(a, 6); a += c; \
|
||||
c -= b; c ^= rot(b, 8); b += a; \
|
||||
a -= c; a ^= rot(c,16); c += b; \
|
||||
b -= a; b ^= rot(a,19); a += c; \
|
||||
c -= b; c ^= rot(b, 4); b += a; \
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
final -- final mixing of 3 32-bit values (a,b,c) into c
|
||||
|
||||
Pairs of (a,b,c) values differing in only a few bits will usually
|
||||
produce values of c that look totally different. This was tested for
|
||||
* pairs that differed by one bit, by two bits, in any combination
|
||||
of top bits of (a,b,c), or in any combination of bottom bits of
|
||||
(a,b,c).
|
||||
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
||||
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
||||
is commonly produced by subtraction) look like a single 1-bit
|
||||
difference.
|
||||
* the base values were pseudorandom, all zero but one bit set, or
|
||||
all zero plus a counter that starts at zero.
|
||||
|
||||
These constants passed:
|
||||
14 11 25 16 4 14 24
|
||||
12 14 25 16 4 14 24
|
||||
and these came close:
|
||||
4 8 15 26 3 22 24
|
||||
10 8 15 26 3 22 24
|
||||
11 8 15 26 3 22 24
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define final(a,b,c) \
|
||||
{ \
|
||||
c ^= b; c -= rot(b,14); \
|
||||
a ^= c; a -= rot(c,11); \
|
||||
b ^= a; b -= rot(a,25); \
|
||||
c ^= b; c -= rot(b,16); \
|
||||
a ^= c; a -= rot(c,4); \
|
||||
b ^= a; b -= rot(a,14); \
|
||||
c ^= b; c -= rot(b,24); \
|
||||
}
|
||||
|
||||
/*
|
||||
--------------------------------------------------------------------
|
||||
This works on all machines. To be useful, it requires
|
||||
-- that the key be an array of uint32_t's, and
|
||||
-- that the length be the number of uint32_t's in the key
|
||||
|
||||
The function hashword() is identical to hashlittle() on little-endian
|
||||
machines, and identical to hashbig() on big-endian machines,
|
||||
except that the length has to be measured in uint32_ts rather than in
|
||||
bytes. hashlittle() is more complicated than hashword() only because
|
||||
hashlittle() has to dance around fitting the key bytes into registers.
|
||||
--------------------------------------------------------------------
|
||||
*/
|
||||
static uint32_t
|
||||
jenkins_hashword(
|
||||
const uint32_t *k, /* the key, an array of uint32_t values */
|
||||
size_t length, /* the length of the key, in uint32_ts */
|
||||
uint32_t initval /* the previous hash, or an arbitrary value */
|
||||
)
|
||||
{
|
||||
uint32_t a,b,c;
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
|
||||
|
||||
/*------------------------------------------------- handle most of the key */
|
||||
while (length > 3)
|
||||
{
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
length -= 3;
|
||||
k += 3;
|
||||
}
|
||||
|
||||
/*------------------------------------------- handle the last 3 uint32_t's */
|
||||
switch(length) /* all the case statements fall through */
|
||||
{
|
||||
case 3 : c+=k[2];
|
||||
case 2 : b+=k[1];
|
||||
case 1 : a+=k[0];
|
||||
final(a,b,c);
|
||||
case 0: /* case 0: nothing left to add */
|
||||
break;
|
||||
}
|
||||
/*------------------------------------------------------ report the result */
|
||||
return c;
|
||||
}
|
||||
#endif
|
463
sys/libkern/jenkins_hash.c
Normal file
463
sys/libkern/jenkins_hash.c
Normal file
@ -0,0 +1,463 @@
|
||||
/*
|
||||
* Taken from http://burtleburtle.net/bob/c/lookup3.c
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#include <sys/hash.h>
|
||||
#include <machine/endian.h>
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
||||
|
||||
These are functions for producing 32-bit hashes for hash table lookup.
|
||||
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
|
||||
are externally useful functions. Routines to test the hash are included
|
||||
if SELF_TEST is defined. You can use this free for any purpose. It's in
|
||||
the public domain. It has no warranty.
|
||||
|
||||
You probably want to use hashlittle(). hashlittle() and hashbig()
|
||||
hash byte arrays. hashlittle() is is faster than hashbig() on
|
||||
little-endian machines. Intel and AMD are little-endian machines.
|
||||
On second thought, you probably want hashlittle2(), which is identical to
|
||||
hashlittle() except it returns two 32-bit hashes for the price of one.
|
||||
You could implement hashbig2() if you wanted but I haven't bothered here.
|
||||
|
||||
If you want to find a hash of, say, exactly 7 integers, do
|
||||
a = i1; b = i2; c = i3;
|
||||
mix(a,b,c);
|
||||
a += i4; b += i5; c += i6;
|
||||
mix(a,b,c);
|
||||
a += i7;
|
||||
final(a,b,c);
|
||||
then use c as the hash value. If you have a variable length array of
|
||||
4-byte integers to hash, use hashword(). If you have a byte array (like
|
||||
a character string), use hashlittle(). If you have several byte arrays, or
|
||||
a mix of things, see the comments above hashlittle().
|
||||
|
||||
Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
|
||||
then mix those integers. This is fast (you can do a lot more thorough
|
||||
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
|
||||
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
mix -- mix 3 32-bit values reversibly.
|
||||
|
||||
This is reversible, so any information in (a,b,c) before mix() is
|
||||
still in (a,b,c) after mix().
|
||||
|
||||
If four pairs of (a,b,c) inputs are run through mix(), or through
|
||||
mix() in reverse, there are at least 32 bits of the output that
|
||||
are sometimes the same for one pair and different for another pair.
|
||||
This was tested for:
|
||||
* pairs that differed by one bit, by two bits, in any combination
|
||||
of top bits of (a,b,c), or in any combination of bottom bits of
|
||||
(a,b,c).
|
||||
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
||||
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
||||
is commonly produced by subtraction) look like a single 1-bit
|
||||
difference.
|
||||
* the base values were pseudorandom, all zero but one bit set, or
|
||||
all zero plus a counter that starts at zero.
|
||||
|
||||
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
|
||||
satisfy this are
|
||||
4 6 8 16 19 4
|
||||
9 15 3 18 27 15
|
||||
14 9 3 7 17 3
|
||||
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
|
||||
for "differ" defined as + with a one-bit base and a two-bit delta. I
|
||||
used http://burtleburtle.net/bob/hash/avalanche.html to choose
|
||||
the operations, constants, and arrangements of the variables.
|
||||
|
||||
This does not achieve avalanche. There are input bits of (a,b,c)
|
||||
that fail to affect some output bits of (a,b,c), especially of a. The
|
||||
most thoroughly mixed value is c, but it doesn't really even achieve
|
||||
avalanche in c.
|
||||
|
||||
This allows some parallelism. Read-after-writes are good at doubling
|
||||
the number of bits affected, so the goal of mixing pulls in the opposite
|
||||
direction as the goal of parallelism. I did what I could. Rotates
|
||||
seem to cost as much as shifts on every machine I could lay my hands
|
||||
on, and rotates are much kinder to the top and bottom bits, so I used
|
||||
rotates.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define mix(a,b,c) \
|
||||
{ \
|
||||
a -= c; a ^= rot(c, 4); c += b; \
|
||||
b -= a; b ^= rot(a, 6); a += c; \
|
||||
c -= b; c ^= rot(b, 8); b += a; \
|
||||
a -= c; a ^= rot(c,16); c += b; \
|
||||
b -= a; b ^= rot(a,19); a += c; \
|
||||
c -= b; c ^= rot(b, 4); b += a; \
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
final -- final mixing of 3 32-bit values (a,b,c) into c
|
||||
|
||||
Pairs of (a,b,c) values differing in only a few bits will usually
|
||||
produce values of c that look totally different. This was tested for
|
||||
* pairs that differed by one bit, by two bits, in any combination
|
||||
of top bits of (a,b,c), or in any combination of bottom bits of
|
||||
(a,b,c).
|
||||
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
||||
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
||||
is commonly produced by subtraction) look like a single 1-bit
|
||||
difference.
|
||||
* the base values were pseudorandom, all zero but one bit set, or
|
||||
all zero plus a counter that starts at zero.
|
||||
|
||||
These constants passed:
|
||||
14 11 25 16 4 14 24
|
||||
12 14 25 16 4 14 24
|
||||
and these came close:
|
||||
4 8 15 26 3 22 24
|
||||
10 8 15 26 3 22 24
|
||||
11 8 15 26 3 22 24
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define final(a,b,c) \
|
||||
{ \
|
||||
c ^= b; c -= rot(b,14); \
|
||||
a ^= c; a -= rot(c,11); \
|
||||
b ^= a; b -= rot(a,25); \
|
||||
c ^= b; c -= rot(b,16); \
|
||||
a ^= c; a -= rot(c,4); \
|
||||
b ^= a; b -= rot(a,14); \
|
||||
c ^= b; c -= rot(b,24); \
|
||||
}
|
||||
|
||||
/*
|
||||
--------------------------------------------------------------------
|
||||
This works on all machines. To be useful, it requires
|
||||
-- that the key be an array of uint32_t's, and
|
||||
-- that the length be the number of uint32_t's in the key
|
||||
|
||||
The function hashword() is identical to hashlittle() on little-endian
|
||||
machines, and identical to hashbig() on big-endian machines,
|
||||
except that the length has to be measured in uint32_ts rather than in
|
||||
bytes. hashlittle() is more complicated than hashword() only because
|
||||
hashlittle() has to dance around fitting the key bytes into registers.
|
||||
--------------------------------------------------------------------
|
||||
*/
|
||||
uint32_t jenkins_hash32(
|
||||
const uint32_t *k, /* the key, an array of uint32_t values */
|
||||
size_t length, /* the length of the key, in uint32_ts */
|
||||
uint32_t initval) /* the previous hash, or an arbitrary value */
|
||||
{
|
||||
uint32_t a,b,c;
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
|
||||
|
||||
/*------------------------------------------------- handle most of the key */
|
||||
while (length > 3)
|
||||
{
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
length -= 3;
|
||||
k += 3;
|
||||
}
|
||||
|
||||
/*------------------------------------------- handle the last 3 uint32_t's */
|
||||
switch(length) /* all the case statements fall through */
|
||||
{
|
||||
case 3 : c+=k[2];
|
||||
case 2 : b+=k[1];
|
||||
case 1 : a+=k[0];
|
||||
final(a,b,c);
|
||||
case 0: /* case 0: nothing left to add */
|
||||
break;
|
||||
}
|
||||
/*------------------------------------------------------ report the result */
|
||||
return c;
|
||||
}
|
||||
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
hashlittle() -- hash a variable-length key into a 32-bit value
|
||||
k : the key (the unaligned variable-length array of bytes)
|
||||
length : the length of the key, counting by bytes
|
||||
initval : can be any 4-byte value
|
||||
Returns a 32-bit value. Every bit of the key affects every bit of
|
||||
the return value. Two keys differing by one or two bits will have
|
||||
totally different hash values.
|
||||
|
||||
The best hash table sizes are powers of 2. There is no need to do
|
||||
mod a prime (mod is sooo slow!). If you need less than 32 bits,
|
||||
use a bitmask. For example, if you need only 10 bits, do
|
||||
h = (h & hashmask(10));
|
||||
In which case, the hash table should have hashsize(10) elements.
|
||||
|
||||
If you are hashing n strings (uint8_t **)k, do it like this:
|
||||
for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
|
||||
|
||||
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
|
||||
code any way you wish, private, educational, or commercial. It's free.
|
||||
|
||||
Use for hash table lookup, or anything where one collision in 2^^32 is
|
||||
acceptable. Do NOT use for cryptographic purposes.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
uint32_t jenkins_hash( const void *key, size_t length, uint32_t initval)
|
||||
{
|
||||
uint32_t a,b,c; /* internal state */
|
||||
union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
|
||||
|
||||
u.ptr = key;
|
||||
if ((u.i & 0x3) == 0) {
|
||||
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
|
||||
|
||||
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 3;
|
||||
}
|
||||
|
||||
/*----------------------------- handle the last (probably partial) block */
|
||||
/*
|
||||
* "k[2]&0xffffff" actually reads beyond the end of the string, but
|
||||
* then masks off the part it's not allowed to read. Because the
|
||||
* string is aligned, the masked-off tail is in the same word as the
|
||||
* rest of the string. Every machine with memory protection I've seen
|
||||
* does it on word boundaries, so is OK with this. But VALGRIND will
|
||||
* still catch it and complain. The masking trick does make the hash
|
||||
* noticably faster for short strings (like English words).
|
||||
*/
|
||||
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
||||
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
|
||||
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
|
||||
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
|
||||
case 8 : b+=k[1]; a+=k[0]; break;
|
||||
case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
|
||||
case 6 : b+=k[1]&0xffff; a+=k[0]; break;
|
||||
case 5 : b+=k[1]&0xff; a+=k[0]; break;
|
||||
case 4 : a+=k[0]; break;
|
||||
case 3 : a+=k[0]&0xffffff; break;
|
||||
case 2 : a+=k[0]&0xffff; break;
|
||||
case 1 : a+=k[0]&0xff; break;
|
||||
case 0 : return c; /* zero length strings require no mixing */
|
||||
}
|
||||
|
||||
} else if ((u.i & 0x1) == 0) {
|
||||
const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
|
||||
const uint8_t *k8;
|
||||
|
||||
/*--------------- all but last block: aligned reads and different mixing */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0] + (((uint32_t)k[1])<<16);
|
||||
b += k[2] + (((uint32_t)k[3])<<16);
|
||||
c += k[4] + (((uint32_t)k[5])<<16);
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 6;
|
||||
}
|
||||
|
||||
/*----------------------------- handle the last (probably partial) block */
|
||||
k8 = (const uint8_t *)k;
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[4]+(((uint32_t)k[5])<<16);
|
||||
b+=k[2]+(((uint32_t)k[3])<<16);
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
|
||||
case 10: c+=k[4];
|
||||
b+=k[2]+(((uint32_t)k[3])<<16);
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 9 : c+=k8[8]; /* fall through */
|
||||
case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
|
||||
case 6 : b+=k[2];
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 5 : b+=k8[4]; /* fall through */
|
||||
case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
|
||||
case 2 : a+=k[0];
|
||||
break;
|
||||
case 1 : a+=k8[0];
|
||||
break;
|
||||
case 0 : return c; /* zero length requires no mixing */
|
||||
}
|
||||
|
||||
} else { /* need to read the key one byte at a time */
|
||||
const uint8_t *k = (const uint8_t *)key;
|
||||
|
||||
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0];
|
||||
a += ((uint32_t)k[1])<<8;
|
||||
a += ((uint32_t)k[2])<<16;
|
||||
a += ((uint32_t)k[3])<<24;
|
||||
b += k[4];
|
||||
b += ((uint32_t)k[5])<<8;
|
||||
b += ((uint32_t)k[6])<<16;
|
||||
b += ((uint32_t)k[7])<<24;
|
||||
c += k[8];
|
||||
c += ((uint32_t)k[9])<<8;
|
||||
c += ((uint32_t)k[10])<<16;
|
||||
c += ((uint32_t)k[11])<<24;
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 12;
|
||||
}
|
||||
|
||||
/*-------------------------------- last block: affect all 32 bits of (c) */
|
||||
switch(length) /* all the case statements fall through */
|
||||
{
|
||||
case 12: c+=((uint32_t)k[11])<<24;
|
||||
case 11: c+=((uint32_t)k[10])<<16;
|
||||
case 10: c+=((uint32_t)k[9])<<8;
|
||||
case 9 : c+=k[8];
|
||||
case 8 : b+=((uint32_t)k[7])<<24;
|
||||
case 7 : b+=((uint32_t)k[6])<<16;
|
||||
case 6 : b+=((uint32_t)k[5])<<8;
|
||||
case 5 : b+=k[4];
|
||||
case 4 : a+=((uint32_t)k[3])<<24;
|
||||
case 3 : a+=((uint32_t)k[2])<<16;
|
||||
case 2 : a+=((uint32_t)k[1])<<8;
|
||||
case 1 : a+=k[0];
|
||||
break;
|
||||
case 0 : return c;
|
||||
}
|
||||
}
|
||||
|
||||
final(a,b,c);
|
||||
return c;
|
||||
}
|
||||
|
||||
#else /* !(BYTE_ORDER == LITTLE_ENDIAN) */
|
||||
|
||||
/*
|
||||
* hashbig():
|
||||
* This is the same as hashword() on big-endian machines. It is different
|
||||
* from hashlittle() on all machines. hashbig() takes advantage of
|
||||
* big-endian byte ordering.
|
||||
*/
|
||||
uint32_t jenkins_hash( const void *key, size_t length, uint32_t initval)
|
||||
{
|
||||
uint32_t a,b,c;
|
||||
union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
|
||||
|
||||
u.ptr = key;
|
||||
if ((u.i & 0x3) == 0) {
|
||||
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
|
||||
|
||||
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 3;
|
||||
}
|
||||
|
||||
/*----------------------------- handle the last (probably partial) block */
|
||||
/*
|
||||
* "k[2]<<8" actually reads beyond the end of the string, but
|
||||
* then shifts out the part it's not allowed to read. Because the
|
||||
* string is aligned, the illegal read is in the same word as the
|
||||
* rest of the string. Every machine with memory protection I've seen
|
||||
* does it on word boundaries, so is OK with this. But VALGRIND will
|
||||
* still catch it and complain. The masking trick does make the hash
|
||||
* noticably faster for short strings (like English words).
|
||||
*/
|
||||
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
||||
case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
|
||||
case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
|
||||
case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
|
||||
case 8 : b+=k[1]; a+=k[0]; break;
|
||||
case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
|
||||
case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
|
||||
case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
|
||||
case 4 : a+=k[0]; break;
|
||||
case 3 : a+=k[0]&0xffffff00; break;
|
||||
case 2 : a+=k[0]&0xffff0000; break;
|
||||
case 1 : a+=k[0]&0xff000000; break;
|
||||
case 0 : return c; /* zero length strings require no mixing */
|
||||
}
|
||||
|
||||
} else { /* need to read the key one byte at a time */
|
||||
const uint8_t *k = (const uint8_t *)key;
|
||||
|
||||
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += ((uint32_t)k[0])<<24;
|
||||
a += ((uint32_t)k[1])<<16;
|
||||
a += ((uint32_t)k[2])<<8;
|
||||
a += ((uint32_t)k[3]);
|
||||
b += ((uint32_t)k[4])<<24;
|
||||
b += ((uint32_t)k[5])<<16;
|
||||
b += ((uint32_t)k[6])<<8;
|
||||
b += ((uint32_t)k[7]);
|
||||
c += ((uint32_t)k[8])<<24;
|
||||
c += ((uint32_t)k[9])<<16;
|
||||
c += ((uint32_t)k[10])<<8;
|
||||
c += ((uint32_t)k[11]);
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 12;
|
||||
}
|
||||
|
||||
/*-------------------------------- last block: affect all 32 bits of (c) */
|
||||
switch(length) /* all the case statements fall through */
|
||||
{
|
||||
case 12: c+=k[11];
|
||||
case 11: c+=((uint32_t)k[10])<<8;
|
||||
case 10: c+=((uint32_t)k[9])<<16;
|
||||
case 9 : c+=((uint32_t)k[8])<<24;
|
||||
case 8 : b+=k[7];
|
||||
case 7 : b+=((uint32_t)k[6])<<8;
|
||||
case 6 : b+=((uint32_t)k[5])<<16;
|
||||
case 5 : b+=((uint32_t)k[4])<<24;
|
||||
case 4 : a+=k[3];
|
||||
case 3 : a+=((uint32_t)k[2])<<8;
|
||||
case 2 : a+=((uint32_t)k[1])<<16;
|
||||
case 1 : a+=((uint32_t)k[0])<<24;
|
||||
break;
|
||||
case 0 : return c;
|
||||
}
|
||||
}
|
||||
|
||||
final(a,b,c);
|
||||
return c;
|
||||
}
|
||||
#endif
|
@ -41,6 +41,7 @@ __FBSDID("$FreeBSD$");
|
||||
#include <sys/bitstring.h>
|
||||
#include <sys/condvar.h>
|
||||
#include <sys/callout.h>
|
||||
#include <sys/hash.h>
|
||||
#include <sys/kernel.h>
|
||||
#include <sys/kthread.h>
|
||||
#include <sys/limits.h>
|
||||
@ -73,7 +74,6 @@ __FBSDID("$FreeBSD$");
|
||||
#include <netinet/udp.h>
|
||||
#include <netinet/sctp.h>
|
||||
|
||||
#include <libkern/jenkins.h>
|
||||
#include <ddb/ddb.h>
|
||||
|
||||
struct ipv4_tuple {
|
||||
@ -585,7 +585,7 @@ ipv4_flow_lookup_hash_internal(
|
||||
} else
|
||||
offset = V_flow_hashjitter + proto;
|
||||
|
||||
return (jenkins_hashword(key, 3, offset));
|
||||
return (jenkins_hash32(key, 3, offset));
|
||||
}
|
||||
|
||||
static struct flentry *
|
||||
@ -791,7 +791,7 @@ ipv6_flow_lookup_hash_internal(
|
||||
} else
|
||||
offset = V_flow_hashjitter + proto;
|
||||
|
||||
return (jenkins_hashword(key, 9, offset));
|
||||
return (jenkins_hash32(key, 9, offset));
|
||||
}
|
||||
|
||||
static struct flentry *
|
||||
|
@ -118,4 +118,13 @@ hash32_strne(const void *buf, size_t len, int end, const char **ep,
|
||||
|
||||
return hash;
|
||||
}
|
||||
|
||||
#ifdef _KERNEL
|
||||
/*
|
||||
* Hashing function from Bob Jenkins. Implementation in libkern/jenkins_hash.c.
|
||||
*/
|
||||
uint32_t jenkins_hash(const void *, size_t, uint32_t);
|
||||
uint32_t jenkins_hash32(const uint32_t *, size_t, uint32_t);
|
||||
#endif /* _KERNEL */
|
||||
|
||||
#endif /* !_SYS_HASH_H_ */
|
||||
|
Loading…
Reference in New Issue
Block a user