Reduce diff to i386/isa/clock.c by unifdef -DPC98

This commit is contained in:
phk 2003-02-05 10:16:43 +00:00
parent 8ad27b1211
commit 025e374110
3 changed files with 0 additions and 1245 deletions

View File

@ -85,14 +85,9 @@
#include <machine/specialreg.h>
#include <i386/isa/icu.h>
#ifdef PC98
#include <pc98/pc98/pc98.h>
#include <pc98/pc98/pc98_machdep.h>
#include <i386/isa/isa_device.h>
#else
#include <i386/isa/isa.h>
#include <isa/rtc.h>
#endif
#ifdef DEV_ISA
#include <isa/isavar.h>
#endif
@ -144,11 +139,7 @@ int pscnt = 1;
int psdiv = 1;
int statclock_disable;
#ifndef TIMER_FREQ
#ifdef PC98
#define TIMER_FREQ 2457600
#else /* IBM-PC */
#define TIMER_FREQ 1193182
#endif /* PC98 */
#endif
u_int timer_freq = TIMER_FREQ;
int timer0_max_count;
@ -172,10 +163,6 @@ static int i8254_ticked;
*/
static void (*new_function)(struct clockframe *frame);
static u_int new_rate;
#ifndef PC98
static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
static u_char rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
#endif
static u_int timer0_prescaler_count;
/* Values for timerX_state: */
@ -185,17 +172,13 @@ static u_int timer0_prescaler_count;
#define ACQUIRE_PENDING 3
static u_char timer0_state;
#ifdef PC98
static u_char timer1_state;
#endif
static u_char timer2_state;
static void (*timer_func)(struct clockframe *frame) = hardclock;
#ifdef PC98
static void rtc_serialcombit(int);
static void rtc_serialcom(int);
static int rtc_inb(void);
static void rtc_outb(int);
#endif
static unsigned i8254_get_timecount(struct timecounter *tc);
static unsigned tsc_get_timecount(struct timecounter *tc);
@ -331,7 +314,6 @@ acquire_timer0(int rate, void (*function)(struct clockframe *frame))
return (0);
}
#ifdef PC98
int
acquire_timer1(int mode)
{
@ -351,7 +333,6 @@ acquire_timer1(int mode)
return (0);
}
#endif
int
acquire_timer2(int mode)
@ -393,7 +374,6 @@ release_timer0()
return (0);
}
#ifdef PC98
int
release_timer1()
{
@ -404,7 +384,6 @@ release_timer1()
outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
return (0);
}
#endif
int
release_timer2()
@ -417,58 +396,6 @@ release_timer2()
return (0);
}
#ifndef PC98
/*
* This routine receives statistical clock interrupts from the RTC.
* As explained above, these occur at 128 interrupts per second.
* When profiling, we receive interrupts at a rate of 1024 Hz.
*
* This does not actually add as much overhead as it sounds, because
* when the statistical clock is active, the hardclock driver no longer
* needs to keep (inaccurate) statistics on its own. This decouples
* statistics gathering from scheduling interrupts.
*
* The RTC chip requires that we read status register C (RTC_INTR)
* to acknowledge an interrupt, before it will generate the next one.
* Under high interrupt load, rtcintr() can be indefinitely delayed and
* the clock can tick immediately after the read from RTC_INTR. In this
* case, the mc146818A interrupt signal will not drop for long enough
* to register with the 8259 PIC. If an interrupt is missed, the stat
* clock will halt, considerably degrading system performance. This is
* why we use 'while' rather than a more straightforward 'if' below.
* Stat clock ticks can still be lost, causing minor loss of accuracy
* in the statistics, but the stat clock will no longer stop.
*/
static void
rtcintr(struct clockframe frame)
{
while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
if (profprocs != 0) {
if (--pscnt == 0)
pscnt = psdiv;
profclock(&frame);
}
if (pscnt == psdiv)
statclock(&frame);
#ifdef SMP
forward_statclock();
#endif
}
}
#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>
DB_SHOW_COMMAND(rtc, rtc)
{
printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
}
#endif /* DDB */
#endif /* for PC98 */
static int
getit(void)
@ -581,13 +508,8 @@ DELAY(int n)
static void
sysbeepstop(void *chan)
{
#ifdef PC98 /* PC98 */
outb(IO_PPI, inb(IO_PPI)|0x08); /* disable counter1 output to speaker */
release_timer1();
#else
outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
release_timer2();
#endif
beeping = 0;
}
@ -596,7 +518,6 @@ sysbeep(int pitch, int period)
{
int x = splclock();
#ifdef PC98
if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
if (!beeping) {
/* Something else owns it. */
@ -613,71 +534,11 @@ sysbeep(int pitch, int period)
beeping = period;
timeout(sysbeepstop, (void *)NULL, period);
}
#else
if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
if (!beeping) {
/* Something else owns it. */
splx(x);
return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
}
mtx_lock_spin(&clock_lock);
outb(TIMER_CNTR2, pitch);
outb(TIMER_CNTR2, (pitch>>8));
mtx_unlock_spin(&clock_lock);
if (!beeping) {
/* enable counter2 output to speaker */
outb(IO_PPI, inb(IO_PPI) | 3);
beeping = period;
timeout(sysbeepstop, (void *)NULL, period);
}
#endif
splx(x);
return (0);
}
#ifndef PC98
/*
* RTC support routines
*/
int
rtcin(reg)
int reg;
{
int s;
u_char val;
s = splhigh();
outb(IO_RTC, reg);
inb(0x84);
val = inb(IO_RTC + 1);
inb(0x84);
splx(s);
return (val);
}
static __inline void
writertc(u_char reg, u_char val)
{
int s;
s = splhigh();
inb(0x84);
outb(IO_RTC, reg);
inb(0x84);
outb(IO_RTC + 1, val);
inb(0x84); /* XXX work around wrong order in rtcin() */
splx(s);
}
static __inline int
readrtc(int port)
{
return(bcd2bin(rtcin(port)));
}
#endif
#ifdef PC98
unsigned int delaycount;
#define FIRST_GUESS 0x2000
static void findcpuspeed(void)
@ -694,9 +555,7 @@ static void findcpuspeed(void)
remainder = getit();
delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
}
#endif
#ifdef PC98
static u_int
calibrate_clocks(void)
{
@ -769,102 +628,6 @@ calibrate_clocks(void)
timer_freq);
return (timer_freq);
}
#else
static u_int
calibrate_clocks(void)
{
u_int64_t old_tsc;
u_int count, prev_count, tot_count;
int sec, start_sec, timeout;
if (bootverbose)
printf("Calibrating clock(s) ... ");
if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
goto fail;
timeout = 100000000;
/* Read the mc146818A seconds counter. */
for (;;) {
if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
sec = rtcin(RTC_SEC);
break;
}
if (--timeout == 0)
goto fail;
}
/* Wait for the mC146818A seconds counter to change. */
start_sec = sec;
for (;;) {
if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
sec = rtcin(RTC_SEC);
if (sec != start_sec)
break;
}
if (--timeout == 0)
goto fail;
}
/* Start keeping track of the i8254 counter. */
prev_count = getit();
if (prev_count == 0 || prev_count > timer0_max_count)
goto fail;
tot_count = 0;
if (tsc_present)
old_tsc = rdtsc();
else
old_tsc = 0; /* shut up gcc */
/*
* Wait for the mc146818A seconds counter to change. Read the i8254
* counter for each iteration since this is convenient and only
* costs a few usec of inaccuracy. The timing of the final reads
* of the counters almost matches the timing of the initial reads,
* so the main cause of inaccuracy is the varying latency from
* inside getit() or rtcin(RTC_STATUSA) to the beginning of the
* rtcin(RTC_SEC) that returns a changed seconds count. The
* maximum inaccuracy from this cause is < 10 usec on 486's.
*/
start_sec = sec;
for (;;) {
if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
sec = rtcin(RTC_SEC);
count = getit();
if (count == 0 || count > timer0_max_count)
goto fail;
if (count > prev_count)
tot_count += prev_count - (count - timer0_max_count);
else
tot_count += prev_count - count;
prev_count = count;
if (sec != start_sec)
break;
if (--timeout == 0)
goto fail;
}
/*
* Read the cpu cycle counter. The timing considerations are
* similar to those for the i8254 clock.
*/
if (tsc_present)
tsc_freq = rdtsc() - old_tsc;
if (bootverbose) {
if (tsc_present)
printf("TSC clock: %ju Hz, ", (intmax_t)tsc_freq);
printf("i8254 clock: %u Hz\n", tot_count);
}
return (tot_count);
fail:
if (bootverbose)
printf("failed, using default i8254 clock of %u Hz\n",
timer_freq);
return (timer_freq);
}
#endif /* !PC98 */
static void
set_timer_freq(u_int freq, int intr_freq)
@ -894,18 +657,6 @@ i8254_restore(void)
mtx_unlock_spin(&clock_lock);
}
#ifndef PC98
static void
rtc_restore(void)
{
/* Restore all of the RTC's "status" (actually, control) registers. */
/* XXX locking is needed for RTC access. */
writertc(RTC_STATUSB, RTCSB_24HR);
writertc(RTC_STATUSA, rtc_statusa);
writertc(RTC_STATUSB, rtc_statusb);
}
#endif
/*
* Restore all the timers non-atomically (XXX: should be atomically).
@ -919,9 +670,6 @@ timer_restore(void)
{
i8254_restore(); /* restore timer_freq and hz */
#ifndef PC98
rtc_restore(); /* reenable RTC interrupts */
#endif
}
/*
@ -933,23 +681,17 @@ startrtclock()
{
u_int delta, freq;
#ifdef PC98
findcpuspeed();
if (pc98_machine_type & M_8M)
timer_freq = 1996800L; /* 1.9968 MHz */
else
timer_freq = 2457600L; /* 2.4576 MHz */
#endif /* PC98 */
if (cpu_feature & CPUID_TSC)
tsc_present = 1;
else
tsc_present = 0;
#ifndef PC98
writertc(RTC_STATUSA, rtc_statusa);
writertc(RTC_STATUSB, RTCSB_24HR);
#endif
set_timer_freq(timer_freq, hz);
freq = calibrate_clocks();
@ -1045,7 +787,6 @@ startrtclock()
#endif /* !defined(SMP) */
}
#ifdef PC98
static void
rtc_serialcombit(int i)
{
@ -1103,7 +844,6 @@ rtc_inb(void)
}
return sa;
}
#endif /* PC-98 */
/*
* Initialize the time of day register, based on the time base which is, e.g.
@ -1116,9 +856,7 @@ inittodr(time_t base)
int year, month;
int y, m, s;
struct timespec ts;
#ifdef PC98
int second, min, hour;
#endif
if (base) {
s = splclock();
@ -1128,7 +866,6 @@ inittodr(time_t base)
splx(s);
}
#ifdef PC98
rtc_serialcom(0x03); /* Time Read */
rtc_serialcom(0x01); /* Register shift command. */
DELAY(20);
@ -1159,46 +896,6 @@ inittodr(time_t base)
in the local time zone */
s = splhigh();
#else /* IBM-PC */
/* Look if we have a RTC present and the time is valid */
if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
goto wrong_time;
/* wait for time update to complete */
/* If RTCSA_TUP is zero, we have at least 244us before next update */
s = splhigh();
while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
splx(s);
s = splhigh();
}
days = 0;
#ifdef USE_RTC_CENTURY
year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
#else
year = readrtc(RTC_YEAR) + 1900;
if (year < 1970)
year += 100;
#endif
if (year < 1970) {
splx(s);
goto wrong_time;
}
month = readrtc(RTC_MONTH);
for (m = 1; m < month; m++)
days += daysinmonth[m-1];
if ((month > 2) && LEAPYEAR(year))
days ++;
days += readrtc(RTC_DAY) - 1;
for (y = 1970; y < year; y++)
days += DAYSPERYEAR + LEAPYEAR(y);
sec = ((( days * 24 +
readrtc(RTC_HRS)) * 60 +
readrtc(RTC_MIN)) * 60 +
readrtc(RTC_SEC));
/* sec now contains the number of seconds, since Jan 1 1970,
in the local time zone */
#endif
sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
@ -1225,9 +922,7 @@ resettodr()
{
unsigned long tm;
int y, m, s;
#ifdef PC98
int wd;
#endif
if (disable_rtc_set)
return;
@ -1236,7 +931,6 @@ resettodr()
tm = time_second;
splx(s);
#ifdef PC98
rtc_serialcom(0x01); /* Register shift command. */
/* Calculate local time to put in RTC */
@ -1273,47 +967,6 @@ resettodr()
rtc_serialcom(0x02); /* Time set & Counter hold command. */
rtc_serialcom(0x00); /* Register hold command. */
#else
/* Disable RTC updates and interrupts. */
writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
/* Calculate local time to put in RTC */
tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60; /* Write back Seconds */
writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60; /* Write back Minutes */
writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24; /* Write back Hours */
/* We have now the days since 01-01-1970 in tm */
writertc(RTC_WDAY, (tm+4)%7); /* Write back Weekday */
for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
tm >= m;
y++, m = DAYSPERYEAR + LEAPYEAR(y))
tm -= m;
/* Now we have the years in y and the day-of-the-year in tm */
writertc(RTC_YEAR, bin2bcd(y%100)); /* Write back Year */
#ifdef USE_RTC_CENTURY
writertc(RTC_CENTURY, bin2bcd(y/100)); /* ... and Century */
#endif
for (m = 0; ; m++) {
int ml;
ml = daysinmonth[m];
if (m == 1 && LEAPYEAR(y))
ml++;
if (tm < ml)
break;
tm -= ml;
}
writertc(RTC_MONTH, bin2bcd(m + 1)); /* Write back Month */
writertc(RTC_DAY, bin2bcd(tm + 1)); /* Write back Month Day */
/* Reenable RTC updates and interrupts. */
writertc(RTC_STATUSB, rtc_statusb);
#endif /* PC98 */
}
@ -1323,30 +976,12 @@ resettodr()
void
cpu_initclocks()
{
#ifndef PC98
int diag;
#endif
#ifdef APIC_IO
int apic_8254_trial;
void *clkdesc;
#endif /* APIC_IO */
register_t crit;
#ifndef PC98
if (statclock_disable) {
/*
* The stat interrupt mask is different without the
* statistics clock. Also, don't set the interrupt
* flag which would normally cause the RTC to generate
* interrupts.
*/
rtc_statusb = RTCSB_24HR;
} else {
/* Setting stathz to nonzero early helps avoid races. */
stathz = RTC_NOPROFRATE;
profhz = RTC_PROFRATE;
}
#endif
/* Finish initializing 8253 timer 0. */
#ifdef APIC_IO
@ -1390,40 +1025,7 @@ cpu_initclocks()
#endif /* APIC_IO */
#ifndef PC98
/* Initialize RTC. */
writertc(RTC_STATUSA, rtc_statusa);
writertc(RTC_STATUSB, RTCSB_24HR);
/* Don't bother enabling the statistics clock. */
if (statclock_disable)
return;
diag = rtcin(RTC_DIAG);
if (diag != 0)
printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
#endif /* !PC98 */
#ifndef PC98
#ifdef APIC_IO
if (isa_apic_irq(8) != 8)
panic("APIC RTC != 8");
#endif /* APIC_IO */
inthand_add("rtc", 8, (driver_intr_t *)rtcintr, NULL,
INTR_TYPE_CLK | INTR_FAST, NULL);
crit = intr_disable();
mtx_lock_spin(&icu_lock);
#ifdef APIC_IO
INTREN(APIC_IRQ8);
#else
INTREN(IRQ8);
#endif /* APIC_IO */
mtx_unlock_spin(&icu_lock);
intr_restore(crit);
writertc(RTC_STATUSB, rtc_statusb);
#endif /* PC98 */
#ifdef APIC_IO
if (apic_8254_trial) {
@ -1507,17 +1109,10 @@ setup_8254_mixed_mode()
* reset; prog 4 bytes, single ICU, edge triggered
*/
outb(IO_ICU1, 0x13);
#ifdef PC98
outb(IO_ICU1 + 2, NRSVIDT); /* start vector (unused) */
outb(IO_ICU1 + 2, 0x00); /* ignore slave */
outb(IO_ICU1 + 2, 0x03); /* auto EOI, 8086 */
outb(IO_ICU1 + 2, 0xfe); /* unmask INT0 */
#else
outb(IO_ICU1 + 1, NRSVIDT); /* start vector (unused) */
outb(IO_ICU1 + 1, 0x00); /* ignore slave */
outb(IO_ICU1 + 1, 0x03); /* auto EOI, 8086 */
outb(IO_ICU1 + 1, 0xfe); /* unmask INT0 */
#endif
/* program IO APIC for type 3 INT on INT0 */
if (ext_int_setup(0, 0) < 0)
@ -1528,13 +1123,6 @@ setup_8254_mixed_mode()
void
cpu_startprofclock(void)
{
#ifndef PC98
if (newhz == RTC_PROFRATE)
rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
else
rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
writertc(RTC_STATUSA, rtc_statusa);
#endif
}
void
@ -1674,7 +1262,4 @@ static driver_t attimer_driver = {
static devclass_t attimer_devclass;
DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
#ifndef PC98
DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
#endif
#endif /* DEV_ISA */

View File

@ -85,14 +85,9 @@
#include <machine/specialreg.h>
#include <i386/isa/icu.h>
#ifdef PC98
#include <pc98/pc98/pc98.h>
#include <pc98/pc98/pc98_machdep.h>
#include <i386/isa/isa_device.h>
#else
#include <i386/isa/isa.h>
#include <isa/rtc.h>
#endif
#ifdef DEV_ISA
#include <isa/isavar.h>
#endif
@ -144,11 +139,7 @@ int pscnt = 1;
int psdiv = 1;
int statclock_disable;
#ifndef TIMER_FREQ
#ifdef PC98
#define TIMER_FREQ 2457600
#else /* IBM-PC */
#define TIMER_FREQ 1193182
#endif /* PC98 */
#endif
u_int timer_freq = TIMER_FREQ;
int timer0_max_count;
@ -172,10 +163,6 @@ static int i8254_ticked;
*/
static void (*new_function)(struct clockframe *frame);
static u_int new_rate;
#ifndef PC98
static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
static u_char rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
#endif
static u_int timer0_prescaler_count;
/* Values for timerX_state: */
@ -185,17 +172,13 @@ static u_int timer0_prescaler_count;
#define ACQUIRE_PENDING 3
static u_char timer0_state;
#ifdef PC98
static u_char timer1_state;
#endif
static u_char timer2_state;
static void (*timer_func)(struct clockframe *frame) = hardclock;
#ifdef PC98
static void rtc_serialcombit(int);
static void rtc_serialcom(int);
static int rtc_inb(void);
static void rtc_outb(int);
#endif
static unsigned i8254_get_timecount(struct timecounter *tc);
static unsigned tsc_get_timecount(struct timecounter *tc);
@ -331,7 +314,6 @@ acquire_timer0(int rate, void (*function)(struct clockframe *frame))
return (0);
}
#ifdef PC98
int
acquire_timer1(int mode)
{
@ -351,7 +333,6 @@ acquire_timer1(int mode)
return (0);
}
#endif
int
acquire_timer2(int mode)
@ -393,7 +374,6 @@ release_timer0()
return (0);
}
#ifdef PC98
int
release_timer1()
{
@ -404,7 +384,6 @@ release_timer1()
outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
return (0);
}
#endif
int
release_timer2()
@ -417,58 +396,6 @@ release_timer2()
return (0);
}
#ifndef PC98
/*
* This routine receives statistical clock interrupts from the RTC.
* As explained above, these occur at 128 interrupts per second.
* When profiling, we receive interrupts at a rate of 1024 Hz.
*
* This does not actually add as much overhead as it sounds, because
* when the statistical clock is active, the hardclock driver no longer
* needs to keep (inaccurate) statistics on its own. This decouples
* statistics gathering from scheduling interrupts.
*
* The RTC chip requires that we read status register C (RTC_INTR)
* to acknowledge an interrupt, before it will generate the next one.
* Under high interrupt load, rtcintr() can be indefinitely delayed and
* the clock can tick immediately after the read from RTC_INTR. In this
* case, the mc146818A interrupt signal will not drop for long enough
* to register with the 8259 PIC. If an interrupt is missed, the stat
* clock will halt, considerably degrading system performance. This is
* why we use 'while' rather than a more straightforward 'if' below.
* Stat clock ticks can still be lost, causing minor loss of accuracy
* in the statistics, but the stat clock will no longer stop.
*/
static void
rtcintr(struct clockframe frame)
{
while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
if (profprocs != 0) {
if (--pscnt == 0)
pscnt = psdiv;
profclock(&frame);
}
if (pscnt == psdiv)
statclock(&frame);
#ifdef SMP
forward_statclock();
#endif
}
}
#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>
DB_SHOW_COMMAND(rtc, rtc)
{
printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
}
#endif /* DDB */
#endif /* for PC98 */
static int
getit(void)
@ -581,13 +508,8 @@ DELAY(int n)
static void
sysbeepstop(void *chan)
{
#ifdef PC98 /* PC98 */
outb(IO_PPI, inb(IO_PPI)|0x08); /* disable counter1 output to speaker */
release_timer1();
#else
outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
release_timer2();
#endif
beeping = 0;
}
@ -596,7 +518,6 @@ sysbeep(int pitch, int period)
{
int x = splclock();
#ifdef PC98
if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
if (!beeping) {
/* Something else owns it. */
@ -613,71 +534,11 @@ sysbeep(int pitch, int period)
beeping = period;
timeout(sysbeepstop, (void *)NULL, period);
}
#else
if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
if (!beeping) {
/* Something else owns it. */
splx(x);
return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
}
mtx_lock_spin(&clock_lock);
outb(TIMER_CNTR2, pitch);
outb(TIMER_CNTR2, (pitch>>8));
mtx_unlock_spin(&clock_lock);
if (!beeping) {
/* enable counter2 output to speaker */
outb(IO_PPI, inb(IO_PPI) | 3);
beeping = period;
timeout(sysbeepstop, (void *)NULL, period);
}
#endif
splx(x);
return (0);
}
#ifndef PC98
/*
* RTC support routines
*/
int
rtcin(reg)
int reg;
{
int s;
u_char val;
s = splhigh();
outb(IO_RTC, reg);
inb(0x84);
val = inb(IO_RTC + 1);
inb(0x84);
splx(s);
return (val);
}
static __inline void
writertc(u_char reg, u_char val)
{
int s;
s = splhigh();
inb(0x84);
outb(IO_RTC, reg);
inb(0x84);
outb(IO_RTC + 1, val);
inb(0x84); /* XXX work around wrong order in rtcin() */
splx(s);
}
static __inline int
readrtc(int port)
{
return(bcd2bin(rtcin(port)));
}
#endif
#ifdef PC98
unsigned int delaycount;
#define FIRST_GUESS 0x2000
static void findcpuspeed(void)
@ -694,9 +555,7 @@ static void findcpuspeed(void)
remainder = getit();
delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
}
#endif
#ifdef PC98
static u_int
calibrate_clocks(void)
{
@ -769,102 +628,6 @@ calibrate_clocks(void)
timer_freq);
return (timer_freq);
}
#else
static u_int
calibrate_clocks(void)
{
u_int64_t old_tsc;
u_int count, prev_count, tot_count;
int sec, start_sec, timeout;
if (bootverbose)
printf("Calibrating clock(s) ... ");
if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
goto fail;
timeout = 100000000;
/* Read the mc146818A seconds counter. */
for (;;) {
if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
sec = rtcin(RTC_SEC);
break;
}
if (--timeout == 0)
goto fail;
}
/* Wait for the mC146818A seconds counter to change. */
start_sec = sec;
for (;;) {
if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
sec = rtcin(RTC_SEC);
if (sec != start_sec)
break;
}
if (--timeout == 0)
goto fail;
}
/* Start keeping track of the i8254 counter. */
prev_count = getit();
if (prev_count == 0 || prev_count > timer0_max_count)
goto fail;
tot_count = 0;
if (tsc_present)
old_tsc = rdtsc();
else
old_tsc = 0; /* shut up gcc */
/*
* Wait for the mc146818A seconds counter to change. Read the i8254
* counter for each iteration since this is convenient and only
* costs a few usec of inaccuracy. The timing of the final reads
* of the counters almost matches the timing of the initial reads,
* so the main cause of inaccuracy is the varying latency from
* inside getit() or rtcin(RTC_STATUSA) to the beginning of the
* rtcin(RTC_SEC) that returns a changed seconds count. The
* maximum inaccuracy from this cause is < 10 usec on 486's.
*/
start_sec = sec;
for (;;) {
if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
sec = rtcin(RTC_SEC);
count = getit();
if (count == 0 || count > timer0_max_count)
goto fail;
if (count > prev_count)
tot_count += prev_count - (count - timer0_max_count);
else
tot_count += prev_count - count;
prev_count = count;
if (sec != start_sec)
break;
if (--timeout == 0)
goto fail;
}
/*
* Read the cpu cycle counter. The timing considerations are
* similar to those for the i8254 clock.
*/
if (tsc_present)
tsc_freq = rdtsc() - old_tsc;
if (bootverbose) {
if (tsc_present)
printf("TSC clock: %ju Hz, ", (intmax_t)tsc_freq);
printf("i8254 clock: %u Hz\n", tot_count);
}
return (tot_count);
fail:
if (bootverbose)
printf("failed, using default i8254 clock of %u Hz\n",
timer_freq);
return (timer_freq);
}
#endif /* !PC98 */
static void
set_timer_freq(u_int freq, int intr_freq)
@ -894,18 +657,6 @@ i8254_restore(void)
mtx_unlock_spin(&clock_lock);
}
#ifndef PC98
static void
rtc_restore(void)
{
/* Restore all of the RTC's "status" (actually, control) registers. */
/* XXX locking is needed for RTC access. */
writertc(RTC_STATUSB, RTCSB_24HR);
writertc(RTC_STATUSA, rtc_statusa);
writertc(RTC_STATUSB, rtc_statusb);
}
#endif
/*
* Restore all the timers non-atomically (XXX: should be atomically).
@ -919,9 +670,6 @@ timer_restore(void)
{
i8254_restore(); /* restore timer_freq and hz */
#ifndef PC98
rtc_restore(); /* reenable RTC interrupts */
#endif
}
/*
@ -933,23 +681,17 @@ startrtclock()
{
u_int delta, freq;
#ifdef PC98
findcpuspeed();
if (pc98_machine_type & M_8M)
timer_freq = 1996800L; /* 1.9968 MHz */
else
timer_freq = 2457600L; /* 2.4576 MHz */
#endif /* PC98 */
if (cpu_feature & CPUID_TSC)
tsc_present = 1;
else
tsc_present = 0;
#ifndef PC98
writertc(RTC_STATUSA, rtc_statusa);
writertc(RTC_STATUSB, RTCSB_24HR);
#endif
set_timer_freq(timer_freq, hz);
freq = calibrate_clocks();
@ -1045,7 +787,6 @@ startrtclock()
#endif /* !defined(SMP) */
}
#ifdef PC98
static void
rtc_serialcombit(int i)
{
@ -1103,7 +844,6 @@ rtc_inb(void)
}
return sa;
}
#endif /* PC-98 */
/*
* Initialize the time of day register, based on the time base which is, e.g.
@ -1116,9 +856,7 @@ inittodr(time_t base)
int year, month;
int y, m, s;
struct timespec ts;
#ifdef PC98
int second, min, hour;
#endif
if (base) {
s = splclock();
@ -1128,7 +866,6 @@ inittodr(time_t base)
splx(s);
}
#ifdef PC98
rtc_serialcom(0x03); /* Time Read */
rtc_serialcom(0x01); /* Register shift command. */
DELAY(20);
@ -1159,46 +896,6 @@ inittodr(time_t base)
in the local time zone */
s = splhigh();
#else /* IBM-PC */
/* Look if we have a RTC present and the time is valid */
if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
goto wrong_time;
/* wait for time update to complete */
/* If RTCSA_TUP is zero, we have at least 244us before next update */
s = splhigh();
while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
splx(s);
s = splhigh();
}
days = 0;
#ifdef USE_RTC_CENTURY
year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
#else
year = readrtc(RTC_YEAR) + 1900;
if (year < 1970)
year += 100;
#endif
if (year < 1970) {
splx(s);
goto wrong_time;
}
month = readrtc(RTC_MONTH);
for (m = 1; m < month; m++)
days += daysinmonth[m-1];
if ((month > 2) && LEAPYEAR(year))
days ++;
days += readrtc(RTC_DAY) - 1;
for (y = 1970; y < year; y++)
days += DAYSPERYEAR + LEAPYEAR(y);
sec = ((( days * 24 +
readrtc(RTC_HRS)) * 60 +
readrtc(RTC_MIN)) * 60 +
readrtc(RTC_SEC));
/* sec now contains the number of seconds, since Jan 1 1970,
in the local time zone */
#endif
sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
@ -1225,9 +922,7 @@ resettodr()
{
unsigned long tm;
int y, m, s;
#ifdef PC98
int wd;
#endif
if (disable_rtc_set)
return;
@ -1236,7 +931,6 @@ resettodr()
tm = time_second;
splx(s);
#ifdef PC98
rtc_serialcom(0x01); /* Register shift command. */
/* Calculate local time to put in RTC */
@ -1273,47 +967,6 @@ resettodr()
rtc_serialcom(0x02); /* Time set & Counter hold command. */
rtc_serialcom(0x00); /* Register hold command. */
#else
/* Disable RTC updates and interrupts. */
writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
/* Calculate local time to put in RTC */
tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60; /* Write back Seconds */
writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60; /* Write back Minutes */
writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24; /* Write back Hours */
/* We have now the days since 01-01-1970 in tm */
writertc(RTC_WDAY, (tm+4)%7); /* Write back Weekday */
for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
tm >= m;
y++, m = DAYSPERYEAR + LEAPYEAR(y))
tm -= m;
/* Now we have the years in y and the day-of-the-year in tm */
writertc(RTC_YEAR, bin2bcd(y%100)); /* Write back Year */
#ifdef USE_RTC_CENTURY
writertc(RTC_CENTURY, bin2bcd(y/100)); /* ... and Century */
#endif
for (m = 0; ; m++) {
int ml;
ml = daysinmonth[m];
if (m == 1 && LEAPYEAR(y))
ml++;
if (tm < ml)
break;
tm -= ml;
}
writertc(RTC_MONTH, bin2bcd(m + 1)); /* Write back Month */
writertc(RTC_DAY, bin2bcd(tm + 1)); /* Write back Month Day */
/* Reenable RTC updates and interrupts. */
writertc(RTC_STATUSB, rtc_statusb);
#endif /* PC98 */
}
@ -1323,30 +976,12 @@ resettodr()
void
cpu_initclocks()
{
#ifndef PC98
int diag;
#endif
#ifdef APIC_IO
int apic_8254_trial;
void *clkdesc;
#endif /* APIC_IO */
register_t crit;
#ifndef PC98
if (statclock_disable) {
/*
* The stat interrupt mask is different without the
* statistics clock. Also, don't set the interrupt
* flag which would normally cause the RTC to generate
* interrupts.
*/
rtc_statusb = RTCSB_24HR;
} else {
/* Setting stathz to nonzero early helps avoid races. */
stathz = RTC_NOPROFRATE;
profhz = RTC_PROFRATE;
}
#endif
/* Finish initializing 8253 timer 0. */
#ifdef APIC_IO
@ -1390,40 +1025,7 @@ cpu_initclocks()
#endif /* APIC_IO */
#ifndef PC98
/* Initialize RTC. */
writertc(RTC_STATUSA, rtc_statusa);
writertc(RTC_STATUSB, RTCSB_24HR);
/* Don't bother enabling the statistics clock. */
if (statclock_disable)
return;
diag = rtcin(RTC_DIAG);
if (diag != 0)
printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
#endif /* !PC98 */
#ifndef PC98
#ifdef APIC_IO
if (isa_apic_irq(8) != 8)
panic("APIC RTC != 8");
#endif /* APIC_IO */
inthand_add("rtc", 8, (driver_intr_t *)rtcintr, NULL,
INTR_TYPE_CLK | INTR_FAST, NULL);
crit = intr_disable();
mtx_lock_spin(&icu_lock);
#ifdef APIC_IO
INTREN(APIC_IRQ8);
#else
INTREN(IRQ8);
#endif /* APIC_IO */
mtx_unlock_spin(&icu_lock);
intr_restore(crit);
writertc(RTC_STATUSB, rtc_statusb);
#endif /* PC98 */
#ifdef APIC_IO
if (apic_8254_trial) {
@ -1507,17 +1109,10 @@ setup_8254_mixed_mode()
* reset; prog 4 bytes, single ICU, edge triggered
*/
outb(IO_ICU1, 0x13);
#ifdef PC98
outb(IO_ICU1 + 2, NRSVIDT); /* start vector (unused) */
outb(IO_ICU1 + 2, 0x00); /* ignore slave */
outb(IO_ICU1 + 2, 0x03); /* auto EOI, 8086 */
outb(IO_ICU1 + 2, 0xfe); /* unmask INT0 */
#else
outb(IO_ICU1 + 1, NRSVIDT); /* start vector (unused) */
outb(IO_ICU1 + 1, 0x00); /* ignore slave */
outb(IO_ICU1 + 1, 0x03); /* auto EOI, 8086 */
outb(IO_ICU1 + 1, 0xfe); /* unmask INT0 */
#endif
/* program IO APIC for type 3 INT on INT0 */
if (ext_int_setup(0, 0) < 0)
@ -1528,13 +1123,6 @@ setup_8254_mixed_mode()
void
cpu_startprofclock(void)
{
#ifndef PC98
if (newhz == RTC_PROFRATE)
rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
else
rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
writertc(RTC_STATUSA, rtc_statusa);
#endif
}
void
@ -1674,7 +1262,4 @@ static driver_t attimer_driver = {
static devclass_t attimer_devclass;
DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
#ifndef PC98
DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
#endif
#endif /* DEV_ISA */

View File

@ -85,14 +85,9 @@
#include <machine/specialreg.h>
#include <i386/isa/icu.h>
#ifdef PC98
#include <pc98/pc98/pc98.h>
#include <pc98/pc98/pc98_machdep.h>
#include <i386/isa/isa_device.h>
#else
#include <i386/isa/isa.h>
#include <isa/rtc.h>
#endif
#ifdef DEV_ISA
#include <isa/isavar.h>
#endif
@ -144,11 +139,7 @@ int pscnt = 1;
int psdiv = 1;
int statclock_disable;
#ifndef TIMER_FREQ
#ifdef PC98
#define TIMER_FREQ 2457600
#else /* IBM-PC */
#define TIMER_FREQ 1193182
#endif /* PC98 */
#endif
u_int timer_freq = TIMER_FREQ;
int timer0_max_count;
@ -172,10 +163,6 @@ static int i8254_ticked;
*/
static void (*new_function)(struct clockframe *frame);
static u_int new_rate;
#ifndef PC98
static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
static u_char rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
#endif
static u_int timer0_prescaler_count;
/* Values for timerX_state: */
@ -185,17 +172,13 @@ static u_int timer0_prescaler_count;
#define ACQUIRE_PENDING 3
static u_char timer0_state;
#ifdef PC98
static u_char timer1_state;
#endif
static u_char timer2_state;
static void (*timer_func)(struct clockframe *frame) = hardclock;
#ifdef PC98
static void rtc_serialcombit(int);
static void rtc_serialcom(int);
static int rtc_inb(void);
static void rtc_outb(int);
#endif
static unsigned i8254_get_timecount(struct timecounter *tc);
static unsigned tsc_get_timecount(struct timecounter *tc);
@ -331,7 +314,6 @@ acquire_timer0(int rate, void (*function)(struct clockframe *frame))
return (0);
}
#ifdef PC98
int
acquire_timer1(int mode)
{
@ -351,7 +333,6 @@ acquire_timer1(int mode)
return (0);
}
#endif
int
acquire_timer2(int mode)
@ -393,7 +374,6 @@ release_timer0()
return (0);
}
#ifdef PC98
int
release_timer1()
{
@ -404,7 +384,6 @@ release_timer1()
outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
return (0);
}
#endif
int
release_timer2()
@ -417,58 +396,6 @@ release_timer2()
return (0);
}
#ifndef PC98
/*
* This routine receives statistical clock interrupts from the RTC.
* As explained above, these occur at 128 interrupts per second.
* When profiling, we receive interrupts at a rate of 1024 Hz.
*
* This does not actually add as much overhead as it sounds, because
* when the statistical clock is active, the hardclock driver no longer
* needs to keep (inaccurate) statistics on its own. This decouples
* statistics gathering from scheduling interrupts.
*
* The RTC chip requires that we read status register C (RTC_INTR)
* to acknowledge an interrupt, before it will generate the next one.
* Under high interrupt load, rtcintr() can be indefinitely delayed and
* the clock can tick immediately after the read from RTC_INTR. In this
* case, the mc146818A interrupt signal will not drop for long enough
* to register with the 8259 PIC. If an interrupt is missed, the stat
* clock will halt, considerably degrading system performance. This is
* why we use 'while' rather than a more straightforward 'if' below.
* Stat clock ticks can still be lost, causing minor loss of accuracy
* in the statistics, but the stat clock will no longer stop.
*/
static void
rtcintr(struct clockframe frame)
{
while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
if (profprocs != 0) {
if (--pscnt == 0)
pscnt = psdiv;
profclock(&frame);
}
if (pscnt == psdiv)
statclock(&frame);
#ifdef SMP
forward_statclock();
#endif
}
}
#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>
DB_SHOW_COMMAND(rtc, rtc)
{
printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
}
#endif /* DDB */
#endif /* for PC98 */
static int
getit(void)
@ -581,13 +508,8 @@ DELAY(int n)
static void
sysbeepstop(void *chan)
{
#ifdef PC98 /* PC98 */
outb(IO_PPI, inb(IO_PPI)|0x08); /* disable counter1 output to speaker */
release_timer1();
#else
outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
release_timer2();
#endif
beeping = 0;
}
@ -596,7 +518,6 @@ sysbeep(int pitch, int period)
{
int x = splclock();
#ifdef PC98
if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
if (!beeping) {
/* Something else owns it. */
@ -613,71 +534,11 @@ sysbeep(int pitch, int period)
beeping = period;
timeout(sysbeepstop, (void *)NULL, period);
}
#else
if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
if (!beeping) {
/* Something else owns it. */
splx(x);
return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
}
mtx_lock_spin(&clock_lock);
outb(TIMER_CNTR2, pitch);
outb(TIMER_CNTR2, (pitch>>8));
mtx_unlock_spin(&clock_lock);
if (!beeping) {
/* enable counter2 output to speaker */
outb(IO_PPI, inb(IO_PPI) | 3);
beeping = period;
timeout(sysbeepstop, (void *)NULL, period);
}
#endif
splx(x);
return (0);
}
#ifndef PC98
/*
* RTC support routines
*/
int
rtcin(reg)
int reg;
{
int s;
u_char val;
s = splhigh();
outb(IO_RTC, reg);
inb(0x84);
val = inb(IO_RTC + 1);
inb(0x84);
splx(s);
return (val);
}
static __inline void
writertc(u_char reg, u_char val)
{
int s;
s = splhigh();
inb(0x84);
outb(IO_RTC, reg);
inb(0x84);
outb(IO_RTC + 1, val);
inb(0x84); /* XXX work around wrong order in rtcin() */
splx(s);
}
static __inline int
readrtc(int port)
{
return(bcd2bin(rtcin(port)));
}
#endif
#ifdef PC98
unsigned int delaycount;
#define FIRST_GUESS 0x2000
static void findcpuspeed(void)
@ -694,9 +555,7 @@ static void findcpuspeed(void)
remainder = getit();
delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
}
#endif
#ifdef PC98
static u_int
calibrate_clocks(void)
{
@ -769,102 +628,6 @@ calibrate_clocks(void)
timer_freq);
return (timer_freq);
}
#else
static u_int
calibrate_clocks(void)
{
u_int64_t old_tsc;
u_int count, prev_count, tot_count;
int sec, start_sec, timeout;
if (bootverbose)
printf("Calibrating clock(s) ... ");
if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
goto fail;
timeout = 100000000;
/* Read the mc146818A seconds counter. */
for (;;) {
if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
sec = rtcin(RTC_SEC);
break;
}
if (--timeout == 0)
goto fail;
}
/* Wait for the mC146818A seconds counter to change. */
start_sec = sec;
for (;;) {
if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
sec = rtcin(RTC_SEC);
if (sec != start_sec)
break;
}
if (--timeout == 0)
goto fail;
}
/* Start keeping track of the i8254 counter. */
prev_count = getit();
if (prev_count == 0 || prev_count > timer0_max_count)
goto fail;
tot_count = 0;
if (tsc_present)
old_tsc = rdtsc();
else
old_tsc = 0; /* shut up gcc */
/*
* Wait for the mc146818A seconds counter to change. Read the i8254
* counter for each iteration since this is convenient and only
* costs a few usec of inaccuracy. The timing of the final reads
* of the counters almost matches the timing of the initial reads,
* so the main cause of inaccuracy is the varying latency from
* inside getit() or rtcin(RTC_STATUSA) to the beginning of the
* rtcin(RTC_SEC) that returns a changed seconds count. The
* maximum inaccuracy from this cause is < 10 usec on 486's.
*/
start_sec = sec;
for (;;) {
if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
sec = rtcin(RTC_SEC);
count = getit();
if (count == 0 || count > timer0_max_count)
goto fail;
if (count > prev_count)
tot_count += prev_count - (count - timer0_max_count);
else
tot_count += prev_count - count;
prev_count = count;
if (sec != start_sec)
break;
if (--timeout == 0)
goto fail;
}
/*
* Read the cpu cycle counter. The timing considerations are
* similar to those for the i8254 clock.
*/
if (tsc_present)
tsc_freq = rdtsc() - old_tsc;
if (bootverbose) {
if (tsc_present)
printf("TSC clock: %ju Hz, ", (intmax_t)tsc_freq);
printf("i8254 clock: %u Hz\n", tot_count);
}
return (tot_count);
fail:
if (bootverbose)
printf("failed, using default i8254 clock of %u Hz\n",
timer_freq);
return (timer_freq);
}
#endif /* !PC98 */
static void
set_timer_freq(u_int freq, int intr_freq)
@ -894,18 +657,6 @@ i8254_restore(void)
mtx_unlock_spin(&clock_lock);
}
#ifndef PC98
static void
rtc_restore(void)
{
/* Restore all of the RTC's "status" (actually, control) registers. */
/* XXX locking is needed for RTC access. */
writertc(RTC_STATUSB, RTCSB_24HR);
writertc(RTC_STATUSA, rtc_statusa);
writertc(RTC_STATUSB, rtc_statusb);
}
#endif
/*
* Restore all the timers non-atomically (XXX: should be atomically).
@ -919,9 +670,6 @@ timer_restore(void)
{
i8254_restore(); /* restore timer_freq and hz */
#ifndef PC98
rtc_restore(); /* reenable RTC interrupts */
#endif
}
/*
@ -933,23 +681,17 @@ startrtclock()
{
u_int delta, freq;
#ifdef PC98
findcpuspeed();
if (pc98_machine_type & M_8M)
timer_freq = 1996800L; /* 1.9968 MHz */
else
timer_freq = 2457600L; /* 2.4576 MHz */
#endif /* PC98 */
if (cpu_feature & CPUID_TSC)
tsc_present = 1;
else
tsc_present = 0;
#ifndef PC98
writertc(RTC_STATUSA, rtc_statusa);
writertc(RTC_STATUSB, RTCSB_24HR);
#endif
set_timer_freq(timer_freq, hz);
freq = calibrate_clocks();
@ -1045,7 +787,6 @@ startrtclock()
#endif /* !defined(SMP) */
}
#ifdef PC98
static void
rtc_serialcombit(int i)
{
@ -1103,7 +844,6 @@ rtc_inb(void)
}
return sa;
}
#endif /* PC-98 */
/*
* Initialize the time of day register, based on the time base which is, e.g.
@ -1116,9 +856,7 @@ inittodr(time_t base)
int year, month;
int y, m, s;
struct timespec ts;
#ifdef PC98
int second, min, hour;
#endif
if (base) {
s = splclock();
@ -1128,7 +866,6 @@ inittodr(time_t base)
splx(s);
}
#ifdef PC98
rtc_serialcom(0x03); /* Time Read */
rtc_serialcom(0x01); /* Register shift command. */
DELAY(20);
@ -1159,46 +896,6 @@ inittodr(time_t base)
in the local time zone */
s = splhigh();
#else /* IBM-PC */
/* Look if we have a RTC present and the time is valid */
if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
goto wrong_time;
/* wait for time update to complete */
/* If RTCSA_TUP is zero, we have at least 244us before next update */
s = splhigh();
while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
splx(s);
s = splhigh();
}
days = 0;
#ifdef USE_RTC_CENTURY
year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
#else
year = readrtc(RTC_YEAR) + 1900;
if (year < 1970)
year += 100;
#endif
if (year < 1970) {
splx(s);
goto wrong_time;
}
month = readrtc(RTC_MONTH);
for (m = 1; m < month; m++)
days += daysinmonth[m-1];
if ((month > 2) && LEAPYEAR(year))
days ++;
days += readrtc(RTC_DAY) - 1;
for (y = 1970; y < year; y++)
days += DAYSPERYEAR + LEAPYEAR(y);
sec = ((( days * 24 +
readrtc(RTC_HRS)) * 60 +
readrtc(RTC_MIN)) * 60 +
readrtc(RTC_SEC));
/* sec now contains the number of seconds, since Jan 1 1970,
in the local time zone */
#endif
sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
@ -1225,9 +922,7 @@ resettodr()
{
unsigned long tm;
int y, m, s;
#ifdef PC98
int wd;
#endif
if (disable_rtc_set)
return;
@ -1236,7 +931,6 @@ resettodr()
tm = time_second;
splx(s);
#ifdef PC98
rtc_serialcom(0x01); /* Register shift command. */
/* Calculate local time to put in RTC */
@ -1273,47 +967,6 @@ resettodr()
rtc_serialcom(0x02); /* Time set & Counter hold command. */
rtc_serialcom(0x00); /* Register hold command. */
#else
/* Disable RTC updates and interrupts. */
writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
/* Calculate local time to put in RTC */
tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60; /* Write back Seconds */
writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60; /* Write back Minutes */
writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24; /* Write back Hours */
/* We have now the days since 01-01-1970 in tm */
writertc(RTC_WDAY, (tm+4)%7); /* Write back Weekday */
for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
tm >= m;
y++, m = DAYSPERYEAR + LEAPYEAR(y))
tm -= m;
/* Now we have the years in y and the day-of-the-year in tm */
writertc(RTC_YEAR, bin2bcd(y%100)); /* Write back Year */
#ifdef USE_RTC_CENTURY
writertc(RTC_CENTURY, bin2bcd(y/100)); /* ... and Century */
#endif
for (m = 0; ; m++) {
int ml;
ml = daysinmonth[m];
if (m == 1 && LEAPYEAR(y))
ml++;
if (tm < ml)
break;
tm -= ml;
}
writertc(RTC_MONTH, bin2bcd(m + 1)); /* Write back Month */
writertc(RTC_DAY, bin2bcd(tm + 1)); /* Write back Month Day */
/* Reenable RTC updates and interrupts. */
writertc(RTC_STATUSB, rtc_statusb);
#endif /* PC98 */
}
@ -1323,30 +976,12 @@ resettodr()
void
cpu_initclocks()
{
#ifndef PC98
int diag;
#endif
#ifdef APIC_IO
int apic_8254_trial;
void *clkdesc;
#endif /* APIC_IO */
register_t crit;
#ifndef PC98
if (statclock_disable) {
/*
* The stat interrupt mask is different without the
* statistics clock. Also, don't set the interrupt
* flag which would normally cause the RTC to generate
* interrupts.
*/
rtc_statusb = RTCSB_24HR;
} else {
/* Setting stathz to nonzero early helps avoid races. */
stathz = RTC_NOPROFRATE;
profhz = RTC_PROFRATE;
}
#endif
/* Finish initializing 8253 timer 0. */
#ifdef APIC_IO
@ -1390,40 +1025,7 @@ cpu_initclocks()
#endif /* APIC_IO */
#ifndef PC98
/* Initialize RTC. */
writertc(RTC_STATUSA, rtc_statusa);
writertc(RTC_STATUSB, RTCSB_24HR);
/* Don't bother enabling the statistics clock. */
if (statclock_disable)
return;
diag = rtcin(RTC_DIAG);
if (diag != 0)
printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
#endif /* !PC98 */
#ifndef PC98
#ifdef APIC_IO
if (isa_apic_irq(8) != 8)
panic("APIC RTC != 8");
#endif /* APIC_IO */
inthand_add("rtc", 8, (driver_intr_t *)rtcintr, NULL,
INTR_TYPE_CLK | INTR_FAST, NULL);
crit = intr_disable();
mtx_lock_spin(&icu_lock);
#ifdef APIC_IO
INTREN(APIC_IRQ8);
#else
INTREN(IRQ8);
#endif /* APIC_IO */
mtx_unlock_spin(&icu_lock);
intr_restore(crit);
writertc(RTC_STATUSB, rtc_statusb);
#endif /* PC98 */
#ifdef APIC_IO
if (apic_8254_trial) {
@ -1507,17 +1109,10 @@ setup_8254_mixed_mode()
* reset; prog 4 bytes, single ICU, edge triggered
*/
outb(IO_ICU1, 0x13);
#ifdef PC98
outb(IO_ICU1 + 2, NRSVIDT); /* start vector (unused) */
outb(IO_ICU1 + 2, 0x00); /* ignore slave */
outb(IO_ICU1 + 2, 0x03); /* auto EOI, 8086 */
outb(IO_ICU1 + 2, 0xfe); /* unmask INT0 */
#else
outb(IO_ICU1 + 1, NRSVIDT); /* start vector (unused) */
outb(IO_ICU1 + 1, 0x00); /* ignore slave */
outb(IO_ICU1 + 1, 0x03); /* auto EOI, 8086 */
outb(IO_ICU1 + 1, 0xfe); /* unmask INT0 */
#endif
/* program IO APIC for type 3 INT on INT0 */
if (ext_int_setup(0, 0) < 0)
@ -1528,13 +1123,6 @@ setup_8254_mixed_mode()
void
cpu_startprofclock(void)
{
#ifndef PC98
if (newhz == RTC_PROFRATE)
rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
else
rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
writertc(RTC_STATUSA, rtc_statusa);
#endif
}
void
@ -1674,7 +1262,4 @@ static driver_t attimer_driver = {
static devclass_t attimer_devclass;
DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
#ifndef PC98
DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
#endif
#endif /* DEV_ISA */