Add support for multithreading the inactive queue pageout within a domain.

In very high throughput workloads, the inactive scan can become overwhelmed
as you have many cores producing pages and a single core freeing.  Since
Mark's introduction of batched pagequeue operations, we can now run multiple
inactive threads working on independent batches.

To avoid confusing the pid and other control algorithms, I (Jeff) do this in
a mpi-like fan out and collect model that is driven from the primary page
daemon.  It decides whether the shortfall can be overcome with a single
thread and if not dispatches multiple threads and waits for their results.

The heuristic is based on timing the pageout activity and averaging a
pages-per-second variable which is exponentially decayed. This is visible in
sysctl and may be interesting for other purposes.

I (Jeff) have verified that this does indeed double our paging throughput
when used with two threads. With four we tend to run into other contention
problems.  For now I would like to commit this infrastructure with only a
single thread enabled.

The number of worker threads per domain can be controlled with the
'vm.pageout_threads_per_domain' tunable.

Submitted by:	jeff (earlier version)
Discussed with:	markj
Tested by:	pho
Sponsored by:	probably Netflix (based on contemporary commits)
Differential Revision:	https://reviews.freebsd.org/D21629
This commit is contained in:
Conrad Meyer 2020-08-11 20:37:45 +00:00
parent 91b31c100b
commit 0292c54bdb
5 changed files with 204 additions and 27 deletions

View File

@ -552,6 +552,9 @@ vm_domain_stats_init(struct vm_domain *vmd, struct sysctl_oid *parent)
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"free_severe", CTLFLAG_RD, &vmd->vmd_free_severe, 0, "free_severe", CTLFLAG_RD, &vmd->vmd_free_severe, 0,
"Severe free pages"); "Severe free pages");
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
"inactive_pps", CTLFLAG_RD, &vmd->vmd_inactive_pps, 0,
"inactive pages freed/second");
} }

View File

@ -421,7 +421,7 @@ sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
* In principle, this function only needs to set the flag PG_MARKER. * In principle, this function only needs to set the flag PG_MARKER.
* Nonetheless, it write busies the page as a safety precaution. * Nonetheless, it write busies the page as a safety precaution.
*/ */
static void void
vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags) vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
{ {
@ -2488,7 +2488,7 @@ vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
* main purpose is to replenish the store of free pages. * main purpose is to replenish the store of free pages.
*/ */
if (vmd->vmd_severeset || curproc == pageproc || if (vmd->vmd_severeset || curproc == pageproc ||
!_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) !_vm_domain_allocate(vmd, VM_ALLOC_SYSTEM, cnt))
return (0); return (0);
domain = vmd->vmd_domain; domain = vmd->vmd_domain;
vm_domain_free_lock(vmd); vm_domain_free_lock(vmd);

View File

@ -630,6 +630,7 @@ vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t);
void vm_page_free_invalid(vm_page_t); void vm_page_free_invalid(vm_page_t);
vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr); vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr);
void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr);
void vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags);
int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t); int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
void vm_page_invalid(vm_page_t m); void vm_page_invalid(vm_page_t m);
void vm_page_launder(vm_page_t m); void vm_page_launder(vm_page_t m);

View File

@ -82,6 +82,7 @@ __FBSDID("$FreeBSD$");
#include <sys/param.h> #include <sys/param.h>
#include <sys/systm.h> #include <sys/systm.h>
#include <sys/kernel.h> #include <sys/kernel.h>
#include <sys/blockcount.h>
#include <sys/eventhandler.h> #include <sys/eventhandler.h>
#include <sys/lock.h> #include <sys/lock.h>
#include <sys/mutex.h> #include <sys/mutex.h>
@ -164,6 +165,12 @@ SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
CTLFLAG_RWTUN, &vm_pageout_update_period, 0, CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
"Maximum active LRU update period"); "Maximum active LRU update period");
/* Access with get_pageout_threads_per_domain(). */
static int pageout_threads_per_domain = 1;
SYSCTL_INT(_vm, OID_AUTO, pageout_threads_per_domain, CTLFLAG_RDTUN,
&pageout_threads_per_domain, 0,
"Number of worker threads comprising each per-domain pagedaemon");
SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0, SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
"Low memory callback period"); "Low memory callback period");
@ -1414,22 +1421,22 @@ vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
vm_batchqueue_init(bq); vm_batchqueue_init(bq);
} }
/* static void
* Attempt to reclaim the requested number of pages from the inactive queue. vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
* Returns true if the shortage was addressed.
*/
static int
vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
int *addl_shortage)
{ {
struct timeval start, end;
struct scan_state ss; struct scan_state ss;
struct vm_batchqueue rq; struct vm_batchqueue rq;
struct vm_page marker_page;
vm_page_t m, marker; vm_page_t m, marker;
struct vm_pagequeue *pq; struct vm_pagequeue *pq;
vm_object_t object; vm_object_t object;
vm_page_astate_t old, new; vm_page_astate_t old, new;
int act_delta, addl_page_shortage, deficit, page_shortage, refs; int act_delta, addl_page_shortage, starting_page_shortage, refs;
int starting_page_shortage;
object = NULL;
vm_batchqueue_init(&rq);
getmicrouptime(&start);
/* /*
* The addl_page_shortage is an estimate of the number of temporarily * The addl_page_shortage is an estimate of the number of temporarily
@ -1439,25 +1446,15 @@ vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
*/ */
addl_page_shortage = 0; addl_page_shortage = 0;
/*
* vmd_pageout_deficit counts the number of pages requested in
* allocations that failed because of a free page shortage. We assume
* that the allocations will be reattempted and thus include the deficit
* in our scan target.
*/
deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
starting_page_shortage = page_shortage = shortage + deficit;
object = NULL;
vm_batchqueue_init(&rq);
/* /*
* Start scanning the inactive queue for pages that we can free. The * Start scanning the inactive queue for pages that we can free. The
* scan will stop when we reach the target or we have scanned the * scan will stop when we reach the target or we have scanned the
* entire queue. (Note that m->a.act_count is not used to make * entire queue. (Note that m->a.act_count is not used to make
* decisions for the inactive queue, only for the active queue.) * decisions for the inactive queue, only for the active queue.)
*/ */
marker = &vmd->vmd_markers[PQ_INACTIVE]; starting_page_shortage = page_shortage;
marker = &marker_page;
vm_page_init_marker(marker, PQ_INACTIVE, 0);
pq = &vmd->vmd_pagequeues[PQ_INACTIVE]; pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
vm_pagequeue_lock(pq); vm_pagequeue_lock(pq);
vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt); vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
@ -1637,7 +1634,97 @@ vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
vm_pageout_end_scan(&ss); vm_pageout_end_scan(&ss);
vm_pagequeue_unlock(pq); vm_pagequeue_unlock(pq);
VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage); /*
* Record the remaining shortage and the progress and rate it was made.
*/
atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
getmicrouptime(&end);
timevalsub(&end, &start);
atomic_add_int(&vmd->vmd_inactive_us,
end.tv_sec * 1000000 + end.tv_usec);
atomic_add_int(&vmd->vmd_inactive_freed,
starting_page_shortage - page_shortage);
}
/*
* Dispatch a number of inactive threads according to load and collect the
* results to prevent a coherent (CEM: incoherent?) view of paging activity on
* this domain.
*/
static int
vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
{
u_int freed, pps, threads, us;
vmd->vmd_inactive_shortage = shortage;
/*
* If we have more work than we can do in a quarter of our interval, we
* fire off multiple threads to process it.
*/
if (vmd->vmd_inactive_threads > 1 && vmd->vmd_inactive_pps != 0 &&
shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
threads = vmd->vmd_inactive_threads;
vm_domain_pageout_lock(vmd);
vmd->vmd_inactive_shortage /= threads;
blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
wakeup(&vmd->vmd_inactive_shortage);
vm_domain_pageout_unlock(vmd);
}
/* Run the local thread scan. */
vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
/*
* Block until helper threads report results and then accumulate
* totals.
*/
blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
VM_CNT_ADD(v_dfree, freed);
/*
* Calculate the per-thread paging rate with an exponential decay of
* prior results. Careful to avoid integer rounding errors with large
* us values.
*/
us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
if (us > 1000000)
/* Keep rounding to tenths */
pps = (freed * 10) / ((us * 10) / 1000000);
else
pps = (1000000 / us) * freed;
vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
return (shortage - freed);
}
/*
* Attempt to reclaim the requested number of pages from the inactive queue.
* Returns true if the shortage was addressed.
*/
static int
vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
{
struct vm_pagequeue *pq;
u_int addl_page_shortage, deficit, page_shortage;
u_int starting_page_shortage;
/*
* vmd_pageout_deficit counts the number of pages requested in
* allocations that failed because of a free page shortage. We assume
* that the allocations will be reattempted and thus include the deficit
* in our scan target.
*/
deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
starting_page_shortage = shortage + deficit;
/*
* Run the inactive scan on as many threads as is necessary.
*/
page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
/* /*
* Wake up the laundry thread so that it can perform any needed * Wake up the laundry thread so that it can perform any needed
@ -2066,7 +2153,7 @@ vm_pageout_worker(void *arg)
if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree) if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
shortage -= min(vmd->vmd_free_count - ofree, shortage -= min(vmd->vmd_free_count - ofree,
(u_int)shortage); (u_int)shortage);
target_met = vm_pageout_scan_inactive(vmd, shortage, target_met = vm_pageout_inactive(vmd, shortage,
&addl_shortage); &addl_shortage);
} else } else
addl_shortage = 0; addl_shortage = 0;
@ -2081,6 +2168,72 @@ vm_pageout_worker(void *arg)
} }
} }
/*
* vm_pageout_helper runs additional pageout daemons in times of high paging
* activity.
*/
static void
vm_pageout_helper(void *arg)
{
struct vm_domain *vmd;
int domain;
domain = (uintptr_t)arg;
vmd = VM_DOMAIN(domain);
vm_domain_pageout_lock(vmd);
for (;;) {
msleep(&vmd->vmd_inactive_shortage,
vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
blockcount_release(&vmd->vmd_inactive_starting, 1);
vm_domain_pageout_unlock(vmd);
vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
vm_domain_pageout_lock(vmd);
/*
* Release the running count while the pageout lock is held to
* prevent wakeup races.
*/
blockcount_release(&vmd->vmd_inactive_running, 1);
}
}
static int
get_pageout_threads_per_domain(void)
{
static bool resolved = false;
int half_cpus_per_dom;
/*
* This is serialized externally by the sorted autoconfig portion of
* boot.
*/
if (__predict_true(resolved))
return (pageout_threads_per_domain);
/*
* Semi-arbitrarily constrain pagedaemon threads to less than half the
* total number of threads in the system as an insane upper limit.
*/
half_cpus_per_dom = (mp_ncpus / vm_ndomains) / 2;
if (pageout_threads_per_domain < 1) {
printf("Invalid tuneable vm.pageout_threads_per_domain value: "
"%d out of valid range: [1-%d]; clamping to 1\n",
pageout_threads_per_domain, half_cpus_per_dom);
pageout_threads_per_domain = 1;
} else if (pageout_threads_per_domain > half_cpus_per_dom) {
printf("Invalid tuneable vm.pageout_threads_per_domain value: "
"%d out of valid range: [1-%d]; clamping to %d\n",
pageout_threads_per_domain, half_cpus_per_dom,
half_cpus_per_dom);
pageout_threads_per_domain = half_cpus_per_dom;
}
resolved = true;
return (pageout_threads_per_domain);
}
/* /*
* Initialize basic pageout daemon settings. See the comment above the * Initialize basic pageout daemon settings. See the comment above the
* definition of vm_domain for some explanation of how these thresholds are * definition of vm_domain for some explanation of how these thresholds are
@ -2134,6 +2287,8 @@ vm_pageout_init_domain(int domain)
oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO, oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
"pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid)); pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
vmd->vmd_inactive_threads = get_pageout_threads_per_domain();
} }
static void static void
@ -2184,10 +2339,11 @@ vm_pageout(void)
{ {
struct proc *p; struct proc *p;
struct thread *td; struct thread *td;
int error, first, i; int error, first, i, j, pageout_threads;
p = curproc; p = curproc;
td = curthread; td = curthread;
pageout_threads = get_pageout_threads_per_domain();
mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF); mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
swap_pager_swap_init(); swap_pager_swap_init();
@ -2207,6 +2363,14 @@ vm_pageout(void)
panic("starting pageout for domain %d: %d\n", panic("starting pageout for domain %d: %d\n",
i, error); i, error);
} }
for (j = 0; j < pageout_threads - 1; j++) {
error = kthread_add(vm_pageout_helper,
(void *)(uintptr_t)i, p, NULL, 0, 0,
"dom%d helper%d", i, j);
if (error != 0)
panic("starting pageout helper %d for domain "
"%d: %d\n", j, i, error);
}
error = kthread_add(vm_pageout_laundry_worker, error = kthread_add(vm_pageout_laundry_worker,
(void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i); (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
if (error != 0) if (error != 0)

View File

@ -84,6 +84,7 @@ struct vm_batchqueue {
} __aligned(CACHE_LINE_SIZE); } __aligned(CACHE_LINE_SIZE);
#include <vm/uma.h> #include <vm/uma.h>
#include <sys/_blockcount.h>
#include <sys/pidctrl.h> #include <sys/pidctrl.h>
struct sysctl_oid; struct sysctl_oid;
@ -254,6 +255,14 @@ struct vm_domain {
/* Paging control variables, used within single threaded page daemon. */ /* Paging control variables, used within single threaded page daemon. */
struct pidctrl vmd_pid; /* Pageout controller. */ struct pidctrl vmd_pid; /* Pageout controller. */
boolean_t vmd_oom; boolean_t vmd_oom;
u_int vmd_inactive_threads;
u_int vmd_inactive_shortage; /* Per-thread shortage. */
blockcount_t vmd_inactive_running; /* Number of inactive threads. */
blockcount_t vmd_inactive_starting; /* Number of threads started. */
volatile u_int vmd_addl_shortage; /* Shortage accumulator. */
volatile u_int vmd_inactive_freed; /* Successful inactive frees. */
volatile u_int vmd_inactive_us; /* Microseconds for above. */
u_int vmd_inactive_pps; /* Exponential decay frees/second. */
int vmd_oom_seq; int vmd_oom_seq;
int vmd_last_active_scan; int vmd_last_active_scan;
struct vm_page vmd_markers[PQ_COUNT]; /* (q) markers for queue scans */ struct vm_page vmd_markers[PQ_COUNT]; /* (q) markers for queue scans */