Add implementations for clog(3), clogf(3), and clog(3).
PR: 216863 Submitted by: bde, Steven G. Kargl <sgk@troutmask.apl.washington.edu> MFC after: 2 weeks
This commit is contained in:
parent
2ebc882927
commit
0c0288a218
@ -101,6 +101,10 @@ float complex cexpf(float complex);
|
||||
double cimag(double complex) __pure2;
|
||||
float cimagf(float complex) __pure2;
|
||||
long double cimagl(long double complex) __pure2;
|
||||
double complex clog(double complex);
|
||||
float complex clogf(float complex);
|
||||
long double complex
|
||||
clogl(long double complex);
|
||||
double complex conj(double complex) __pure2;
|
||||
float complex conjf(float complex) __pure2;
|
||||
long double complex
|
||||
|
@ -157,7 +157,7 @@ INLINE void
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
|
||||
z1 = ( count < 128 ) ? ( a0>>( count & 63 ) ) : 0;
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
|
@ -57,7 +57,7 @@ COMMON_SRCS= b_exp.c b_log.c b_tgamma.c \
|
||||
k_cos.c k_cosf.c k_exp.c k_expf.c k_rem_pio2.c k_sin.c k_sinf.c \
|
||||
k_tan.c k_tanf.c \
|
||||
s_asinh.c s_asinhf.c s_atan.c s_atanf.c s_carg.c s_cargf.c s_cargl.c \
|
||||
s_cbrt.c s_cbrtf.c s_ceil.c s_ceilf.c \
|
||||
s_cbrt.c s_cbrtf.c s_ceil.c s_ceilf.c s_clog.c s_clogf.c \
|
||||
s_copysign.c s_copysignf.c s_cos.c s_cosf.c \
|
||||
s_csqrt.c s_csqrtf.c s_erf.c s_erff.c \
|
||||
s_exp2.c s_exp2f.c s_expm1.c s_expm1f.c s_fabsf.c s_fdim.c \
|
||||
@ -101,7 +101,8 @@ COMMON_SRCS+= catrigl.c \
|
||||
e_lgammal.c e_lgammal_r.c \
|
||||
e_remainderl.c e_sinhl.c e_sqrtl.c \
|
||||
invtrig.c k_cosl.c k_sinl.c k_tanl.c \
|
||||
s_asinhl.c s_atanl.c s_cbrtl.c s_ceill.c s_cosl.c s_cprojl.c \
|
||||
s_asinhl.c s_atanl.c s_cbrtl.c s_ceill.c \
|
||||
s_clogl.c s_cosl.c s_cprojl.c \
|
||||
s_csqrtl.c s_erfl.c s_exp2l.c s_expl.c s_floorl.c s_fmal.c \
|
||||
s_fmaxl.c s_fminl.c s_frexpl.c s_logbl.c s_logl.c s_nanl.c \
|
||||
s_nextafterl.c s_nexttoward.c s_remquol.c s_rintl.c s_roundl.c \
|
||||
@ -133,7 +134,8 @@ INCS+= fenv.h math.h
|
||||
|
||||
MAN= acos.3 acosh.3 asin.3 asinh.3 atan.3 atan2.3 atanh.3 \
|
||||
ceil.3 cacos.3 ccos.3 ccosh.3 cexp.3 \
|
||||
cimag.3 copysign.3 cos.3 cosh.3 csqrt.3 erf.3 exp.3 fabs.3 fdim.3 \
|
||||
cimag.3 clog.3 copysign.3 cos.3 cosh.3 csqrt.3 erf.3 \
|
||||
exp.3 fabs.3 fdim.3 \
|
||||
feclearexcept.3 feenableexcept.3 fegetenv.3 \
|
||||
fegetround.3 fenv.3 floor.3 \
|
||||
fma.3 fmax.3 fmod.3 hypot.3 ieee.3 ieee_test.3 ilogb.3 j0.3 \
|
||||
@ -166,6 +168,7 @@ MLINKS+=cimag.3 cimagf.3 cimag.3 cimagl.3 \
|
||||
cimag.3 conj.3 cimag.3 conjf.3 cimag.3 conjl.3 \
|
||||
cimag.3 cproj.3 cimag.3 cprojf.3 cimag.3 cprojl.3 \
|
||||
cimag.3 creal.3 cimag.3 crealf.3 cimag.3 creall.3
|
||||
MLINKS+=clog.3 clogf.3 clog.3 clogl.3
|
||||
MLINKS+=copysign.3 copysignf.3 copysign.3 copysignl.3
|
||||
MLINKS+=cos.3 cosf.3 cos.3 cosl.3
|
||||
MLINKS+=cosh.3 coshf.3 cosh.3 coshl.3
|
||||
|
@ -294,6 +294,9 @@ FBSD_1.5 {
|
||||
casinl;
|
||||
catanl;
|
||||
catanhl;
|
||||
clog;
|
||||
clogf;
|
||||
clogl;
|
||||
sincos;
|
||||
sincosf;
|
||||
sincosl;
|
||||
|
103
lib/msun/man/clog.3
Normal file
103
lib/msun/man/clog.3
Normal file
@ -0,0 +1,103 @@
|
||||
.\" Copyright (c) 2017 Steven G. Kargl <kargl@FreeBSD.org>
|
||||
.\" All rights reserved.
|
||||
.\"
|
||||
.\" Redistribution and use in source and binary forms, with or without
|
||||
.\" modification, are permitted provided that the following conditions
|
||||
.\" are met:
|
||||
.\" 1. Redistributions of source code must retain the above copyright
|
||||
.\" notice, this list of conditions and the following disclaimer.
|
||||
.\" 2. Redistributions in binary form must reproduce the above copyright
|
||||
.\" notice, this list of conditions and the following disclaimer in the
|
||||
.\" documentation and/or other materials provided with the distribution.
|
||||
.\"
|
||||
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
.\" SUCH DAMAGE.
|
||||
.\"
|
||||
.\" $FreeBSD$
|
||||
.\"
|
||||
.Dd February 13, 2017
|
||||
.Dt CLOG 3
|
||||
.Os
|
||||
.Sh NAME
|
||||
.Nm clog ,
|
||||
.Nm clogf ,
|
||||
and
|
||||
.Nm clogl
|
||||
.Nd complex natural logrithm functions
|
||||
.Sh LIBRARY
|
||||
.Lb libm
|
||||
.Sh SYNOPSIS
|
||||
.In complex.h
|
||||
.Ft double complex
|
||||
.Fn clog "double complex z"
|
||||
.Ft float complex
|
||||
.Fn clogf "float complex z"
|
||||
.Ft long double complex
|
||||
.Fn clogl "long double complex z"
|
||||
.Sh DESCRIPTION
|
||||
The
|
||||
.Fn clog ,
|
||||
.Fn clogf ,
|
||||
and
|
||||
.Fn clogl
|
||||
functions compute the complex natural logrithm of
|
||||
.Fa z .
|
||||
with a branch cut along the negative real axis .
|
||||
.Sh RETURN VALUES
|
||||
The
|
||||
.Fn clog
|
||||
function returns the complex natural logarithm value, in the
|
||||
range of a strip mathematically unbounded along the real axis and in
|
||||
the interval [-I* \*(Pi , +I* \*(Pi ] along the imaginary axis.
|
||||
The function satisfies the relationship:
|
||||
.Fo clog
|
||||
.Fn conj "z" Fc
|
||||
=
|
||||
.Fo conj
|
||||
.Fn clog "z" Fc .
|
||||
.Pp
|
||||
|
||||
.\" Table is formatted for an 80-column xterm.
|
||||
.Bl -column ".Sy +\*(If + I*\*(Na" ".Sy Return value" ".Sy Divide-by-zero exception"
|
||||
.It Sy Argument Ta Sy Return value Ta Sy Comment
|
||||
.It -0 + I*0 Ta -\*(If + I*\*(Pi Ta Divide-by-zero exception
|
||||
.It Ta Ta raised
|
||||
.It +0 + I*0 Ta -\*(If + I*0 Ta Divide by zero exception
|
||||
.It Ta Ta raised
|
||||
.It x + I*\*(If Ta +\*(If + I*\*(Pi/2 Ta For finite x
|
||||
.It x + I*\*(Na Ta \*(Na + I*\*(Na Ta Optionally raises invalid
|
||||
.It Ta Ta floating-point exception
|
||||
.It Ta Ta for finite x
|
||||
.It -\*(If + I*y Ta +\*(If + I*\*(Pi Ta For finite positive-signed y
|
||||
.It +\*(If + I*y Ta +\*(If + I*0 Ta For finite positive-signed y
|
||||
.It -\*(If + I*\*(If Ta +\*(If + I*3\*(Pi/4
|
||||
.It +\*(If + I*\*(If Ta +\*(If + I*\*(Pi/4
|
||||
.It \*(Pm\*(If + I*\*(Na Ta +\*(If + I*\*(Na
|
||||
.It \*(Na + I*y Ta \*(Na + I*\*(Na Ta Optionally raises invalid
|
||||
.It Ta Ta floating-point exception
|
||||
.It Ta Ta for finite y
|
||||
.It \*(Na + I*\*(If Ta +\*(If + I*\*(Na
|
||||
.It \*(Na + I*\*(Na Ta \*(Na + I*\*(Na
|
||||
.El
|
||||
|
||||
.Sh SEE ALSO
|
||||
.Xr complex 3 ,
|
||||
.Xr log 3 ,
|
||||
.Xr math 3
|
||||
.Sh STANDARDS
|
||||
The
|
||||
.Fn clog ,
|
||||
.Fn cexpf ,
|
||||
and
|
||||
.Fn clogl
|
||||
functions conform to
|
||||
.St -isoC-99 .
|
@ -24,7 +24,7 @@
|
||||
.\"
|
||||
.\" $FreeBSD$
|
||||
.\"
|
||||
.Dd October 17, 2011
|
||||
.Dd May 13, 2018
|
||||
.Dt COMPLEX 3
|
||||
.Os
|
||||
.Sh NAME
|
||||
@ -77,6 +77,10 @@ csqrt complex square root
|
||||
.Cl
|
||||
cexp exponential base e
|
||||
.El
|
||||
.Ss Natural logrithm Function
|
||||
.Cl
|
||||
clog natural logrithm
|
||||
.El
|
||||
.\" Section 7.3.9 of ISO C99 standard
|
||||
.Ss Manipulation Functions
|
||||
.Cl
|
||||
@ -117,8 +121,6 @@ The
|
||||
functions described here conform to
|
||||
.St -isoC-99 .
|
||||
.Sh BUGS
|
||||
The logarithmic functions
|
||||
.Fn clog
|
||||
and the power functions
|
||||
The power functions
|
||||
.Fn cpow
|
||||
are not implemented.
|
||||
|
@ -294,8 +294,9 @@ do { \
|
||||
|
||||
/* Support switching the mode to FP_PE if necessary. */
|
||||
#if defined(__i386__) && !defined(NO_FPSETPREC)
|
||||
#define ENTERI() \
|
||||
long double __retval; \
|
||||
#define ENTERI() ENTERIT(long double)
|
||||
#define ENTERIT(returntype) \
|
||||
returntype __retval; \
|
||||
fp_prec_t __oprec; \
|
||||
\
|
||||
if ((__oprec = fpgetprec()) != FP_PE) \
|
||||
@ -318,6 +319,7 @@ do { \
|
||||
} while (0)
|
||||
#else
|
||||
#define ENTERI()
|
||||
#define ENTERIT(x)
|
||||
#define RETURNI(x) RETURNF(x)
|
||||
#define ENTERV()
|
||||
#define RETURNV() return
|
||||
|
155
lib/msun/src/s_clog.c
Normal file
155
lib/msun/src/s_clog.c
Normal file
@ -0,0 +1,155 @@
|
||||
/*-
|
||||
* Copyright (c) 2013 Bruce D. Evans
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <complex.h>
|
||||
#include <float.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#define MANT_DIG DBL_MANT_DIG
|
||||
#define MAX_EXP DBL_MAX_EXP
|
||||
#define MIN_EXP DBL_MIN_EXP
|
||||
|
||||
static const double
|
||||
ln2_hi = 6.9314718055829871e-1, /* 0x162e42fefa0000.0p-53 */
|
||||
ln2_lo = 1.6465949582897082e-12; /* 0x1cf79abc9e3b3a.0p-92 */
|
||||
|
||||
double complex
|
||||
clog(double complex z)
|
||||
{
|
||||
double_t ax, ax2h, ax2l, axh, axl, ay, ay2h, ay2l, ayh, ayl, sh, sl, t;
|
||||
double x, y, v;
|
||||
uint32_t hax, hay;
|
||||
int kx, ky;
|
||||
|
||||
x = creal(z);
|
||||
y = cimag(z);
|
||||
v = atan2(y, x);
|
||||
|
||||
ax = fabs(x);
|
||||
ay = fabs(y);
|
||||
if (ax < ay) {
|
||||
t = ax;
|
||||
ax = ay;
|
||||
ay = t;
|
||||
}
|
||||
|
||||
GET_HIGH_WORD(hax, ax);
|
||||
kx = (hax >> 20) - 1023;
|
||||
GET_HIGH_WORD(hay, ay);
|
||||
ky = (hay >> 20) - 1023;
|
||||
|
||||
/* Handle NaNs and Infs using the general formula. */
|
||||
if (kx == MAX_EXP || ky == MAX_EXP)
|
||||
return (CMPLX(log(hypot(x, y)), v));
|
||||
|
||||
/* Avoid spurious underflow, and reduce inaccuracies when ax is 1. */
|
||||
if (ax == 1) {
|
||||
if (ky < (MIN_EXP - 1) / 2)
|
||||
return (CMPLX((ay / 2) * ay, v));
|
||||
return (CMPLX(log1p(ay * ay) / 2, v));
|
||||
}
|
||||
|
||||
/* Avoid underflow when ax is not small. Also handle zero args. */
|
||||
if (kx - ky > MANT_DIG || ay == 0)
|
||||
return (CMPLX(log(ax), v));
|
||||
|
||||
/* Avoid overflow. */
|
||||
if (kx >= MAX_EXP - 1)
|
||||
return (CMPLX(log(hypot(x * 0x1p-1022, y * 0x1p-1022)) +
|
||||
(MAX_EXP - 2) * ln2_lo + (MAX_EXP - 2) * ln2_hi, v));
|
||||
if (kx >= (MAX_EXP - 1) / 2)
|
||||
return (CMPLX(log(hypot(x, y)), v));
|
||||
|
||||
/* Reduce inaccuracies and avoid underflow when ax is denormal. */
|
||||
if (kx <= MIN_EXP - 2)
|
||||
return (CMPLX(log(hypot(x * 0x1p1023, y * 0x1p1023)) +
|
||||
(MIN_EXP - 2) * ln2_lo + (MIN_EXP - 2) * ln2_hi, v));
|
||||
|
||||
/* Avoid remaining underflows (when ax is small but not denormal). */
|
||||
if (ky < (MIN_EXP - 1) / 2 + MANT_DIG)
|
||||
return (CMPLX(log(hypot(x, y)), v));
|
||||
|
||||
/* Calculate ax*ax and ay*ay exactly using Dekker's algorithm. */
|
||||
t = (double)(ax * (0x1p27 + 1));
|
||||
axh = (double)(ax - t) + t;
|
||||
axl = ax - axh;
|
||||
ax2h = ax * ax;
|
||||
ax2l = axh * axh - ax2h + 2 * axh * axl + axl * axl;
|
||||
t = (double)(ay * (0x1p27 + 1));
|
||||
ayh = (double)(ay - t) + t;
|
||||
ayl = ay - ayh;
|
||||
ay2h = ay * ay;
|
||||
ay2l = ayh * ayh - ay2h + 2 * ayh * ayl + ayl * ayl;
|
||||
|
||||
/*
|
||||
* When log(|z|) is far from 1, accuracy in calculating the sum
|
||||
* of the squares is not very important since log() reduces
|
||||
* inaccuracies. We depended on this to use the general
|
||||
* formula when log(|z|) is very far from 1. When log(|z|) is
|
||||
* moderately far from 1, we go through the extra-precision
|
||||
* calculations to reduce branches and gain a little accuracy.
|
||||
*
|
||||
* When |z| is near 1, we subtract 1 and use log1p() and don't
|
||||
* leave it to log() to subtract 1, since we gain at least 1 bit
|
||||
* of accuracy in this way.
|
||||
*
|
||||
* When |z| is very near 1, subtracting 1 can cancel almost
|
||||
* 3*MANT_DIG bits. We arrange that subtracting 1 is exact in
|
||||
* doubled precision, and then do the rest of the calculation
|
||||
* in sloppy doubled precision. Although large cancellations
|
||||
* often lose lots of accuracy, here the final result is exact
|
||||
* in doubled precision if the large calculation occurs (because
|
||||
* then it is exact in tripled precision and the cancellation
|
||||
* removes enough bits to fit in doubled precision). Thus the
|
||||
* result is accurate in sloppy doubled precision, and the only
|
||||
* significant loss of accuracy is when it is summed and passed
|
||||
* to log1p().
|
||||
*/
|
||||
sh = ax2h;
|
||||
sl = ay2h;
|
||||
_2sumF(sh, sl);
|
||||
if (sh < 0.5 || sh >= 3)
|
||||
return (CMPLX(log(ay2l + ax2l + sl + sh) / 2, v));
|
||||
sh -= 1;
|
||||
_2sum(sh, sl);
|
||||
_2sum(ax2l, ay2l);
|
||||
/* Briggs-Kahan algorithm (except we discard the final low term): */
|
||||
_2sum(sh, ax2l);
|
||||
_2sum(sl, ay2l);
|
||||
t = ax2l + sl;
|
||||
_2sumF(sh, t);
|
||||
return (CMPLX(log1p(ay2l + t + sh) / 2, v));
|
||||
}
|
||||
|
||||
#if (LDBL_MANT_DIG == 53)
|
||||
__weak_reference(clog, clogl);
|
||||
#endif
|
151
lib/msun/src/s_clogf.c
Normal file
151
lib/msun/src/s_clogf.c
Normal file
@ -0,0 +1,151 @@
|
||||
/*-
|
||||
* Copyright (c) 2013 Bruce D. Evans
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <complex.h>
|
||||
#include <float.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#define MANT_DIG FLT_MANT_DIG
|
||||
#define MAX_EXP FLT_MAX_EXP
|
||||
#define MIN_EXP FLT_MIN_EXP
|
||||
|
||||
static const float
|
||||
ln2f_hi = 6.9314575195e-1, /* 0xb17200.0p-24 */
|
||||
ln2f_lo = 1.4286067653e-6; /* 0xbfbe8e.0p-43 */
|
||||
|
||||
float complex
|
||||
clogf(float complex z)
|
||||
{
|
||||
float_t ax, ax2h, ax2l, axh, axl, ay, ay2h, ay2l, ayh, ayl, sh, sl, t;
|
||||
float x, y, v;
|
||||
uint32_t hax, hay;
|
||||
int kx, ky;
|
||||
|
||||
x = crealf(z);
|
||||
y = cimagf(z);
|
||||
v = atan2f(y, x);
|
||||
|
||||
ax = fabsf(x);
|
||||
ay = fabsf(y);
|
||||
if (ax < ay) {
|
||||
t = ax;
|
||||
ax = ay;
|
||||
ay = t;
|
||||
}
|
||||
|
||||
GET_FLOAT_WORD(hax, ax);
|
||||
kx = (hax >> 23) - 127;
|
||||
GET_FLOAT_WORD(hay, ay);
|
||||
ky = (hay >> 23) - 127;
|
||||
|
||||
/* Handle NaNs and Infs using the general formula. */
|
||||
if (kx == MAX_EXP || ky == MAX_EXP)
|
||||
return (CMPLXF(logf(hypotf(x, y)), v));
|
||||
|
||||
/* Avoid spurious underflow, and reduce inaccuracies when ax is 1. */
|
||||
if (hax == 0x3f800000) {
|
||||
if (ky < (MIN_EXP - 1) / 2)
|
||||
return (CMPLXF((ay / 2) * ay, v));
|
||||
return (CMPLXF(log1pf(ay * ay) / 2, v));
|
||||
}
|
||||
|
||||
/* Avoid underflow when ax is not small. Also handle zero args. */
|
||||
if (kx - ky > MANT_DIG || hay == 0)
|
||||
return (CMPLXF(logf(ax), v));
|
||||
|
||||
/* Avoid overflow. */
|
||||
if (kx >= MAX_EXP - 1)
|
||||
return (CMPLXF(logf(hypotf(x * 0x1p-126F, y * 0x1p-126F)) +
|
||||
(MAX_EXP - 2) * ln2f_lo + (MAX_EXP - 2) * ln2f_hi, v));
|
||||
if (kx >= (MAX_EXP - 1) / 2)
|
||||
return (CMPLXF(logf(hypotf(x, y)), v));
|
||||
|
||||
/* Reduce inaccuracies and avoid underflow when ax is denormal. */
|
||||
if (kx <= MIN_EXP - 2)
|
||||
return (CMPLXF(logf(hypotf(x * 0x1p127F, y * 0x1p127F)) +
|
||||
(MIN_EXP - 2) * ln2f_lo + (MIN_EXP - 2) * ln2f_hi, v));
|
||||
|
||||
/* Avoid remaining underflows (when ax is small but not denormal). */
|
||||
if (ky < (MIN_EXP - 1) / 2 + MANT_DIG)
|
||||
return (CMPLXF(logf(hypotf(x, y)), v));
|
||||
|
||||
/* Calculate ax*ax and ay*ay exactly using Dekker's algorithm. */
|
||||
t = (float)(ax * (0x1p12F + 1));
|
||||
axh = (float)(ax - t) + t;
|
||||
axl = ax - axh;
|
||||
ax2h = ax * ax;
|
||||
ax2l = axh * axh - ax2h + 2 * axh * axl + axl * axl;
|
||||
t = (float)(ay * (0x1p12F + 1));
|
||||
ayh = (float)(ay - t) + t;
|
||||
ayl = ay - ayh;
|
||||
ay2h = ay * ay;
|
||||
ay2l = ayh * ayh - ay2h + 2 * ayh * ayl + ayl * ayl;
|
||||
|
||||
/*
|
||||
* When log(|z|) is far from 1, accuracy in calculating the sum
|
||||
* of the squares is not very important since log() reduces
|
||||
* inaccuracies. We depended on this to use the general
|
||||
* formula when log(|z|) is very far from 1. When log(|z|) is
|
||||
* moderately far from 1, we go through the extra-precision
|
||||
* calculations to reduce branches and gain a little accuracy.
|
||||
*
|
||||
* When |z| is near 1, we subtract 1 and use log1p() and don't
|
||||
* leave it to log() to subtract 1, since we gain at least 1 bit
|
||||
* of accuracy in this way.
|
||||
*
|
||||
* When |z| is very near 1, subtracting 1 can cancel almost
|
||||
* 3*MANT_DIG bits. We arrange that subtracting 1 is exact in
|
||||
* doubled precision, and then do the rest of the calculation
|
||||
* in sloppy doubled precision. Although large cancellations
|
||||
* often lose lots of accuracy, here the final result is exact
|
||||
* in doubled precision if the large calculation occurs (because
|
||||
* then it is exact in tripled precision and the cancellation
|
||||
* removes enough bits to fit in doubled precision). Thus the
|
||||
* result is accurate in sloppy doubled precision, and the only
|
||||
* significant loss of accuracy is when it is summed and passed
|
||||
* to log1p().
|
||||
*/
|
||||
sh = ax2h;
|
||||
sl = ay2h;
|
||||
_2sumF(sh, sl);
|
||||
if (sh < 0.5F || sh >= 3)
|
||||
return (CMPLXF(logf(ay2l + ax2l + sl + sh) / 2, v));
|
||||
sh -= 1;
|
||||
_2sum(sh, sl);
|
||||
_2sum(ax2l, ay2l);
|
||||
/* Briggs-Kahan algorithm (except we discard the final low term): */
|
||||
_2sum(sh, ax2l);
|
||||
_2sum(sl, ay2l);
|
||||
t = ax2l + sl;
|
||||
_2sumF(sh, t);
|
||||
return (CMPLXF(log1pf(ay2l + t + sh) / 2, v));
|
||||
}
|
168
lib/msun/src/s_clogl.c
Normal file
168
lib/msun/src/s_clogl.c
Normal file
@ -0,0 +1,168 @@
|
||||
/*-
|
||||
* Copyright (c) 2013 Bruce D. Evans
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <complex.h>
|
||||
#include <float.h>
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#define MANT_DIG LDBL_MANT_DIG
|
||||
#define MAX_EXP LDBL_MAX_EXP
|
||||
#define MIN_EXP LDBL_MIN_EXP
|
||||
|
||||
static const double
|
||||
ln2_hi = 6.9314718055829871e-1; /* 0x162e42fefa0000.0p-53 */
|
||||
|
||||
#if LDBL_MANT_DIG == 64
|
||||
#define MULT_REDUX 0x1p32 /* exponent MANT_DIG / 2 rounded up */
|
||||
static const double
|
||||
ln2l_lo = 1.6465949582897082e-12; /* 0x1cf79abc9e3b3a.0p-92 */
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
#define MULT_REDUX 0x1p57
|
||||
static const long double
|
||||
ln2l_lo = 1.64659495828970812809844307550013433e-12L; /* 0x1cf79abc9e3b39803f2f6af40f343.0p-152L */
|
||||
#else
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
long double complex
|
||||
clogl(long double complex z)
|
||||
{
|
||||
long double ax, ax2h, ax2l, axh, axl, ay, ay2h, ay2l, ayh, ayl;
|
||||
long double sh, sl, t;
|
||||
long double x, y, v;
|
||||
uint16_t hax, hay;
|
||||
int kx, ky;
|
||||
|
||||
ENTERIT(long double complex);
|
||||
|
||||
x = creall(z);
|
||||
y = cimagl(z);
|
||||
v = atan2l(y, x);
|
||||
|
||||
ax = fabsl(x);
|
||||
ay = fabsl(y);
|
||||
if (ax < ay) {
|
||||
t = ax;
|
||||
ax = ay;
|
||||
ay = t;
|
||||
}
|
||||
|
||||
GET_LDBL_EXPSIGN(hax, ax);
|
||||
kx = hax - 16383;
|
||||
GET_LDBL_EXPSIGN(hay, ay);
|
||||
ky = hay - 16383;
|
||||
|
||||
/* Handle NaNs and Infs using the general formula. */
|
||||
if (kx == MAX_EXP || ky == MAX_EXP)
|
||||
RETURNI(CMPLXL(logl(hypotl(x, y)), v));
|
||||
|
||||
/* Avoid spurious underflow, and reduce inaccuracies when ax is 1. */
|
||||
if (ax == 1) {
|
||||
if (ky < (MIN_EXP - 1) / 2)
|
||||
RETURNI(CMPLXL((ay / 2) * ay, v));
|
||||
RETURNI(CMPLXL(log1pl(ay * ay) / 2, v));
|
||||
}
|
||||
|
||||
/* Avoid underflow when ax is not small. Also handle zero args. */
|
||||
if (kx - ky > MANT_DIG || ay == 0)
|
||||
RETURNI(CMPLXL(logl(ax), v));
|
||||
|
||||
/* Avoid overflow. */
|
||||
if (kx >= MAX_EXP - 1)
|
||||
RETURNI(CMPLXL(logl(hypotl(x * 0x1p-16382L, y * 0x1p-16382L)) +
|
||||
(MAX_EXP - 2) * ln2l_lo + (MAX_EXP - 2) * ln2_hi, v));
|
||||
if (kx >= (MAX_EXP - 1) / 2)
|
||||
RETURNI(CMPLXL(logl(hypotl(x, y)), v));
|
||||
|
||||
/* Reduce inaccuracies and avoid underflow when ax is denormal. */
|
||||
if (kx <= MIN_EXP - 2)
|
||||
RETURNI(CMPLXL(logl(hypotl(x * 0x1p16383L, y * 0x1p16383L)) +
|
||||
(MIN_EXP - 2) * ln2l_lo + (MIN_EXP - 2) * ln2_hi, v));
|
||||
|
||||
/* Avoid remaining underflows (when ax is small but not denormal). */
|
||||
if (ky < (MIN_EXP - 1) / 2 + MANT_DIG)
|
||||
RETURNI(CMPLXL(logl(hypotl(x, y)), v));
|
||||
|
||||
/* Calculate ax*ax and ay*ay exactly using Dekker's algorithm. */
|
||||
t = (long double)(ax * (MULT_REDUX + 1));
|
||||
axh = (long double)(ax - t) + t;
|
||||
axl = ax - axh;
|
||||
ax2h = ax * ax;
|
||||
ax2l = axh * axh - ax2h + 2 * axh * axl + axl * axl;
|
||||
t = (long double)(ay * (MULT_REDUX + 1));
|
||||
ayh = (long double)(ay - t) + t;
|
||||
ayl = ay - ayh;
|
||||
ay2h = ay * ay;
|
||||
ay2l = ayh * ayh - ay2h + 2 * ayh * ayl + ayl * ayl;
|
||||
|
||||
/*
|
||||
* When log(|z|) is far from 1, accuracy in calculating the sum
|
||||
* of the squares is not very important since log() reduces
|
||||
* inaccuracies. We depended on this to use the general
|
||||
* formula when log(|z|) is very far from 1. When log(|z|) is
|
||||
* moderately far from 1, we go through the extra-precision
|
||||
* calculations to reduce branches and gain a little accuracy.
|
||||
*
|
||||
* When |z| is near 1, we subtract 1 and use log1p() and don't
|
||||
* leave it to log() to subtract 1, since we gain at least 1 bit
|
||||
* of accuracy in this way.
|
||||
*
|
||||
* When |z| is very near 1, subtracting 1 can cancel almost
|
||||
* 3*MANT_DIG bits. We arrange that subtracting 1 is exact in
|
||||
* doubled precision, and then do the rest of the calculation
|
||||
* in sloppy doubled precision. Although large cancellations
|
||||
* often lose lots of accuracy, here the final result is exact
|
||||
* in doubled precision if the large calculation occurs (because
|
||||
* then it is exact in tripled precision and the cancellation
|
||||
* removes enough bits to fit in doubled precision). Thus the
|
||||
* result is accurate in sloppy doubled precision, and the only
|
||||
* significant loss of accuracy is when it is summed and passed
|
||||
* to log1p().
|
||||
*/
|
||||
sh = ax2h;
|
||||
sl = ay2h;
|
||||
_2sumF(sh, sl);
|
||||
if (sh < 0.5 || sh >= 3)
|
||||
RETURNI(CMPLXL(logl(ay2l + ax2l + sl + sh) / 2, v));
|
||||
sh -= 1;
|
||||
_2sum(sh, sl);
|
||||
_2sum(ax2l, ay2l);
|
||||
/* Briggs-Kahan algorithm (except we discard the final low term): */
|
||||
_2sum(sh, ax2l);
|
||||
_2sum(sl, ay2l);
|
||||
t = ax2l + sl;
|
||||
_2sumF(sh, t);
|
||||
RETURNI(CMPLXL(log1pl(ay2l + t + sh) / 2, v));
|
||||
}
|
Loading…
Reference in New Issue
Block a user