Clearing a page table entry's accessed bit (PG_A) and setting the
page's PG_REFERENCED flag in pmap_protect() can't really be justified. In contrast to pmap_remove() or pmap_remove_all(), the mapping is not being destroyed, so the notion that the page was accessed is not lost. Moreover, clearing the page table entry's accessed bit and setting the page's PG_REFERENCED flag can throw off the page daemon's activity count calculation. Finally, in my tests, I found that 15% of the atomic memory operations being performed by pmap_protect() were only to clear PG_A, and not change protection. This could, by itself, be fixed, but I don't see the point given the above argument. Remove a comment from pmap_protect_pde() that is no longer meaningful after the above change.
This commit is contained in:
parent
6dbd88581d
commit
0d2e1c3e39
@ -2833,19 +2833,10 @@ retry:
|
||||
if (oldpde & PG_MANAGED) {
|
||||
eva = sva + NBPDR;
|
||||
for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
|
||||
va < eva; va += PAGE_SIZE, m++) {
|
||||
/*
|
||||
* In contrast to the analogous operation on a 4KB page
|
||||
* mapping, the mapping's PG_A flag is not cleared and
|
||||
* the page's PG_REFERENCED flag is not set. The
|
||||
* reason is that pmap_demote_pde() expects that a 2MB
|
||||
* page mapping with a stored page table page has PG_A
|
||||
* set.
|
||||
*/
|
||||
va < eva; va += PAGE_SIZE, m++)
|
||||
if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
||||
vm_page_dirty(m);
|
||||
}
|
||||
}
|
||||
if ((prot & VM_PROT_WRITE) == 0)
|
||||
newpde &= ~(PG_RW | PG_M);
|
||||
if ((prot & VM_PROT_EXECUTE) == 0)
|
||||
@ -2953,23 +2944,15 @@ retry:
|
||||
obits = pbits = *pte;
|
||||
if ((pbits & PG_V) == 0)
|
||||
continue;
|
||||
if (pbits & PG_MANAGED) {
|
||||
m = NULL;
|
||||
if (pbits & PG_A) {
|
||||
|
||||
if ((prot & VM_PROT_WRITE) == 0) {
|
||||
if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
|
||||
(PG_MANAGED | PG_M | PG_RW)) {
|
||||
m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
|
||||
vm_page_flag_set(m, PG_REFERENCED);
|
||||
pbits &= ~PG_A;
|
||||
}
|
||||
if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
|
||||
if (m == NULL)
|
||||
m = PHYS_TO_VM_PAGE(pbits &
|
||||
PG_FRAME);
|
||||
vm_page_dirty(m);
|
||||
}
|
||||
}
|
||||
|
||||
if ((prot & VM_PROT_WRITE) == 0)
|
||||
pbits &= ~(PG_RW | PG_M);
|
||||
}
|
||||
if ((prot & VM_PROT_EXECUTE) == 0)
|
||||
pbits |= pg_nx;
|
||||
|
||||
|
@ -2955,19 +2955,10 @@ retry:
|
||||
if (oldpde & PG_MANAGED) {
|
||||
eva = sva + NBPDR;
|
||||
for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
|
||||
va < eva; va += PAGE_SIZE, m++) {
|
||||
/*
|
||||
* In contrast to the analogous operation on a 4KB page
|
||||
* mapping, the mapping's PG_A flag is not cleared and
|
||||
* the page's PG_REFERENCED flag is not set. The
|
||||
* reason is that pmap_demote_pde() expects that a 2/4MB
|
||||
* page mapping with a stored page table page has PG_A
|
||||
* set.
|
||||
*/
|
||||
va < eva; va += PAGE_SIZE, m++)
|
||||
if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
|
||||
vm_page_dirty(m);
|
||||
}
|
||||
}
|
||||
if ((prot & VM_PROT_WRITE) == 0)
|
||||
newpde &= ~(PG_RW | PG_M);
|
||||
#ifdef PAE
|
||||
@ -3074,22 +3065,15 @@ retry:
|
||||
obits = pbits = *pte;
|
||||
if ((pbits & PG_V) == 0)
|
||||
continue;
|
||||
if (pbits & PG_MANAGED) {
|
||||
m = NULL;
|
||||
if (pbits & PG_A) {
|
||||
m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
|
||||
vm_page_flag_set(m, PG_REFERENCED);
|
||||
pbits &= ~PG_A;
|
||||
}
|
||||
if ((pbits & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
|
||||
if (m == NULL)
|
||||
|
||||
if ((prot & VM_PROT_WRITE) == 0) {
|
||||
if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
|
||||
(PG_MANAGED | PG_M | PG_RW)) {
|
||||
m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
|
||||
vm_page_dirty(m);
|
||||
}
|
||||
}
|
||||
|
||||
if ((prot & VM_PROT_WRITE) == 0)
|
||||
pbits &= ~(PG_RW | PG_M);
|
||||
}
|
||||
#ifdef PAE
|
||||
if ((prot & VM_PROT_EXECUTE) == 0)
|
||||
pbits |= pg_nx;
|
||||
|
Loading…
x
Reference in New Issue
Block a user