Update LLVM to r98631.

This commit is contained in:
rdivacky 2010-03-16 16:51:38 +00:00
parent 9e2446b38c
commit 0f448b8416
414 changed files with 14667 additions and 4938 deletions

View File

@ -1329,7 +1329,7 @@ uninstall-local::
# TOOLALIAS install.
ifdef TOOLALIAS
DestToolAlias = $(PROJ_bindir)/$(TOOLALIAS)$(EXEEXT)
DestToolAlias = $(DESTDIR)$(PROJ_bindir)/$(TOOLALIAS)$(EXEEXT)
install-local:: $(DestToolAlias)

View File

@ -1210,6 +1210,7 @@ AC_CHECK_HEADERS([malloc.h setjmp.h signal.h stdint.h termios.h unistd.h])
AC_CHECK_HEADERS([utime.h windows.h])
AC_CHECK_HEADERS([sys/mman.h sys/param.h sys/resource.h sys/time.h])
AC_CHECK_HEADERS([sys/types.h sys/ioctl.h malloc/malloc.h mach/mach.h])
AC_CHECK_HEADERS([valgrind/valgrind.h])
if test "$ENABLE_THREADS" -eq 1 ; then
AC_CHECK_HEADERS(pthread.h,
AC_SUBST(HAVE_PTHREAD, 1),

View File

@ -67,6 +67,7 @@ check_include_file(sys/wait.h HAVE_SYS_WAIT_H)
check_include_file(termios.h HAVE_TERMIOS_H)
check_include_file(unistd.h HAVE_UNISTD_H)
check_include_file(utime.h HAVE_UTIME_H)
check_include_file(valgrind/valgrind.h HAVE_VALGRIND_VALGRIND_H)
check_include_file(windows.h HAVE_WINDOWS_H)
# library checks

View File

@ -1,8 +1,8 @@
set(MSVC_LIB_DEPS_LLVMARMAsmParser LLVMARMInfo LLVMMCParser LLVMSupport)
set(MSVC_LIB_DEPS_LLVMARMAsmPrinter LLVMARMCodeGen LLVMARMInfo LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMARMAsmPrinter LLVMARMCodeGen LLVMARMInfo LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMTarget)
set(MSVC_LIB_DEPS_LLVMARMCodeGen LLVMARMInfo LLVMCodeGen LLVMCore LLVMMC LLVMSelectionDAG LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMARMInfo LLVMSupport)
set(MSVC_LIB_DEPS_LLVMAlphaAsmPrinter LLVMAlphaInfo LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMAlphaAsmPrinter LLVMAlphaInfo LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMTarget)
set(MSVC_LIB_DEPS_LLVMAlphaCodeGen LLVMAlphaInfo LLVMCodeGen LLVMCore LLVMMC LLVMSelectionDAG LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMAlphaInfo LLVMSupport)
set(MSVC_LIB_DEPS_LLVMAnalysis LLVMCore LLVMSupport LLVMSystem LLVMTarget)
@ -11,12 +11,12 @@ set(MSVC_LIB_DEPS_LLVMAsmParser LLVMCore LLVMSupport)
set(MSVC_LIB_DEPS_LLVMAsmPrinter LLVMAnalysis LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMBitReader LLVMCore LLVMSupport)
set(MSVC_LIB_DEPS_LLVMBitWriter LLVMCore LLVMSupport LLVMSystem)
set(MSVC_LIB_DEPS_LLVMBlackfinAsmPrinter LLVMAsmPrinter LLVMBlackfinInfo LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMBlackfinAsmPrinter LLVMAsmPrinter LLVMBlackfinInfo LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMTarget)
set(MSVC_LIB_DEPS_LLVMBlackfinCodeGen LLVMBlackfinInfo LLVMCodeGen LLVMCore LLVMMC LLVMSelectionDAG LLVMSupport LLVMTarget)
set(MSVC_LIB_DEPS_LLVMBlackfinInfo LLVMSupport)
set(MSVC_LIB_DEPS_LLVMCBackend LLVMAnalysis LLVMCBackendInfo LLVMCodeGen LLVMCore LLVMMC LLVMScalarOpts LLVMSupport LLVMSystem LLVMTarget LLVMTransformUtils LLVMipa)
set(MSVC_LIB_DEPS_LLVMCBackendInfo LLVMSupport)
set(MSVC_LIB_DEPS_LLVMCellSPUAsmPrinter LLVMAsmPrinter LLVMCellSPUInfo LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMCellSPUAsmPrinter LLVMAsmPrinter LLVMCellSPUInfo LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMTarget)
set(MSVC_LIB_DEPS_LLVMCellSPUCodeGen LLVMCellSPUInfo LLVMCodeGen LLVMCore LLVMMC LLVMSelectionDAG LLVMSupport LLVMTarget)
set(MSVC_LIB_DEPS_LLVMCellSPUInfo LLVMSupport)
set(MSVC_LIB_DEPS_LLVMCodeGen LLVMAnalysis LLVMCore LLVMMC LLVMScalarOpts LLVMSupport LLVMSystem LLVMTarget LLVMTransformUtils)
@ -29,41 +29,44 @@ set(MSVC_LIB_DEPS_LLVMInstrumentation LLVMAnalysis LLVMCore LLVMSupport LLVMSyst
set(MSVC_LIB_DEPS_LLVMInterpreter LLVMCodeGen LLVMCore LLVMExecutionEngine LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMJIT LLVMAnalysis LLVMCodeGen LLVMCore LLVMExecutionEngine LLVMMC LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMLinker LLVMArchive LLVMBitReader LLVMCore LLVMSupport LLVMSystem)
set(MSVC_LIB_DEPS_LLVMMBlazeAsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMBlazeCodeGen LLVMMBlazeInfo LLVMMC LLVMSupport LLVMTarget)
set(MSVC_LIB_DEPS_LLVMMBlazeCodeGen LLVMCodeGen LLVMCore LLVMMBlazeInfo LLVMMC LLVMSelectionDAG LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMMBlazeInfo LLVMSupport)
set(MSVC_LIB_DEPS_LLVMMC LLVMSupport LLVMSystem)
set(MSVC_LIB_DEPS_LLVMMCParser LLVMMC LLVMSupport)
set(MSVC_LIB_DEPS_LLVMMSIL LLVMAnalysis LLVMCodeGen LLVMCore LLVMMSILInfo LLVMScalarOpts LLVMSupport LLVMTarget LLVMTransformUtils LLVMipa)
set(MSVC_LIB_DEPS_LLVMMSILInfo LLVMSupport)
set(MSVC_LIB_DEPS_LLVMMSP430AsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMMSP430Info LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMMSP430AsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMMSP430Info LLVMSupport LLVMTarget)
set(MSVC_LIB_DEPS_LLVMMSP430CodeGen LLVMCodeGen LLVMCore LLVMMC LLVMMSP430Info LLVMSelectionDAG LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMMSP430Info LLVMSupport)
set(MSVC_LIB_DEPS_LLVMMipsAsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMMipsCodeGen LLVMMipsInfo LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMMipsAsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMMipsCodeGen LLVMMipsInfo LLVMSupport LLVMTarget)
set(MSVC_LIB_DEPS_LLVMMipsCodeGen LLVMCodeGen LLVMCore LLVMMC LLVMMipsInfo LLVMSelectionDAG LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMMipsInfo LLVMSupport)
set(MSVC_LIB_DEPS_LLVMPIC16 LLVMAnalysis LLVMCodeGen LLVMCore LLVMMC LLVMPIC16Info LLVMSelectionDAG LLVMSupport LLVMTarget)
set(MSVC_LIB_DEPS_LLVMPIC16AsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMPIC16 LLVMPIC16Info LLVMSupport LLVMTarget)
set(MSVC_LIB_DEPS_LLVMPIC16Info LLVMSupport)
set(MSVC_LIB_DEPS_LLVMPowerPCAsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMPowerPCInfo LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMPowerPCAsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMPowerPCInfo LLVMSupport LLVMTarget)
set(MSVC_LIB_DEPS_LLVMPowerPCCodeGen LLVMCodeGen LLVMCore LLVMMC LLVMPowerPCInfo LLVMSelectionDAG LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMPowerPCInfo LLVMSupport)
set(MSVC_LIB_DEPS_LLVMScalarOpts LLVMAnalysis LLVMCore LLVMInstCombine LLVMSupport LLVMSystem LLVMTarget LLVMTransformUtils)
set(MSVC_LIB_DEPS_LLVMSelectionDAG LLVMAnalysis LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMSparcAsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMSparcInfo LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMSelectionDAG LLVMAnalysis LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMSparcAsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMSparcInfo LLVMSupport LLVMTarget)
set(MSVC_LIB_DEPS_LLVMSparcCodeGen LLVMCodeGen LLVMCore LLVMMC LLVMSelectionDAG LLVMSparcInfo LLVMSupport LLVMSystem LLVMTarget)
set(MSVC_LIB_DEPS_LLVMSparcInfo LLVMSupport)
set(MSVC_LIB_DEPS_LLVMSupport LLVMSystem)
set(MSVC_LIB_DEPS_LLVMSystem )
set(MSVC_LIB_DEPS_LLVMSystemZAsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMSystem LLVMSystemZInfo LLVMTarget)
set(MSVC_LIB_DEPS_LLVMSystemZAsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMSystemZInfo LLVMTarget)
set(MSVC_LIB_DEPS_LLVMSystemZCodeGen LLVMCodeGen LLVMCore LLVMMC LLVMSelectionDAG LLVMSupport LLVMSystemZInfo LLVMTarget)
set(MSVC_LIB_DEPS_LLVMSystemZInfo LLVMSupport)
set(MSVC_LIB_DEPS_LLVMTarget LLVMCore LLVMMC LLVMSupport)
set(MSVC_LIB_DEPS_LLVMTransformUtils LLVMAnalysis LLVMCore LLVMSupport LLVMSystem LLVMTarget LLVMipa)
set(MSVC_LIB_DEPS_LLVMX86AsmParser LLVMMC LLVMMCParser LLVMSupport LLVMX86Info)
set(MSVC_LIB_DEPS_LLVMX86AsmPrinter LLVMAnalysis LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMSystem LLVMTarget LLVMX86CodeGen LLVMX86Info)
set(MSVC_LIB_DEPS_LLVMX86AsmParser LLVMMC LLVMMCParser LLVMSupport LLVMTarget LLVMX86Info)
set(MSVC_LIB_DEPS_LLVMX86AsmPrinter LLVMAnalysis LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMTarget LLVMX86CodeGen LLVMX86Info)
set(MSVC_LIB_DEPS_LLVMX86CodeGen LLVMCodeGen LLVMCore LLVMMC LLVMSelectionDAG LLVMSupport LLVMSystem LLVMTarget LLVMX86Info)
set(MSVC_LIB_DEPS_LLVMX86Disassembler LLVMMC LLVMSupport LLVMX86Info)
set(MSVC_LIB_DEPS_LLVMX86Info LLVMSupport)
set(MSVC_LIB_DEPS_LLVMXCore LLVMCodeGen LLVMCore LLVMMC LLVMSelectionDAG LLVMSupport LLVMTarget LLVMXCoreInfo)
set(MSVC_LIB_DEPS_LLVMXCoreAsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMSystem LLVMTarget LLVMXCoreInfo)
set(MSVC_LIB_DEPS_LLVMXCoreAsmPrinter LLVMAsmPrinter LLVMCodeGen LLVMCore LLVMMC LLVMSupport LLVMTarget LLVMXCoreInfo)
set(MSVC_LIB_DEPS_LLVMXCoreInfo LLVMSupport)
set(MSVC_LIB_DEPS_LLVMipa LLVMAnalysis LLVMCore LLVMSupport LLVMSystem)
set(MSVC_LIB_DEPS_LLVMipo LLVMAnalysis LLVMCore LLVMSupport LLVMSystem LLVMTarget LLVMTransformUtils LLVMipa)

169
configure vendored
View File

@ -16177,6 +16177,175 @@ fi
done
for ac_header in valgrind/valgrind.h
do
as_ac_Header=`echo "ac_cv_header_$ac_header" | $as_tr_sh`
if { as_var=$as_ac_Header; eval "test \"\${$as_var+set}\" = set"; }; then
{ echo "$as_me:$LINENO: checking for $ac_header" >&5
echo $ECHO_N "checking for $ac_header... $ECHO_C" >&6; }
if { as_var=$as_ac_Header; eval "test \"\${$as_var+set}\" = set"; }; then
echo $ECHO_N "(cached) $ECHO_C" >&6
fi
ac_res=`eval echo '${'$as_ac_Header'}'`
{ echo "$as_me:$LINENO: result: $ac_res" >&5
echo "${ECHO_T}$ac_res" >&6; }
else
# Is the header compilable?
{ echo "$as_me:$LINENO: checking $ac_header usability" >&5
echo $ECHO_N "checking $ac_header usability... $ECHO_C" >&6; }
cat >conftest.$ac_ext <<_ACEOF
/* confdefs.h. */
_ACEOF
cat confdefs.h >>conftest.$ac_ext
cat >>conftest.$ac_ext <<_ACEOF
/* end confdefs.h. */
$ac_includes_default
#include <$ac_header>
_ACEOF
rm -f conftest.$ac_objext
if { (ac_try="$ac_compile"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_compile") 2>conftest.er1
ac_status=$?
grep -v '^ *+' conftest.er1 >conftest.err
rm -f conftest.er1
cat conftest.err >&5
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); } &&
{ ac_try='test -z "$ac_c_werror_flag" || test ! -s conftest.err'
{ (case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_try") 2>&5
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); }; } &&
{ ac_try='test -s conftest.$ac_objext'
{ (case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_try") 2>&5
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); }; }; then
ac_header_compiler=yes
else
echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5
ac_header_compiler=no
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
{ echo "$as_me:$LINENO: result: $ac_header_compiler" >&5
echo "${ECHO_T}$ac_header_compiler" >&6; }
# Is the header present?
{ echo "$as_me:$LINENO: checking $ac_header presence" >&5
echo $ECHO_N "checking $ac_header presence... $ECHO_C" >&6; }
cat >conftest.$ac_ext <<_ACEOF
/* confdefs.h. */
_ACEOF
cat confdefs.h >>conftest.$ac_ext
cat >>conftest.$ac_ext <<_ACEOF
/* end confdefs.h. */
#include <$ac_header>
_ACEOF
if { (ac_try="$ac_cpp conftest.$ac_ext"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_cpp conftest.$ac_ext") 2>conftest.er1
ac_status=$?
grep -v '^ *+' conftest.er1 >conftest.err
rm -f conftest.er1
cat conftest.err >&5
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); } >/dev/null; then
if test -s conftest.err; then
ac_cpp_err=$ac_c_preproc_warn_flag
ac_cpp_err=$ac_cpp_err$ac_c_werror_flag
else
ac_cpp_err=
fi
else
ac_cpp_err=yes
fi
if test -z "$ac_cpp_err"; then
ac_header_preproc=yes
else
echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5
ac_header_preproc=no
fi
rm -f conftest.err conftest.$ac_ext
{ echo "$as_me:$LINENO: result: $ac_header_preproc" >&5
echo "${ECHO_T}$ac_header_preproc" >&6; }
# So? What about this header?
case $ac_header_compiler:$ac_header_preproc:$ac_c_preproc_warn_flag in
yes:no: )
{ echo "$as_me:$LINENO: WARNING: $ac_header: accepted by the compiler, rejected by the preprocessor!" >&5
echo "$as_me: WARNING: $ac_header: accepted by the compiler, rejected by the preprocessor!" >&2;}
{ echo "$as_me:$LINENO: WARNING: $ac_header: proceeding with the compiler's result" >&5
echo "$as_me: WARNING: $ac_header: proceeding with the compiler's result" >&2;}
ac_header_preproc=yes
;;
no:yes:* )
{ echo "$as_me:$LINENO: WARNING: $ac_header: present but cannot be compiled" >&5
echo "$as_me: WARNING: $ac_header: present but cannot be compiled" >&2;}
{ echo "$as_me:$LINENO: WARNING: $ac_header: check for missing prerequisite headers?" >&5
echo "$as_me: WARNING: $ac_header: check for missing prerequisite headers?" >&2;}
{ echo "$as_me:$LINENO: WARNING: $ac_header: see the Autoconf documentation" >&5
echo "$as_me: WARNING: $ac_header: see the Autoconf documentation" >&2;}
{ echo "$as_me:$LINENO: WARNING: $ac_header: section \"Present But Cannot Be Compiled\"" >&5
echo "$as_me: WARNING: $ac_header: section \"Present But Cannot Be Compiled\"" >&2;}
{ echo "$as_me:$LINENO: WARNING: $ac_header: proceeding with the preprocessor's result" >&5
echo "$as_me: WARNING: $ac_header: proceeding with the preprocessor's result" >&2;}
{ echo "$as_me:$LINENO: WARNING: $ac_header: in the future, the compiler will take precedence" >&5
echo "$as_me: WARNING: $ac_header: in the future, the compiler will take precedence" >&2;}
( cat <<\_ASBOX
## ----------------------------------- ##
## Report this to llvmbugs@cs.uiuc.edu ##
## ----------------------------------- ##
_ASBOX
) | sed "s/^/$as_me: WARNING: /" >&2
;;
esac
{ echo "$as_me:$LINENO: checking for $ac_header" >&5
echo $ECHO_N "checking for $ac_header... $ECHO_C" >&6; }
if { as_var=$as_ac_Header; eval "test \"\${$as_var+set}\" = set"; }; then
echo $ECHO_N "(cached) $ECHO_C" >&6
else
eval "$as_ac_Header=\$ac_header_preproc"
fi
ac_res=`eval echo '${'$as_ac_Header'}'`
{ echo "$as_me:$LINENO: result: $ac_res" >&5
echo "${ECHO_T}$ac_res" >&6; }
fi
if test `eval echo '${'$as_ac_Header'}'` = yes; then
cat >>confdefs.h <<_ACEOF
#define `echo "HAVE_$ac_header" | $as_tr_cpp` 1
_ACEOF
fi
done
if test "$ENABLE_THREADS" -eq 1 ; then
for ac_header in pthread.h

View File

@ -1679,7 +1679,8 @@ $ llc -regalloc=linearscan file.bc -o ln.s;
supported on x86/x86-64 and PowerPC. It is performed if:</p>
<ul>
<li>Caller and callee have the calling convention <tt>fastcc</tt>.</li>
<li>Caller and callee have the calling convention <tt>fastcc</tt> or
<tt>cc 10</tt> (GHC call convention).</li>
<li>The call is a tail call - in tail position (ret immediately follows call
and ret uses value of call or is void).</li>
@ -2161,7 +2162,7 @@ MOVSX32rm16 -&gt; movsx, 32-bit register, 16-bit memory
<a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
<a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Last modified: $Date: 2010-03-08 22:05:02 +0100 (Mon, 08 Mar 2010) $
Last modified: $Date: 2010-03-11 01:22:57 +0100 (Thu, 11 Mar 2010) $
</address>
</body>

View File

@ -255,6 +255,12 @@
<li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
</ol>
</li>
<li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
<ol>
<li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
<li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
</ol>
</li>
<li><a href="#int_debugger">Debugger intrinsics</a></li>
<li><a href="#int_eh">Exception Handling intrinsics</a></li>
<li><a href="#int_trampoline">Trampoline Intrinsic</a>
@ -691,9 +697,9 @@ define i32 @main() { <i>; i32()* </i>
target, without having to conform to an externally specified ABI
(Application Binary Interface).
<a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
when this convention is used.</a> This calling convention does not
support varargs and requires the prototype of all callees to exactly match
the prototype of the function definition.</dd>
when this or the GHC convention is used.</a> This calling convention
does not support varargs and requires the prototype of all callees to
exactly match the prototype of the function definition.</dd>
<dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
<dd>This calling convention attempts to make code in the caller as efficient
@ -703,6 +709,26 @@ define i32 @main() { <i>; i32()* </i>
does not support varargs and requires the prototype of all callees to
exactly match the prototype of the function definition.</dd>
<dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
<dd>This calling convention has been implemented specifically for use by the
<a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
It passes everything in registers, going to extremes to achieve this by
disabling callee save registers. This calling convention should not be
used lightly but only for specific situations such as an alternative to
the <em>register pinning</em> performance technique often used when
implementing functional programming languages.At the moment only X86
supports this convention and it has the following limitations:
<ul>
<li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
floating point types are supported.</li>
<li>On <em>X86-64</em> only supports up to 10 bit type parameters and
6 floating point parameters.</li>
</ul>
This calling convention supports
<a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
requires both the caller and callee are using it.
</dd>
<dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
<dd>Any calling convention may be specified by number, allowing
target-specific calling conventions to be used. Target specific calling
@ -6586,6 +6612,97 @@ LLVM</a>.</p>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="int_fp16">Half Precision Floating Point Intrinsics</a>
</div>
<div class="doc_text">
<p>Half precision floating point is a storage-only format. This means that it is
a dense encoding (in memory) but does not support computation in the
format.</p>
<p>This means that code must first load the half-precision floating point
value as an i16, then convert it to float with <a
href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
Computation can then be performed on the float value (including extending to
double etc). To store the value back to memory, it is first converted to
float if needed, then converted to i16 with
<a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
storing as an i16 value.</p>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare i16 @llvm.convert.to.fp16(f32 %a)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
a conversion from single precision floating point format to half precision
floating point format.</p>
<h5>Arguments:</h5>
<p>The intrinsic function contains single argument - the value to be
converted.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
a conversion from single precision floating point format to half precision
floating point format. The return value is an <tt>i16</tt> which
contains the converted number.</p>
<h5>Examples:</h5>
<pre>
%res = call i16 @llvm.convert.to.fp16(f32 %a)
store i16 %res, i16* @x, align 2
</pre>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a>
</div>
<div class="doc_text">
<h5>Syntax:</h5>
<pre>
declare f32 @llvm.convert.from.fp16(i16 %a)
</pre>
<h5>Overview:</h5>
<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
a conversion from half precision floating point format to single precision
floating point format.</p>
<h5>Arguments:</h5>
<p>The intrinsic function contains single argument - the value to be
converted.</p>
<h5>Semantics:</h5>
<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
conversion from half single precision floating point format to single
precision floating point format. The input half-float value is represented by
an <tt>i16</tt> value.</p>
<h5>Examples:</h5>
<pre>
%a = load i16* @x, align 2
%res = call f32 @llvm.convert.from.fp16(i16 %a)
</pre>
</div>
<!-- ======================================================================= -->
<div class="doc_subsection">
<a name="int_debugger">Debugger Intrinsics</a>
@ -7473,7 +7590,7 @@ LLVM</a>.</p>
<a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
<a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Last modified: $Date: 2010-03-08 22:05:02 +0100 (Mon, 08 Mar 2010) $
Last modified: $Date: 2010-03-15 05:12:21 +0100 (Mon, 15 Mar 2010) $
</address>
</body>

View File

@ -0,0 +1,22 @@
##===- examples/OCaml-Kaleidoscope/Chapter2/Makefile -------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
#
# This is the makefile for the Objective Caml kaleidoscope tutorial, chapter 2.
#
##===----------------------------------------------------------------------===##
LEVEL := ../../..
TOOLNAME := OCaml-Kaleidoscope-Ch2
EXAMPLE_TOOL := 1
UsedComponents := core
UsedOcamLibs := llvm
OCAMLCFLAGS += -pp camlp4of
include $(LEVEL)/bindings/ocaml/Makefile.ocaml

View File

@ -0,0 +1 @@
<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)

View File

@ -0,0 +1,25 @@
(*===----------------------------------------------------------------------===
* Abstract Syntax Tree (aka Parse Tree)
*===----------------------------------------------------------------------===*)
(* expr - Base type for all expression nodes. *)
type expr =
(* variant for numeric literals like "1.0". *)
| Number of float
(* variant for referencing a variable, like "a". *)
| Variable of string
(* variant for a binary operator. *)
| Binary of char * expr * expr
(* variant for function calls. *)
| Call of string * expr array
(* proto - This type represents the "prototype" for a function, which captures
* its name, and its argument names (thus implicitly the number of arguments the
* function takes). *)
type proto = Prototype of string * string array
(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

View File

@ -0,0 +1,52 @@
(*===----------------------------------------------------------------------===
* Lexer
*===----------------------------------------------------------------------===*)
let rec lex = parser
(* Skip any whitespace. *)
| [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
(* identifier: [a-zA-Z][a-zA-Z0-9] *)
| [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_ident buffer stream
(* number: [0-9.]+ *)
| [< ' ('0' .. '9' as c); stream >] ->
let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_number buffer stream
(* Comment until end of line. *)
| [< ' ('#'); stream >] ->
lex_comment stream
(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->
[< 'Token.Kwd c; lex stream >]
(* end of stream. *)
| [< >] -> [< >]
and lex_number buffer = parser
| [< ' ('0' .. '9' | '.' as c); stream >] ->
Buffer.add_char buffer c;
lex_number buffer stream
| [< stream=lex >] ->
[< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
and lex_ident buffer = parser
| [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
Buffer.add_char buffer c;
lex_ident buffer stream
| [< stream=lex >] ->
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| id -> [< 'Token.Ident id; stream >]
and lex_comment = parser
| [< ' ('\n'); stream=lex >] -> stream
| [< 'c; e=lex_comment >] -> e
| [< >] -> [< >]

View File

@ -0,0 +1,122 @@
(*===---------------------------------------------------------------------===
* Parser
*===---------------------------------------------------------------------===*)
(* binop_precedence - This holds the precedence for each binary operator that is
* defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
(* primary
* ::= identifier
* ::= numberexpr
* ::= parenexpr *)
let rec parse_primary = parser
(* numberexpr ::= number *)
| [< 'Token.Number n >] -> Ast.Number n
(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
(* identifierexpr
* ::= identifier
* ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->
let rec parse_args accumulator = parser
| [< e=parse_expr; stream >] ->
begin parser
| [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
| [< >] -> e :: accumulator
end stream
| [< >] -> accumulator
in
let rec parse_ident id = parser
(* Call. *)
| [< 'Token.Kwd '(';
args=parse_args [];
'Token.Kwd ')' ?? "expected ')'">] ->
Ast.Call (id, Array.of_list (List.rev args))
(* Simple variable ref. *)
| [< >] -> Ast.Variable id
in
parse_ident id stream
| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
(* binoprhs
* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
match Stream.peek stream with
(* If this is a binop, find its precedence. *)
| Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
let token_prec = precedence c in
(* If this is a binop that binds at least as tightly as the current binop,
* consume it, otherwise we are done. *)
if token_prec < expr_prec then lhs else begin
(* Eat the binop. *)
Stream.junk stream;
(* Parse the primary expression after the binary operator. *)
let rhs = parse_primary stream in
(* Okay, we know this is a binop. *)
let rhs =
match Stream.peek stream with
| Some (Token.Kwd c2) ->
(* If BinOp binds less tightly with rhs than the operator after
* rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec
then parse_bin_rhs (token_prec + 1) rhs stream
else rhs
| _ -> rhs
in
(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
parse_bin_rhs expr_prec lhs stream
end
| _ -> lhs
(* expression
* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
(* prototype
* ::= id '(' id* ')' *)
let parse_prototype =
let rec parse_args accumulator = parser
| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator
in
parser
| [< 'Token.Ident id;
'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))
| [< >] ->
raise (Stream.Error "expected function name in prototype")
(* definition ::= 'def' prototype expression *)
let parse_definition = parser
| [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
Ast.Function (p, e)
(* toplevelexpr ::= expression *)
let parse_toplevel = parser
| [< e=parse_expr >] ->
(* Make an anonymous proto. *)
Ast.Function (Ast.Prototype ("", [||]), e)
(* external ::= 'extern' prototype *)
let parse_extern = parser
| [< 'Token.Extern; e=parse_prototype >] -> e

View File

@ -0,0 +1,15 @@
(*===----------------------------------------------------------------------===
* Lexer Tokens
*===----------------------------------------------------------------------===*)
(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
* these others for known things. *)
type token =
(* commands *)
| Def | Extern
(* primary *)
| Ident of string | Number of float
(* unknown *)
| Kwd of char

View File

@ -0,0 +1,34 @@
(*===----------------------------------------------------------------------===
* Top-Level parsing and JIT Driver
*===----------------------------------------------------------------------===*)
(* top ::= definition | external | expression | ';' *)
let rec main_loop stream =
match Stream.peek stream with
| None -> ()
(* ignore top-level semicolons. *)
| Some (Token.Kwd ';') ->
Stream.junk stream;
main_loop stream
| Some token ->
begin
try match token with
| Token.Def ->
ignore(Parser.parse_definition stream);
print_endline "parsed a function definition.";
| Token.Extern ->
ignore(Parser.parse_extern stream);
print_endline "parsed an extern.";
| _ ->
(* Evaluate a top-level expression into an anonymous function. *)
ignore(Parser.parse_toplevel stream);
print_endline "parsed a top-level expr";
with Stream.Error s ->
(* Skip token for error recovery. *)
Stream.junk stream;
print_endline s;
end;
print_string "ready> "; flush stdout;
main_loop stream

View File

@ -0,0 +1,21 @@
(*===----------------------------------------------------------------------===
* Main driver code.
*===----------------------------------------------------------------------===*)
let main () =
(* Install standard binary operators.
* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
(* Prime the first token. *)
print_string "ready> "; flush stdout;
let stream = Lexer.lex (Stream.of_channel stdin) in
(* Run the main "interpreter loop" now. *)
Toplevel.main_loop stream;
;;
main ()

View File

@ -0,0 +1,24 @@
##===- examples/OCaml-Kaleidoscope/Chapter3/Makefile -------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
#
# This is the makefile for the Objective Caml kaleidoscope tutorial, chapter 3.
#
##===----------------------------------------------------------------------===##
LEVEL := ../../..
TOOLNAME := OCaml-Kaleidoscope-Ch3
EXAMPLE_TOOL := 1
UsedComponents := core
UsedOcamLibs := llvm llvm_analysis
OCAMLCFLAGS += -pp camlp4of
ExcludeSources = $(PROJ_SRC_DIR)/myocamlbuild.ml
include $(LEVEL)/bindings/ocaml/Makefile.ocaml

View File

@ -0,0 +1,2 @@
<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis

View File

@ -0,0 +1,25 @@
(*===----------------------------------------------------------------------===
* Abstract Syntax Tree (aka Parse Tree)
*===----------------------------------------------------------------------===*)
(* expr - Base type for all expression nodes. *)
type expr =
(* variant for numeric literals like "1.0". *)
| Number of float
(* variant for referencing a variable, like "a". *)
| Variable of string
(* variant for a binary operator. *)
| Binary of char * expr * expr
(* variant for function calls. *)
| Call of string * expr array
(* proto - This type represents the "prototype" for a function, which captures
* its name, and its argument names (thus implicitly the number of arguments the
* function takes). *)
type proto = Prototype of string * string array
(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

View File

@ -0,0 +1,100 @@
(*===----------------------------------------------------------------------===
* Code Generation
*===----------------------------------------------------------------------===*)
open Llvm
exception Error of string
let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context
let rec codegen_expr = function
| Ast.Number n -> const_float double_type n
| Ast.Variable name ->
(try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name"))
| Ast.Binary (op, lhs, rhs) ->
let lhs_val = codegen_expr lhs in
let rhs_val = codegen_expr rhs in
begin
match op with
| '+' -> build_add lhs_val rhs_val "addtmp" builder
| '-' -> build_sub lhs_val rhs_val "subtmp" builder
| '*' -> build_mul lhs_val rhs_val "multmp" builder
| '<' ->
(* Convert bool 0/1 to double 0.0 or 1.0 *)
let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
build_uitofp i double_type "booltmp" builder
| _ -> raise (Error "invalid binary operator")
end
| Ast.Call (callee, args) ->
(* Look up the name in the module table. *)
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown function referenced")
in
let params = params callee in
(* If argument mismatch error. *)
if Array.length params == Array.length args then () else
raise (Error "incorrect # arguments passed");
let args = Array.map codegen_expr args in
build_call callee args "calltmp" builder
let codegen_proto = function
| Ast.Prototype (name, args) ->
(* Make the function type: double(double,double) etc. *)
let doubles = Array.make (Array.length args) double_type in
let ft = function_type double_type doubles in
let f =
match lookup_function name the_module with
| None -> declare_function name ft the_module
(* If 'f' conflicted, there was already something named 'name'. If it
* has a body, don't allow redefinition or reextern. *)
| Some f ->
(* If 'f' already has a body, reject this. *)
if block_begin f <> At_end f then
raise (Error "redefinition of function");
(* If 'f' took a different number of arguments, reject. *)
if element_type (type_of f) <> ft then
raise (Error "redefinition of function with different # args");
f
in
(* Set names for all arguments. *)
Array.iteri (fun i a ->
let n = args.(i) in
set_value_name n a;
Hashtbl.add named_values n a;
) (params f);
f
let codegen_func = function
| Ast.Function (proto, body) ->
Hashtbl.clear named_values;
let the_function = codegen_proto proto in
(* Create a new basic block to start insertion into. *)
let bb = append_block context "entry" the_function in
position_at_end bb builder;
try
let ret_val = codegen_expr body in
(* Finish off the function. *)
let _ = build_ret ret_val builder in
(* Validate the generated code, checking for consistency. *)
Llvm_analysis.assert_valid_function the_function;
the_function
with e ->
delete_function the_function;
raise e

View File

@ -0,0 +1,52 @@
(*===----------------------------------------------------------------------===
* Lexer
*===----------------------------------------------------------------------===*)
let rec lex = parser
(* Skip any whitespace. *)
| [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
(* identifier: [a-zA-Z][a-zA-Z0-9] *)
| [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_ident buffer stream
(* number: [0-9.]+ *)
| [< ' ('0' .. '9' as c); stream >] ->
let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_number buffer stream
(* Comment until end of line. *)
| [< ' ('#'); stream >] ->
lex_comment stream
(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->
[< 'Token.Kwd c; lex stream >]
(* end of stream. *)
| [< >] -> [< >]
and lex_number buffer = parser
| [< ' ('0' .. '9' | '.' as c); stream >] ->
Buffer.add_char buffer c;
lex_number buffer stream
| [< stream=lex >] ->
[< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
and lex_ident buffer = parser
| [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
Buffer.add_char buffer c;
lex_ident buffer stream
| [< stream=lex >] ->
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| id -> [< 'Token.Ident id; stream >]
and lex_comment = parser
| [< ' ('\n'); stream=lex >] -> stream
| [< 'c; e=lex_comment >] -> e
| [< >] -> [< >]

View File

@ -0,0 +1,6 @@
open Ocamlbuild_plugin;;
ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;
flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;

View File

@ -0,0 +1,122 @@
(*===---------------------------------------------------------------------===
* Parser
*===---------------------------------------------------------------------===*)
(* binop_precedence - This holds the precedence for each binary operator that is
* defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
(* primary
* ::= identifier
* ::= numberexpr
* ::= parenexpr *)
let rec parse_primary = parser
(* numberexpr ::= number *)
| [< 'Token.Number n >] -> Ast.Number n
(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
(* identifierexpr
* ::= identifier
* ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->
let rec parse_args accumulator = parser
| [< e=parse_expr; stream >] ->
begin parser
| [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
| [< >] -> e :: accumulator
end stream
| [< >] -> accumulator
in
let rec parse_ident id = parser
(* Call. *)
| [< 'Token.Kwd '(';
args=parse_args [];
'Token.Kwd ')' ?? "expected ')'">] ->
Ast.Call (id, Array.of_list (List.rev args))
(* Simple variable ref. *)
| [< >] -> Ast.Variable id
in
parse_ident id stream
| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
(* binoprhs
* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
match Stream.peek stream with
(* If this is a binop, find its precedence. *)
| Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
let token_prec = precedence c in
(* If this is a binop that binds at least as tightly as the current binop,
* consume it, otherwise we are done. *)
if token_prec < expr_prec then lhs else begin
(* Eat the binop. *)
Stream.junk stream;
(* Parse the primary expression after the binary operator. *)
let rhs = parse_primary stream in
(* Okay, we know this is a binop. *)
let rhs =
match Stream.peek stream with
| Some (Token.Kwd c2) ->
(* If BinOp binds less tightly with rhs than the operator after
* rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec
then parse_bin_rhs (token_prec + 1) rhs stream
else rhs
| _ -> rhs
in
(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
parse_bin_rhs expr_prec lhs stream
end
| _ -> lhs
(* expression
* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
(* prototype
* ::= id '(' id* ')' *)
let parse_prototype =
let rec parse_args accumulator = parser
| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator
in
parser
| [< 'Token.Ident id;
'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))
| [< >] ->
raise (Stream.Error "expected function name in prototype")
(* definition ::= 'def' prototype expression *)
let parse_definition = parser
| [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
Ast.Function (p, e)
(* toplevelexpr ::= expression *)
let parse_toplevel = parser
| [< e=parse_expr >] ->
(* Make an anonymous proto. *)
Ast.Function (Ast.Prototype ("", [||]), e)
(* external ::= 'extern' prototype *)
let parse_extern = parser
| [< 'Token.Extern; e=parse_prototype >] -> e

View File

@ -0,0 +1,15 @@
(*===----------------------------------------------------------------------===
* Lexer Tokens
*===----------------------------------------------------------------------===*)
(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
* these others for known things. *)
type token =
(* commands *)
| Def | Extern
(* primary *)
| Ident of string | Number of float
(* unknown *)
| Kwd of char

View File

@ -0,0 +1,39 @@
(*===----------------------------------------------------------------------===
* Top-Level parsing and JIT Driver
*===----------------------------------------------------------------------===*)
open Llvm
(* top ::= definition | external | expression | ';' *)
let rec main_loop stream =
match Stream.peek stream with
| None -> ()
(* ignore top-level semicolons. *)
| Some (Token.Kwd ';') ->
Stream.junk stream;
main_loop stream
| Some token ->
begin
try match token with
| Token.Def ->
let e = Parser.parse_definition stream in
print_endline "parsed a function definition.";
dump_value (Codegen.codegen_func e);
| Token.Extern ->
let e = Parser.parse_extern stream in
print_endline "parsed an extern.";
dump_value (Codegen.codegen_proto e);
| _ ->
(* Evaluate a top-level expression into an anonymous function. *)
let e = Parser.parse_toplevel stream in
print_endline "parsed a top-level expr";
dump_value (Codegen.codegen_func e);
with Stream.Error s | Codegen.Error s ->
(* Skip token for error recovery. *)
Stream.junk stream;
print_endline s;
end;
print_string "ready> "; flush stdout;
main_loop stream

View File

@ -0,0 +1,26 @@
(*===----------------------------------------------------------------------===
* Main driver code.
*===----------------------------------------------------------------------===*)
open Llvm
let main () =
(* Install standard binary operators.
* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
(* Prime the first token. *)
print_string "ready> "; flush stdout;
let stream = Lexer.lex (Stream.of_channel stdin) in
(* Run the main "interpreter loop" now. *)
Toplevel.main_loop stream;
(* Print out all the generated code. *)
dump_module Codegen.the_module
;;
main ()

View File

@ -0,0 +1,25 @@
##===- examples/OCaml-Kaleidoscope/Chapter4/Makefile -------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
#
# This is the makefile for the Objective Caml kaleidoscope tutorial, chapter 4.
#
##===----------------------------------------------------------------------===##
LEVEL := ../../..
TOOLNAME := OCaml-Kaleidoscope-Ch4
EXAMPLE_TOOL := 1
UsedComponents := core
UsedOcamLibs := llvm llvm_analysis llvm_executionengine llvm_target \
llvm_scalar_opts
OCAMLCFLAGS += -pp camlp4of
ExcludeSources = $(PROJ_SRC_DIR)/myocamlbuild.ml
include $(LEVEL)/bindings/ocaml/Makefile.ocaml

View File

@ -0,0 +1,4 @@
<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
<*.{byte,native}>: use_llvm_executionengine, use_llvm_target
<*.{byte,native}>: use_llvm_scalar_opts, use_bindings

View File

@ -0,0 +1,25 @@
(*===----------------------------------------------------------------------===
* Abstract Syntax Tree (aka Parse Tree)
*===----------------------------------------------------------------------===*)
(* expr - Base type for all expression nodes. *)
type expr =
(* variant for numeric literals like "1.0". *)
| Number of float
(* variant for referencing a variable, like "a". *)
| Variable of string
(* variant for a binary operator. *)
| Binary of char * expr * expr
(* variant for function calls. *)
| Call of string * expr array
(* proto - This type represents the "prototype" for a function, which captures
* its name, and its argument names (thus implicitly the number of arguments the
* function takes). *)
type proto = Prototype of string * string array
(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

View File

@ -0,0 +1,7 @@
#include <stdio.h>
/* putchard - putchar that takes a double and returns 0. */
extern double putchard(double X) {
putchar((char)X);
return 0;
}

View File

@ -0,0 +1,103 @@
(*===----------------------------------------------------------------------===
* Code Generation
*===----------------------------------------------------------------------===*)
open Llvm
exception Error of string
let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context
let rec codegen_expr = function
| Ast.Number n -> const_float double_type n
| Ast.Variable name ->
(try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name"))
| Ast.Binary (op, lhs, rhs) ->
let lhs_val = codegen_expr lhs in
let rhs_val = codegen_expr rhs in
begin
match op with
| '+' -> build_add lhs_val rhs_val "addtmp" builder
| '-' -> build_sub lhs_val rhs_val "subtmp" builder
| '*' -> build_mul lhs_val rhs_val "multmp" builder
| '<' ->
(* Convert bool 0/1 to double 0.0 or 1.0 *)
let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
build_uitofp i double_type "booltmp" builder
| _ -> raise (Error "invalid binary operator")
end
| Ast.Call (callee, args) ->
(* Look up the name in the module table. *)
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown function referenced")
in
let params = params callee in
(* If argument mismatch error. *)
if Array.length params == Array.length args then () else
raise (Error "incorrect # arguments passed");
let args = Array.map codegen_expr args in
build_call callee args "calltmp" builder
let codegen_proto = function
| Ast.Prototype (name, args) ->
(* Make the function type: double(double,double) etc. *)
let doubles = Array.make (Array.length args) double_type in
let ft = function_type double_type doubles in
let f =
match lookup_function name the_module with
| None -> declare_function name ft the_module
(* If 'f' conflicted, there was already something named 'name'. If it
* has a body, don't allow redefinition or reextern. *)
| Some f ->
(* If 'f' already has a body, reject this. *)
if block_begin f <> At_end f then
raise (Error "redefinition of function");
(* If 'f' took a different number of arguments, reject. *)
if element_type (type_of f) <> ft then
raise (Error "redefinition of function with different # args");
f
in
(* Set names for all arguments. *)
Array.iteri (fun i a ->
let n = args.(i) in
set_value_name n a;
Hashtbl.add named_values n a;
) (params f);
f
let codegen_func the_fpm = function
| Ast.Function (proto, body) ->
Hashtbl.clear named_values;
let the_function = codegen_proto proto in
(* Create a new basic block to start insertion into. *)
let bb = append_block context "entry" the_function in
position_at_end bb builder;
try
let ret_val = codegen_expr body in
(* Finish off the function. *)
let _ = build_ret ret_val builder in
(* Validate the generated code, checking for consistency. *)
Llvm_analysis.assert_valid_function the_function;
(* Optimize the function. *)
let _ = PassManager.run_function the_function the_fpm in
the_function
with e ->
delete_function the_function;
raise e

View File

@ -0,0 +1,52 @@
(*===----------------------------------------------------------------------===
* Lexer
*===----------------------------------------------------------------------===*)
let rec lex = parser
(* Skip any whitespace. *)
| [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
(* identifier: [a-zA-Z][a-zA-Z0-9] *)
| [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_ident buffer stream
(* number: [0-9.]+ *)
| [< ' ('0' .. '9' as c); stream >] ->
let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_number buffer stream
(* Comment until end of line. *)
| [< ' ('#'); stream >] ->
lex_comment stream
(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->
[< 'Token.Kwd c; lex stream >]
(* end of stream. *)
| [< >] -> [< >]
and lex_number buffer = parser
| [< ' ('0' .. '9' | '.' as c); stream >] ->
Buffer.add_char buffer c;
lex_number buffer stream
| [< stream=lex >] ->
[< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
and lex_ident buffer = parser
| [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
Buffer.add_char buffer c;
lex_ident buffer stream
| [< stream=lex >] ->
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| id -> [< 'Token.Ident id; stream >]
and lex_comment = parser
| [< ' ('\n'); stream=lex >] -> stream
| [< 'c; e=lex_comment >] -> e
| [< >] -> [< >]

View File

@ -0,0 +1,10 @@
open Ocamlbuild_plugin;;
ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;
ocaml_lib ~extern:true "llvm_executionengine";;
ocaml_lib ~extern:true "llvm_target";;
ocaml_lib ~extern:true "llvm_scalar_opts";;
flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;

View File

@ -0,0 +1,122 @@
(*===---------------------------------------------------------------------===
* Parser
*===---------------------------------------------------------------------===*)
(* binop_precedence - This holds the precedence for each binary operator that is
* defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
(* primary
* ::= identifier
* ::= numberexpr
* ::= parenexpr *)
let rec parse_primary = parser
(* numberexpr ::= number *)
| [< 'Token.Number n >] -> Ast.Number n
(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
(* identifierexpr
* ::= identifier
* ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->
let rec parse_args accumulator = parser
| [< e=parse_expr; stream >] ->
begin parser
| [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
| [< >] -> e :: accumulator
end stream
| [< >] -> accumulator
in
let rec parse_ident id = parser
(* Call. *)
| [< 'Token.Kwd '(';
args=parse_args [];
'Token.Kwd ')' ?? "expected ')'">] ->
Ast.Call (id, Array.of_list (List.rev args))
(* Simple variable ref. *)
| [< >] -> Ast.Variable id
in
parse_ident id stream
| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
(* binoprhs
* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
match Stream.peek stream with
(* If this is a binop, find its precedence. *)
| Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
let token_prec = precedence c in
(* If this is a binop that binds at least as tightly as the current binop,
* consume it, otherwise we are done. *)
if token_prec < expr_prec then lhs else begin
(* Eat the binop. *)
Stream.junk stream;
(* Parse the primary expression after the binary operator. *)
let rhs = parse_primary stream in
(* Okay, we know this is a binop. *)
let rhs =
match Stream.peek stream with
| Some (Token.Kwd c2) ->
(* If BinOp binds less tightly with rhs than the operator after
* rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec
then parse_bin_rhs (token_prec + 1) rhs stream
else rhs
| _ -> rhs
in
(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
parse_bin_rhs expr_prec lhs stream
end
| _ -> lhs
(* expression
* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
(* prototype
* ::= id '(' id* ')' *)
let parse_prototype =
let rec parse_args accumulator = parser
| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator
in
parser
| [< 'Token.Ident id;
'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))
| [< >] ->
raise (Stream.Error "expected function name in prototype")
(* definition ::= 'def' prototype expression *)
let parse_definition = parser
| [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
Ast.Function (p, e)
(* toplevelexpr ::= expression *)
let parse_toplevel = parser
| [< e=parse_expr >] ->
(* Make an anonymous proto. *)
Ast.Function (Ast.Prototype ("", [||]), e)
(* external ::= 'extern' prototype *)
let parse_extern = parser
| [< 'Token.Extern; e=parse_prototype >] -> e

View File

@ -0,0 +1,15 @@
(*===----------------------------------------------------------------------===
* Lexer Tokens
*===----------------------------------------------------------------------===*)
(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
* these others for known things. *)
type token =
(* commands *)
| Def | Extern
(* primary *)
| Ident of string | Number of float
(* unknown *)
| Kwd of char

View File

@ -0,0 +1,49 @@
(*===----------------------------------------------------------------------===
* Top-Level parsing and JIT Driver
*===----------------------------------------------------------------------===*)
open Llvm
open Llvm_executionengine
(* top ::= definition | external | expression | ';' *)
let rec main_loop the_fpm the_execution_engine stream =
match Stream.peek stream with
| None -> ()
(* ignore top-level semicolons. *)
| Some (Token.Kwd ';') ->
Stream.junk stream;
main_loop the_fpm the_execution_engine stream
| Some token ->
begin
try match token with
| Token.Def ->
let e = Parser.parse_definition stream in
print_endline "parsed a function definition.";
dump_value (Codegen.codegen_func the_fpm e);
| Token.Extern ->
let e = Parser.parse_extern stream in
print_endline "parsed an extern.";
dump_value (Codegen.codegen_proto e);
| _ ->
(* Evaluate a top-level expression into an anonymous function. *)
let e = Parser.parse_toplevel stream in
print_endline "parsed a top-level expr";
let the_function = Codegen.codegen_func the_fpm e in
dump_value the_function;
(* JIT the function, returning a function pointer. *)
let result = ExecutionEngine.run_function the_function [||]
the_execution_engine in
print_string "Evaluated to ";
print_float (GenericValue.as_float Codegen.double_type result);
print_newline ();
with Stream.Error s | Codegen.Error s ->
(* Skip token for error recovery. *)
Stream.junk stream;
print_endline s;
end;
print_string "ready> "; flush stdout;
main_loop the_fpm the_execution_engine stream

View File

@ -0,0 +1,53 @@
(*===----------------------------------------------------------------------===
* Main driver code.
*===----------------------------------------------------------------------===*)
open Llvm
open Llvm_executionengine
open Llvm_target
open Llvm_scalar_opts
let main () =
ignore (initialize_native_target ());
(* Install standard binary operators.
* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
(* Prime the first token. *)
print_string "ready> "; flush stdout;
let stream = Lexer.lex (Stream.of_channel stdin) in
(* Create the JIT. *)
let the_execution_engine = ExecutionEngine.create Codegen.the_module in
let the_fpm = PassManager.create_function Codegen.the_module in
(* Set up the optimizer pipeline. Start with registering info about how the
* target lays out data structures. *)
TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
(* Do simple "peephole" optimizations and bit-twiddling optzn. *)
add_instruction_combination the_fpm;
(* reassociate expressions. *)
add_reassociation the_fpm;
(* Eliminate Common SubExpressions. *)
add_gvn the_fpm;
(* Simplify the control flow graph (deleting unreachable blocks, etc). *)
add_cfg_simplification the_fpm;
ignore (PassManager.initialize the_fpm);
(* Run the main "interpreter loop" now. *)
Toplevel.main_loop the_fpm the_execution_engine stream;
(* Print out all the generated code. *)
dump_module Codegen.the_module
;;
main ()

View File

@ -0,0 +1,25 @@
##===- examples/OCaml-Kaleidoscope/Chapter5/Makefile -------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
#
# This is the makefile for the Objective Caml kaleidoscope tutorial, chapter 5.
#
##===----------------------------------------------------------------------===##
LEVEL := ../../..
TOOLNAME := OCaml-Kaleidoscope-Ch5
EXAMPLE_TOOL := 1
UsedComponents := core
UsedOcamLibs := llvm llvm_analysis llvm_executionengine llvm_target \
llvm_scalar_opts
OCAMLCFLAGS += -pp camlp4of
ExcludeSources = $(PROJ_SRC_DIR)/myocamlbuild.ml
include $(LEVEL)/bindings/ocaml/Makefile.ocaml

View File

@ -0,0 +1,4 @@
<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
<*.{byte,native}>: use_llvm_executionengine, use_llvm_target
<*.{byte,native}>: use_llvm_scalar_opts, use_bindings

View File

@ -0,0 +1,31 @@
(*===----------------------------------------------------------------------===
* Abstract Syntax Tree (aka Parse Tree)
*===----------------------------------------------------------------------===*)
(* expr - Base type for all expression nodes. *)
type expr =
(* variant for numeric literals like "1.0". *)
| Number of float
(* variant for referencing a variable, like "a". *)
| Variable of string
(* variant for a binary operator. *)
| Binary of char * expr * expr
(* variant for function calls. *)
| Call of string * expr array
(* variant for if/then/else. *)
| If of expr * expr * expr
(* variant for for/in. *)
| For of string * expr * expr * expr option * expr
(* proto - This type represents the "prototype" for a function, which captures
* its name, and its argument names (thus implicitly the number of arguments the
* function takes). *)
type proto = Prototype of string * string array
(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

View File

@ -0,0 +1,7 @@
#include <stdio.h>
/* putchard - putchar that takes a double and returns 0. */
extern double putchard(double X) {
putchar((char)X);
return 0;
}

View File

@ -0,0 +1,225 @@
(*===----------------------------------------------------------------------===
* Code Generation
*===----------------------------------------------------------------------===*)
open Llvm
exception Error of string
let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context
let rec codegen_expr = function
| Ast.Number n -> const_float double_type n
| Ast.Variable name ->
(try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name"))
| Ast.Binary (op, lhs, rhs) ->
let lhs_val = codegen_expr lhs in
let rhs_val = codegen_expr rhs in
begin
match op with
| '+' -> build_add lhs_val rhs_val "addtmp" builder
| '-' -> build_sub lhs_val rhs_val "subtmp" builder
| '*' -> build_mul lhs_val rhs_val "multmp" builder
| '<' ->
(* Convert bool 0/1 to double 0.0 or 1.0 *)
let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
build_uitofp i double_type "booltmp" builder
| _ -> raise (Error "invalid binary operator")
end
| Ast.Call (callee, args) ->
(* Look up the name in the module table. *)
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown function referenced")
in
let params = params callee in
(* If argument mismatch error. *)
if Array.length params == Array.length args then () else
raise (Error "incorrect # arguments passed");
let args = Array.map codegen_expr args in
build_call callee args "calltmp" builder
| Ast.If (cond, then_, else_) ->
let cond = codegen_expr cond in
(* Convert condition to a bool by comparing equal to 0.0 *)
let zero = const_float double_type 0.0 in
let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
(* Grab the first block so that we might later add the conditional branch
* to it at the end of the function. *)
let start_bb = insertion_block builder in
let the_function = block_parent start_bb in
let then_bb = append_block context "then" the_function in
(* Emit 'then' value. *)
position_at_end then_bb builder;
let then_val = codegen_expr then_ in
(* Codegen of 'then' can change the current block, update then_bb for the
* phi. We create a new name because one is used for the phi node, and the
* other is used for the conditional branch. *)
let new_then_bb = insertion_block builder in
(* Emit 'else' value. *)
let else_bb = append_block context "else" the_function in
position_at_end else_bb builder;
let else_val = codegen_expr else_ in
(* Codegen of 'else' can change the current block, update else_bb for the
* phi. *)
let new_else_bb = insertion_block builder in
(* Emit merge block. *)
let merge_bb = append_block context "ifcont" the_function in
position_at_end merge_bb builder;
let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
let phi = build_phi incoming "iftmp" builder in
(* Return to the start block to add the conditional branch. *)
position_at_end start_bb builder;
ignore (build_cond_br cond_val then_bb else_bb builder);
(* Set a unconditional branch at the end of the 'then' block and the
* 'else' block to the 'merge' block. *)
position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
(* Finally, set the builder to the end of the merge block. *)
position_at_end merge_bb builder;
phi
| Ast.For (var_name, start, end_, step, body) ->
(* Emit the start code first, without 'variable' in scope. *)
let start_val = codegen_expr start in
(* Make the new basic block for the loop header, inserting after current
* block. *)
let preheader_bb = insertion_block builder in
let the_function = block_parent preheader_bb in
let loop_bb = append_block context "loop" the_function in
(* Insert an explicit fall through from the current block to the
* loop_bb. *)
ignore (build_br loop_bb builder);
(* Start insertion in loop_bb. *)
position_at_end loop_bb builder;
(* Start the PHI node with an entry for start. *)
let variable = build_phi [(start_val, preheader_bb)] var_name builder in
(* Within the loop, the variable is defined equal to the PHI node. If it
* shadows an existing variable, we have to restore it, so save it
* now. *)
let old_val =
try Some (Hashtbl.find named_values var_name) with Not_found -> None
in
Hashtbl.add named_values var_name variable;
(* Emit the body of the loop. This, like any other expr, can change the
* current BB. Note that we ignore the value computed by the body, but
* don't allow an error *)
ignore (codegen_expr body);
(* Emit the step value. *)
let step_val =
match step with
| Some step -> codegen_expr step
(* If not specified, use 1.0. *)
| None -> const_float double_type 1.0
in
let next_var = build_add variable step_val "nextvar" builder in
(* Compute the end condition. *)
let end_cond = codegen_expr end_ in
(* Convert condition to a bool by comparing equal to 0.0. *)
let zero = const_float double_type 0.0 in
let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
(* Create the "after loop" block and insert it. *)
let loop_end_bb = insertion_block builder in
let after_bb = append_block context "afterloop" the_function in
(* Insert the conditional branch into the end of loop_end_bb. *)
ignore (build_cond_br end_cond loop_bb after_bb builder);
(* Any new code will be inserted in after_bb. *)
position_at_end after_bb builder;
(* Add a new entry to the PHI node for the backedge. *)
add_incoming (next_var, loop_end_bb) variable;
(* Restore the unshadowed variable. *)
begin match old_val with
| Some old_val -> Hashtbl.add named_values var_name old_val
| None -> ()
end;
(* for expr always returns 0.0. *)
const_null double_type
let codegen_proto = function
| Ast.Prototype (name, args) ->
(* Make the function type: double(double,double) etc. *)
let doubles = Array.make (Array.length args) double_type in
let ft = function_type double_type doubles in
let f =
match lookup_function name the_module with
| None -> declare_function name ft the_module
(* If 'f' conflicted, there was already something named 'name'. If it
* has a body, don't allow redefinition or reextern. *)
| Some f ->
(* If 'f' already has a body, reject this. *)
if block_begin f <> At_end f then
raise (Error "redefinition of function");
(* If 'f' took a different number of arguments, reject. *)
if element_type (type_of f) <> ft then
raise (Error "redefinition of function with different # args");
f
in
(* Set names for all arguments. *)
Array.iteri (fun i a ->
let n = args.(i) in
set_value_name n a;
Hashtbl.add named_values n a;
) (params f);
f
let codegen_func the_fpm = function
| Ast.Function (proto, body) ->
Hashtbl.clear named_values;
let the_function = codegen_proto proto in
(* Create a new basic block to start insertion into. *)
let bb = append_block context "entry" the_function in
position_at_end bb builder;
try
let ret_val = codegen_expr body in
(* Finish off the function. *)
let _ = build_ret ret_val builder in
(* Validate the generated code, checking for consistency. *)
Llvm_analysis.assert_valid_function the_function;
(* Optimize the function. *)
let _ = PassManager.run_function the_function the_fpm in
the_function
with e ->
delete_function the_function;
raise e

View File

@ -0,0 +1,57 @@
(*===----------------------------------------------------------------------===
* Lexer
*===----------------------------------------------------------------------===*)
let rec lex = parser
(* Skip any whitespace. *)
| [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
(* identifier: [a-zA-Z][a-zA-Z0-9] *)
| [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_ident buffer stream
(* number: [0-9.]+ *)
| [< ' ('0' .. '9' as c); stream >] ->
let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_number buffer stream
(* Comment until end of line. *)
| [< ' ('#'); stream >] ->
lex_comment stream
(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->
[< 'Token.Kwd c; lex stream >]
(* end of stream. *)
| [< >] -> [< >]
and lex_number buffer = parser
| [< ' ('0' .. '9' | '.' as c); stream >] ->
Buffer.add_char buffer c;
lex_number buffer stream
| [< stream=lex >] ->
[< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
and lex_ident buffer = parser
| [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
Buffer.add_char buffer c;
lex_ident buffer stream
| [< stream=lex >] ->
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| "if" -> [< 'Token.If; stream >]
| "then" -> [< 'Token.Then; stream >]
| "else" -> [< 'Token.Else; stream >]
| "for" -> [< 'Token.For; stream >]
| "in" -> [< 'Token.In; stream >]
| id -> [< 'Token.Ident id; stream >]
and lex_comment = parser
| [< ' ('\n'); stream=lex >] -> stream
| [< 'c; e=lex_comment >] -> e
| [< >] -> [< >]

View File

@ -0,0 +1,10 @@
open Ocamlbuild_plugin;;
ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;
ocaml_lib ~extern:true "llvm_executionengine";;
ocaml_lib ~extern:true "llvm_target";;
ocaml_lib ~extern:true "llvm_scalar_opts";;
flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;

View File

@ -0,0 +1,158 @@
(*===---------------------------------------------------------------------===
* Parser
*===---------------------------------------------------------------------===*)
(* binop_precedence - This holds the precedence for each binary operator that is
* defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
(* primary
* ::= identifier
* ::= numberexpr
* ::= parenexpr
* ::= ifexpr
* ::= forexpr *)
let rec parse_primary = parser
(* numberexpr ::= number *)
| [< 'Token.Number n >] -> Ast.Number n
(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
(* identifierexpr
* ::= identifier
* ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->
let rec parse_args accumulator = parser
| [< e=parse_expr; stream >] ->
begin parser
| [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
| [< >] -> e :: accumulator
end stream
| [< >] -> accumulator
in
let rec parse_ident id = parser
(* Call. *)
| [< 'Token.Kwd '(';
args=parse_args [];
'Token.Kwd ')' ?? "expected ')'">] ->
Ast.Call (id, Array.of_list (List.rev args))
(* Simple variable ref. *)
| [< >] -> Ast.Variable id
in
parse_ident id stream
(* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
| [< 'Token.If; c=parse_expr;
'Token.Then ?? "expected 'then'"; t=parse_expr;
'Token.Else ?? "expected 'else'"; e=parse_expr >] ->
Ast.If (c, t, e)
(* forexpr
::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
| [< 'Token.For;
'Token.Ident id ?? "expected identifier after for";
'Token.Kwd '=' ?? "expected '=' after for";
stream >] ->
begin parser
| [<
start=parse_expr;
'Token.Kwd ',' ?? "expected ',' after for";
end_=parse_expr;
stream >] ->
let step =
begin parser
| [< 'Token.Kwd ','; step=parse_expr >] -> Some step
| [< >] -> None
end stream
in
begin parser
| [< 'Token.In; body=parse_expr >] ->
Ast.For (id, start, end_, step, body)
| [< >] ->
raise (Stream.Error "expected 'in' after for")
end stream
| [< >] ->
raise (Stream.Error "expected '=' after for")
end stream
| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
(* binoprhs
* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
match Stream.peek stream with
(* If this is a binop, find its precedence. *)
| Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
let token_prec = precedence c in
(* If this is a binop that binds at least as tightly as the current binop,
* consume it, otherwise we are done. *)
if token_prec < expr_prec then lhs else begin
(* Eat the binop. *)
Stream.junk stream;
(* Parse the primary expression after the binary operator. *)
let rhs = parse_primary stream in
(* Okay, we know this is a binop. *)
let rhs =
match Stream.peek stream with
| Some (Token.Kwd c2) ->
(* If BinOp binds less tightly with rhs than the operator after
* rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec
then parse_bin_rhs (token_prec + 1) rhs stream
else rhs
| _ -> rhs
in
(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
parse_bin_rhs expr_prec lhs stream
end
| _ -> lhs
(* expression
* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
(* prototype
* ::= id '(' id* ')' *)
let parse_prototype =
let rec parse_args accumulator = parser
| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator
in
parser
| [< 'Token.Ident id;
'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))
| [< >] ->
raise (Stream.Error "expected function name in prototype")
(* definition ::= 'def' prototype expression *)
let parse_definition = parser
| [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
Ast.Function (p, e)
(* toplevelexpr ::= expression *)
let parse_toplevel = parser
| [< e=parse_expr >] ->
(* Make an anonymous proto. *)
Ast.Function (Ast.Prototype ("", [||]), e)
(* external ::= 'extern' prototype *)
let parse_extern = parser
| [< 'Token.Extern; e=parse_prototype >] -> e

View File

@ -0,0 +1,19 @@
(*===----------------------------------------------------------------------===
* Lexer Tokens
*===----------------------------------------------------------------------===*)
(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
* these others for known things. *)
type token =
(* commands *)
| Def | Extern
(* primary *)
| Ident of string | Number of float
(* unknown *)
| Kwd of char
(* control *)
| If | Then | Else
| For | In

View File

@ -0,0 +1,49 @@
(*===----------------------------------------------------------------------===
* Top-Level parsing and JIT Driver
*===----------------------------------------------------------------------===*)
open Llvm
open Llvm_executionengine
(* top ::= definition | external | expression | ';' *)
let rec main_loop the_fpm the_execution_engine stream =
match Stream.peek stream with
| None -> ()
(* ignore top-level semicolons. *)
| Some (Token.Kwd ';') ->
Stream.junk stream;
main_loop the_fpm the_execution_engine stream
| Some token ->
begin
try match token with
| Token.Def ->
let e = Parser.parse_definition stream in
print_endline "parsed a function definition.";
dump_value (Codegen.codegen_func the_fpm e);
| Token.Extern ->
let e = Parser.parse_extern stream in
print_endline "parsed an extern.";
dump_value (Codegen.codegen_proto e);
| _ ->
(* Evaluate a top-level expression into an anonymous function. *)
let e = Parser.parse_toplevel stream in
print_endline "parsed a top-level expr";
let the_function = Codegen.codegen_func the_fpm e in
dump_value the_function;
(* JIT the function, returning a function pointer. *)
let result = ExecutionEngine.run_function the_function [||]
the_execution_engine in
print_string "Evaluated to ";
print_float (GenericValue.as_float Codegen.double_type result);
print_newline ();
with Stream.Error s | Codegen.Error s ->
(* Skip token for error recovery. *)
Stream.junk stream;
print_endline s;
end;
print_string "ready> "; flush stdout;
main_loop the_fpm the_execution_engine stream

View File

@ -0,0 +1,53 @@
(*===----------------------------------------------------------------------===
* Main driver code.
*===----------------------------------------------------------------------===*)
open Llvm
open Llvm_executionengine
open Llvm_target
open Llvm_scalar_opts
let main () =
ignore (initialize_native_target ());
(* Install standard binary operators.
* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
(* Prime the first token. *)
print_string "ready> "; flush stdout;
let stream = Lexer.lex (Stream.of_channel stdin) in
(* Create the JIT. *)
let the_execution_engine = ExecutionEngine.create Codegen.the_module in
let the_fpm = PassManager.create_function Codegen.the_module in
(* Set up the optimizer pipeline. Start with registering info about how the
* target lays out data structures. *)
TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
(* Do simple "peephole" optimizations and bit-twiddling optzn. *)
add_instruction_combination the_fpm;
(* reassociate expressions. *)
add_reassociation the_fpm;
(* Eliminate Common SubExpressions. *)
add_gvn the_fpm;
(* Simplify the control flow graph (deleting unreachable blocks, etc). *)
add_cfg_simplification the_fpm;
ignore (PassManager.initialize the_fpm);
(* Run the main "interpreter loop" now. *)
Toplevel.main_loop the_fpm the_execution_engine stream;
(* Print out all the generated code. *)
dump_module Codegen.the_module
;;
main ()

View File

@ -0,0 +1,25 @@
##===- examples/OCaml-Kaleidoscope/Chapter6/Makefile -------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
#
# This is the makefile for the Objective Caml kaleidoscope tutorial, chapter 6.
#
##===----------------------------------------------------------------------===##
LEVEL := ../../..
TOOLNAME := OCaml-Kaleidoscope-Ch6
EXAMPLE_TOOL := 1
UsedComponents := core
UsedOcamLibs := llvm llvm_analysis llvm_executionengine llvm_target \
llvm_scalar_opts
OCAMLCFLAGS += -pp camlp4of
ExcludeSources = $(PROJ_SRC_DIR)/myocamlbuild.ml
include $(LEVEL)/bindings/ocaml/Makefile.ocaml

View File

@ -0,0 +1,4 @@
<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
<*.{byte,native}>: use_llvm_executionengine, use_llvm_target
<*.{byte,native}>: use_llvm_scalar_opts, use_bindings

View File

@ -0,0 +1,36 @@
(*===----------------------------------------------------------------------===
* Abstract Syntax Tree (aka Parse Tree)
*===----------------------------------------------------------------------===*)
(* expr - Base type for all expression nodes. *)
type expr =
(* variant for numeric literals like "1.0". *)
| Number of float
(* variant for referencing a variable, like "a". *)
| Variable of string
(* variant for a unary operator. *)
| Unary of char * expr
(* variant for a binary operator. *)
| Binary of char * expr * expr
(* variant for function calls. *)
| Call of string * expr array
(* variant for if/then/else. *)
| If of expr * expr * expr
(* variant for for/in. *)
| For of string * expr * expr * expr option * expr
(* proto - This type represents the "prototype" for a function, which captures
* its name, and its argument names (thus implicitly the number of arguments the
* function takes). *)
type proto =
| Prototype of string * string array
| BinOpPrototype of string * string array * int
(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

View File

@ -0,0 +1,13 @@
#include <stdio.h>
/* putchard - putchar that takes a double and returns 0. */
extern double putchard(double X) {
putchar((char)X);
return 0;
}
/* printd - printf that takes a double prints it as "%f\n", returning 0. */
extern double printd(double X) {
printf("%f\n", X);
return 0;
}

View File

@ -0,0 +1,251 @@
(*===----------------------------------------------------------------------===
* Code Generation
*===----------------------------------------------------------------------===*)
open Llvm
exception Error of string
let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context
let rec codegen_expr = function
| Ast.Number n -> const_float double_type n
| Ast.Variable name ->
(try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name"))
| Ast.Unary (op, operand) ->
let operand = codegen_expr operand in
let callee = "unary" ^ (String.make 1 op) in
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown unary operator")
in
build_call callee [|operand|] "unop" builder
| Ast.Binary (op, lhs, rhs) ->
let lhs_val = codegen_expr lhs in
let rhs_val = codegen_expr rhs in
begin
match op with
| '+' -> build_add lhs_val rhs_val "addtmp" builder
| '-' -> build_sub lhs_val rhs_val "subtmp" builder
| '*' -> build_mul lhs_val rhs_val "multmp" builder
| '<' ->
(* Convert bool 0/1 to double 0.0 or 1.0 *)
let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
build_uitofp i double_type "booltmp" builder
| _ ->
(* If it wasn't a builtin binary operator, it must be a user defined
* one. Emit a call to it. *)
let callee = "binary" ^ (String.make 1 op) in
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "binary operator not found!")
in
build_call callee [|lhs_val; rhs_val|] "binop" builder
end
| Ast.Call (callee, args) ->
(* Look up the name in the module table. *)
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown function referenced")
in
let params = params callee in
(* If argument mismatch error. *)
if Array.length params == Array.length args then () else
raise (Error "incorrect # arguments passed");
let args = Array.map codegen_expr args in
build_call callee args "calltmp" builder
| Ast.If (cond, then_, else_) ->
let cond = codegen_expr cond in
(* Convert condition to a bool by comparing equal to 0.0 *)
let zero = const_float double_type 0.0 in
let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
(* Grab the first block so that we might later add the conditional branch
* to it at the end of the function. *)
let start_bb = insertion_block builder in
let the_function = block_parent start_bb in
let then_bb = append_block context "then" the_function in
(* Emit 'then' value. *)
position_at_end then_bb builder;
let then_val = codegen_expr then_ in
(* Codegen of 'then' can change the current block, update then_bb for the
* phi. We create a new name because one is used for the phi node, and the
* other is used for the conditional branch. *)
let new_then_bb = insertion_block builder in
(* Emit 'else' value. *)
let else_bb = append_block context "else" the_function in
position_at_end else_bb builder;
let else_val = codegen_expr else_ in
(* Codegen of 'else' can change the current block, update else_bb for the
* phi. *)
let new_else_bb = insertion_block builder in
(* Emit merge block. *)
let merge_bb = append_block context "ifcont" the_function in
position_at_end merge_bb builder;
let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
let phi = build_phi incoming "iftmp" builder in
(* Return to the start block to add the conditional branch. *)
position_at_end start_bb builder;
ignore (build_cond_br cond_val then_bb else_bb builder);
(* Set a unconditional branch at the end of the 'then' block and the
* 'else' block to the 'merge' block. *)
position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
(* Finally, set the builder to the end of the merge block. *)
position_at_end merge_bb builder;
phi
| Ast.For (var_name, start, end_, step, body) ->
(* Emit the start code first, without 'variable' in scope. *)
let start_val = codegen_expr start in
(* Make the new basic block for the loop header, inserting after current
* block. *)
let preheader_bb = insertion_block builder in
let the_function = block_parent preheader_bb in
let loop_bb = append_block context "loop" the_function in
(* Insert an explicit fall through from the current block to the
* loop_bb. *)
ignore (build_br loop_bb builder);
(* Start insertion in loop_bb. *)
position_at_end loop_bb builder;
(* Start the PHI node with an entry for start. *)
let variable = build_phi [(start_val, preheader_bb)] var_name builder in
(* Within the loop, the variable is defined equal to the PHI node. If it
* shadows an existing variable, we have to restore it, so save it
* now. *)
let old_val =
try Some (Hashtbl.find named_values var_name) with Not_found -> None
in
Hashtbl.add named_values var_name variable;
(* Emit the body of the loop. This, like any other expr, can change the
* current BB. Note that we ignore the value computed by the body, but
* don't allow an error *)
ignore (codegen_expr body);
(* Emit the step value. *)
let step_val =
match step with
| Some step -> codegen_expr step
(* If not specified, use 1.0. *)
| None -> const_float double_type 1.0
in
let next_var = build_add variable step_val "nextvar" builder in
(* Compute the end condition. *)
let end_cond = codegen_expr end_ in
(* Convert condition to a bool by comparing equal to 0.0. *)
let zero = const_float double_type 0.0 in
let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
(* Create the "after loop" block and insert it. *)
let loop_end_bb = insertion_block builder in
let after_bb = append_block context "afterloop" the_function in
(* Insert the conditional branch into the end of loop_end_bb. *)
ignore (build_cond_br end_cond loop_bb after_bb builder);
(* Any new code will be inserted in after_bb. *)
position_at_end after_bb builder;
(* Add a new entry to the PHI node for the backedge. *)
add_incoming (next_var, loop_end_bb) variable;
(* Restore the unshadowed variable. *)
begin match old_val with
| Some old_val -> Hashtbl.add named_values var_name old_val
| None -> ()
end;
(* for expr always returns 0.0. *)
const_null double_type
let codegen_proto = function
| Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) ->
(* Make the function type: double(double,double) etc. *)
let doubles = Array.make (Array.length args) double_type in
let ft = function_type double_type doubles in
let f =
match lookup_function name the_module with
| None -> declare_function name ft the_module
(* If 'f' conflicted, there was already something named 'name'. If it
* has a body, don't allow redefinition or reextern. *)
| Some f ->
(* If 'f' already has a body, reject this. *)
if block_begin f <> At_end f then
raise (Error "redefinition of function");
(* If 'f' took a different number of arguments, reject. *)
if element_type (type_of f) <> ft then
raise (Error "redefinition of function with different # args");
f
in
(* Set names for all arguments. *)
Array.iteri (fun i a ->
let n = args.(i) in
set_value_name n a;
Hashtbl.add named_values n a;
) (params f);
f
let codegen_func the_fpm = function
| Ast.Function (proto, body) ->
Hashtbl.clear named_values;
let the_function = codegen_proto proto in
(* If this is an operator, install it. *)
begin match proto with
| Ast.BinOpPrototype (name, args, prec) ->
let op = name.[String.length name - 1] in
Hashtbl.add Parser.binop_precedence op prec;
| _ -> ()
end;
(* Create a new basic block to start insertion into. *)
let bb = append_block context "entry" the_function in
position_at_end bb builder;
try
let ret_val = codegen_expr body in
(* Finish off the function. *)
let _ = build_ret ret_val builder in
(* Validate the generated code, checking for consistency. *)
Llvm_analysis.assert_valid_function the_function;
(* Optimize the function. *)
let _ = PassManager.run_function the_function the_fpm in
the_function
with e ->
delete_function the_function;
raise e

View File

@ -0,0 +1,59 @@
(*===----------------------------------------------------------------------===
* Lexer
*===----------------------------------------------------------------------===*)
let rec lex = parser
(* Skip any whitespace. *)
| [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
(* identifier: [a-zA-Z][a-zA-Z0-9] *)
| [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_ident buffer stream
(* number: [0-9.]+ *)
| [< ' ('0' .. '9' as c); stream >] ->
let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_number buffer stream
(* Comment until end of line. *)
| [< ' ('#'); stream >] ->
lex_comment stream
(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->
[< 'Token.Kwd c; lex stream >]
(* end of stream. *)
| [< >] -> [< >]
and lex_number buffer = parser
| [< ' ('0' .. '9' | '.' as c); stream >] ->
Buffer.add_char buffer c;
lex_number buffer stream
| [< stream=lex >] ->
[< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
and lex_ident buffer = parser
| [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
Buffer.add_char buffer c;
lex_ident buffer stream
| [< stream=lex >] ->
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| "if" -> [< 'Token.If; stream >]
| "then" -> [< 'Token.Then; stream >]
| "else" -> [< 'Token.Else; stream >]
| "for" -> [< 'Token.For; stream >]
| "in" -> [< 'Token.In; stream >]
| "binary" -> [< 'Token.Binary; stream >]
| "unary" -> [< 'Token.Unary; stream >]
| id -> [< 'Token.Ident id; stream >]
and lex_comment = parser
| [< ' ('\n'); stream=lex >] -> stream
| [< 'c; e=lex_comment >] -> e
| [< >] -> [< >]

View File

@ -0,0 +1,10 @@
open Ocamlbuild_plugin;;
ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;
ocaml_lib ~extern:true "llvm_executionengine";;
ocaml_lib ~extern:true "llvm_target";;
ocaml_lib ~extern:true "llvm_scalar_opts";;
flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;

View File

@ -0,0 +1,195 @@
(*===---------------------------------------------------------------------===
* Parser
*===---------------------------------------------------------------------===*)
(* binop_precedence - This holds the precedence for each binary operator that is
* defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
(* primary
* ::= identifier
* ::= numberexpr
* ::= parenexpr
* ::= ifexpr
* ::= forexpr *)
let rec parse_primary = parser
(* numberexpr ::= number *)
| [< 'Token.Number n >] -> Ast.Number n
(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
(* identifierexpr
* ::= identifier
* ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->
let rec parse_args accumulator = parser
| [< e=parse_expr; stream >] ->
begin parser
| [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
| [< >] -> e :: accumulator
end stream
| [< >] -> accumulator
in
let rec parse_ident id = parser
(* Call. *)
| [< 'Token.Kwd '(';
args=parse_args [];
'Token.Kwd ')' ?? "expected ')'">] ->
Ast.Call (id, Array.of_list (List.rev args))
(* Simple variable ref. *)
| [< >] -> Ast.Variable id
in
parse_ident id stream
(* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
| [< 'Token.If; c=parse_expr;
'Token.Then ?? "expected 'then'"; t=parse_expr;
'Token.Else ?? "expected 'else'"; e=parse_expr >] ->
Ast.If (c, t, e)
(* forexpr
::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
| [< 'Token.For;
'Token.Ident id ?? "expected identifier after for";
'Token.Kwd '=' ?? "expected '=' after for";
stream >] ->
begin parser
| [<
start=parse_expr;
'Token.Kwd ',' ?? "expected ',' after for";
end_=parse_expr;
stream >] ->
let step =
begin parser
| [< 'Token.Kwd ','; step=parse_expr >] -> Some step
| [< >] -> None
end stream
in
begin parser
| [< 'Token.In; body=parse_expr >] ->
Ast.For (id, start, end_, step, body)
| [< >] ->
raise (Stream.Error "expected 'in' after for")
end stream
| [< >] ->
raise (Stream.Error "expected '=' after for")
end stream
| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
(* unary
* ::= primary
* ::= '!' unary *)
and parse_unary = parser
(* If this is a unary operator, read it. *)
| [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] ->
Ast.Unary (op, operand)
(* If the current token is not an operator, it must be a primary expr. *)
| [< stream >] -> parse_primary stream
(* binoprhs
* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
match Stream.peek stream with
(* If this is a binop, find its precedence. *)
| Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
let token_prec = precedence c in
(* If this is a binop that binds at least as tightly as the current binop,
* consume it, otherwise we are done. *)
if token_prec < expr_prec then lhs else begin
(* Eat the binop. *)
Stream.junk stream;
(* Parse the unary expression after the binary operator. *)
let rhs = parse_unary stream in
(* Okay, we know this is a binop. *)
let rhs =
match Stream.peek stream with
| Some (Token.Kwd c2) ->
(* If BinOp binds less tightly with rhs than the operator after
* rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec
then parse_bin_rhs (token_prec + 1) rhs stream
else rhs
| _ -> rhs
in
(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
parse_bin_rhs expr_prec lhs stream
end
| _ -> lhs
(* expression
* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream
(* prototype
* ::= id '(' id* ')'
* ::= binary LETTER number? (id, id)
* ::= unary LETTER number? (id) *)
let parse_prototype =
let rec parse_args accumulator = parser
| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator
in
let parse_operator = parser
| [< 'Token.Unary >] -> "unary", 1
| [< 'Token.Binary >] -> "binary", 2
in
let parse_binary_precedence = parser
| [< 'Token.Number n >] -> int_of_float n
| [< >] -> 30
in
parser
| [< 'Token.Ident id;
'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))
| [< (prefix, kind)=parse_operator;
'Token.Kwd op ?? "expected an operator";
(* Read the precedence if present. *)
binary_precedence=parse_binary_precedence;
'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
let name = prefix ^ (String.make 1 op) in
let args = Array.of_list (List.rev args) in
(* Verify right number of arguments for operator. *)
if Array.length args != kind
then raise (Stream.Error "invalid number of operands for operator")
else
if kind == 1 then
Ast.Prototype (name, args)
else
Ast.BinOpPrototype (name, args, binary_precedence)
| [< >] ->
raise (Stream.Error "expected function name in prototype")
(* definition ::= 'def' prototype expression *)
let parse_definition = parser
| [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
Ast.Function (p, e)
(* toplevelexpr ::= expression *)
let parse_toplevel = parser
| [< e=parse_expr >] ->
(* Make an anonymous proto. *)
Ast.Function (Ast.Prototype ("", [||]), e)
(* external ::= 'extern' prototype *)
let parse_extern = parser
| [< 'Token.Extern; e=parse_prototype >] -> e

View File

@ -0,0 +1,22 @@
(*===----------------------------------------------------------------------===
* Lexer Tokens
*===----------------------------------------------------------------------===*)
(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
* these others for known things. *)
type token =
(* commands *)
| Def | Extern
(* primary *)
| Ident of string | Number of float
(* unknown *)
| Kwd of char
(* control *)
| If | Then | Else
| For | In
(* operators *)
| Binary | Unary

View File

@ -0,0 +1,49 @@
(*===----------------------------------------------------------------------===
* Top-Level parsing and JIT Driver
*===----------------------------------------------------------------------===*)
open Llvm
open Llvm_executionengine
(* top ::= definition | external | expression | ';' *)
let rec main_loop the_fpm the_execution_engine stream =
match Stream.peek stream with
| None -> ()
(* ignore top-level semicolons. *)
| Some (Token.Kwd ';') ->
Stream.junk stream;
main_loop the_fpm the_execution_engine stream
| Some token ->
begin
try match token with
| Token.Def ->
let e = Parser.parse_definition stream in
print_endline "parsed a function definition.";
dump_value (Codegen.codegen_func the_fpm e);
| Token.Extern ->
let e = Parser.parse_extern stream in
print_endline "parsed an extern.";
dump_value (Codegen.codegen_proto e);
| _ ->
(* Evaluate a top-level expression into an anonymous function. *)
let e = Parser.parse_toplevel stream in
print_endline "parsed a top-level expr";
let the_function = Codegen.codegen_func the_fpm e in
dump_value the_function;
(* JIT the function, returning a function pointer. *)
let result = ExecutionEngine.run_function the_function [||]
the_execution_engine in
print_string "Evaluated to ";
print_float (GenericValue.as_float Codegen.double_type result);
print_newline ();
with Stream.Error s | Codegen.Error s ->
(* Skip token for error recovery. *)
Stream.junk stream;
print_endline s;
end;
print_string "ready> "; flush stdout;
main_loop the_fpm the_execution_engine stream

View File

@ -0,0 +1,53 @@
(*===----------------------------------------------------------------------===
* Main driver code.
*===----------------------------------------------------------------------===*)
open Llvm
open Llvm_executionengine
open Llvm_target
open Llvm_scalar_opts
let main () =
ignore (initialize_native_target ());
(* Install standard binary operators.
* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
(* Prime the first token. *)
print_string "ready> "; flush stdout;
let stream = Lexer.lex (Stream.of_channel stdin) in
(* Create the JIT. *)
let the_execution_engine = ExecutionEngine.create Codegen.the_module in
let the_fpm = PassManager.create_function Codegen.the_module in
(* Set up the optimizer pipeline. Start with registering info about how the
* target lays out data structures. *)
TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
(* Do simple "peephole" optimizations and bit-twiddling optzn. *)
add_instruction_combination the_fpm;
(* reassociate expressions. *)
add_reassociation the_fpm;
(* Eliminate Common SubExpressions. *)
add_gvn the_fpm;
(* Simplify the control flow graph (deleting unreachable blocks, etc). *)
add_cfg_simplification the_fpm;
ignore (PassManager.initialize the_fpm);
(* Run the main "interpreter loop" now. *)
Toplevel.main_loop the_fpm the_execution_engine stream;
(* Print out all the generated code. *)
dump_module Codegen.the_module
;;
main ()

View File

@ -0,0 +1,25 @@
##===- examples/OCaml-Kaleidoscope/Chapter7/Makefile -------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
#
# This is the makefile for the Objective Caml kaleidoscope tutorial, chapter 7.
#
##===----------------------------------------------------------------------===##
LEVEL := ../../..
TOOLNAME := OCaml-Kaleidoscope-Ch7
EXAMPLE_TOOL := 1
UsedComponents := core
UsedOcamLibs := llvm llvm_analysis llvm_executionengine llvm_target \
llvm_scalar_opts
OCAMLCFLAGS += -pp camlp4of
ExcludeSources = $(PROJ_SRC_DIR)/myocamlbuild.ml
include $(LEVEL)/bindings/ocaml/Makefile.ocaml

View File

@ -0,0 +1,4 @@
<{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
<*.{byte,native}>: g++, use_llvm, use_llvm_analysis
<*.{byte,native}>: use_llvm_executionengine, use_llvm_target
<*.{byte,native}>: use_llvm_scalar_opts, use_bindings

View File

@ -0,0 +1,39 @@
(*===----------------------------------------------------------------------===
* Abstract Syntax Tree (aka Parse Tree)
*===----------------------------------------------------------------------===*)
(* expr - Base type for all expression nodes. *)
type expr =
(* variant for numeric literals like "1.0". *)
| Number of float
(* variant for referencing a variable, like "a". *)
| Variable of string
(* variant for a unary operator. *)
| Unary of char * expr
(* variant for a binary operator. *)
| Binary of char * expr * expr
(* variant for function calls. *)
| Call of string * expr array
(* variant for if/then/else. *)
| If of expr * expr * expr
(* variant for for/in. *)
| For of string * expr * expr * expr option * expr
(* variant for var/in. *)
| Var of (string * expr option) array * expr
(* proto - This type represents the "prototype" for a function, which captures
* its name, and its argument names (thus implicitly the number of arguments the
* function takes). *)
type proto =
| Prototype of string * string array
| BinOpPrototype of string * string array * int
(* func - This type represents a function definition itself. *)
type func = Function of proto * expr

View File

@ -0,0 +1,13 @@
#include <stdio.h>
/* putchard - putchar that takes a double and returns 0. */
extern double putchard(double X) {
putchar((char)X);
return 0;
}
/* printd - printf that takes a double prints it as "%f\n", returning 0. */
extern double printd(double X) {
printf("%f\n", X);
return 0;
}

View File

@ -0,0 +1,370 @@
(*===----------------------------------------------------------------------===
* Code Generation
*===----------------------------------------------------------------------===*)
open Llvm
exception Error of string
let context = global_context ()
let the_module = create_module context "my cool jit"
let builder = builder context
let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
let double_type = double_type context
(* Create an alloca instruction in the entry block of the function. This
* is used for mutable variables etc. *)
let create_entry_block_alloca the_function var_name =
let builder = builder_at context (instr_begin (entry_block the_function)) in
build_alloca double_type var_name builder
let rec codegen_expr = function
| Ast.Number n -> const_float double_type n
| Ast.Variable name ->
let v = try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name")
in
(* Load the value. *)
build_load v name builder
| Ast.Unary (op, operand) ->
let operand = codegen_expr operand in
let callee = "unary" ^ (String.make 1 op) in
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown unary operator")
in
build_call callee [|operand|] "unop" builder
| Ast.Binary (op, lhs, rhs) ->
begin match op with
| '=' ->
(* Special case '=' because we don't want to emit the LHS as an
* expression. *)
let name =
match lhs with
| Ast.Variable name -> name
| _ -> raise (Error "destination of '=' must be a variable")
in
(* Codegen the rhs. *)
let val_ = codegen_expr rhs in
(* Lookup the name. *)
let variable = try Hashtbl.find named_values name with
| Not_found -> raise (Error "unknown variable name")
in
ignore(build_store val_ variable builder);
val_
| _ ->
let lhs_val = codegen_expr lhs in
let rhs_val = codegen_expr rhs in
begin
match op with
| '+' -> build_add lhs_val rhs_val "addtmp" builder
| '-' -> build_sub lhs_val rhs_val "subtmp" builder
| '*' -> build_mul lhs_val rhs_val "multmp" builder
| '<' ->
(* Convert bool 0/1 to double 0.0 or 1.0 *)
let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
build_uitofp i double_type "booltmp" builder
| _ ->
(* If it wasn't a builtin binary operator, it must be a user defined
* one. Emit a call to it. *)
let callee = "binary" ^ (String.make 1 op) in
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "binary operator not found!")
in
build_call callee [|lhs_val; rhs_val|] "binop" builder
end
end
| Ast.Call (callee, args) ->
(* Look up the name in the module table. *)
let callee =
match lookup_function callee the_module with
| Some callee -> callee
| None -> raise (Error "unknown function referenced")
in
let params = params callee in
(* If argument mismatch error. *)
if Array.length params == Array.length args then () else
raise (Error "incorrect # arguments passed");
let args = Array.map codegen_expr args in
build_call callee args "calltmp" builder
| Ast.If (cond, then_, else_) ->
let cond = codegen_expr cond in
(* Convert condition to a bool by comparing equal to 0.0 *)
let zero = const_float double_type 0.0 in
let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
(* Grab the first block so that we might later add the conditional branch
* to it at the end of the function. *)
let start_bb = insertion_block builder in
let the_function = block_parent start_bb in
let then_bb = append_block context "then" the_function in
(* Emit 'then' value. *)
position_at_end then_bb builder;
let then_val = codegen_expr then_ in
(* Codegen of 'then' can change the current block, update then_bb for the
* phi. We create a new name because one is used for the phi node, and the
* other is used for the conditional branch. *)
let new_then_bb = insertion_block builder in
(* Emit 'else' value. *)
let else_bb = append_block context "else" the_function in
position_at_end else_bb builder;
let else_val = codegen_expr else_ in
(* Codegen of 'else' can change the current block, update else_bb for the
* phi. *)
let new_else_bb = insertion_block builder in
(* Emit merge block. *)
let merge_bb = append_block context "ifcont" the_function in
position_at_end merge_bb builder;
let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
let phi = build_phi incoming "iftmp" builder in
(* Return to the start block to add the conditional branch. *)
position_at_end start_bb builder;
ignore (build_cond_br cond_val then_bb else_bb builder);
(* Set a unconditional branch at the end of the 'then' block and the
* 'else' block to the 'merge' block. *)
position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
(* Finally, set the builder to the end of the merge block. *)
position_at_end merge_bb builder;
phi
| Ast.For (var_name, start, end_, step, body) ->
(* Output this as:
* var = alloca double
* ...
* start = startexpr
* store start -> var
* goto loop
* loop:
* ...
* bodyexpr
* ...
* loopend:
* step = stepexpr
* endcond = endexpr
*
* curvar = load var
* nextvar = curvar + step
* store nextvar -> var
* br endcond, loop, endloop
* outloop: *)
let the_function = block_parent (insertion_block builder) in
(* Create an alloca for the variable in the entry block. *)
let alloca = create_entry_block_alloca the_function var_name in
(* Emit the start code first, without 'variable' in scope. *)
let start_val = codegen_expr start in
(* Store the value into the alloca. *)
ignore(build_store start_val alloca builder);
(* Make the new basic block for the loop header, inserting after current
* block. *)
let loop_bb = append_block context "loop" the_function in
(* Insert an explicit fall through from the current block to the
* loop_bb. *)
ignore (build_br loop_bb builder);
(* Start insertion in loop_bb. *)
position_at_end loop_bb builder;
(* Within the loop, the variable is defined equal to the PHI node. If it
* shadows an existing variable, we have to restore it, so save it
* now. *)
let old_val =
try Some (Hashtbl.find named_values var_name) with Not_found -> None
in
Hashtbl.add named_values var_name alloca;
(* Emit the body of the loop. This, like any other expr, can change the
* current BB. Note that we ignore the value computed by the body, but
* don't allow an error *)
ignore (codegen_expr body);
(* Emit the step value. *)
let step_val =
match step with
| Some step -> codegen_expr step
(* If not specified, use 1.0. *)
| None -> const_float double_type 1.0
in
(* Compute the end condition. *)
let end_cond = codegen_expr end_ in
(* Reload, increment, and restore the alloca. This handles the case where
* the body of the loop mutates the variable. *)
let cur_var = build_load alloca var_name builder in
let next_var = build_add cur_var step_val "nextvar" builder in
ignore(build_store next_var alloca builder);
(* Convert condition to a bool by comparing equal to 0.0. *)
let zero = const_float double_type 0.0 in
let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
(* Create the "after loop" block and insert it. *)
let after_bb = append_block context "afterloop" the_function in
(* Insert the conditional branch into the end of loop_end_bb. *)
ignore (build_cond_br end_cond loop_bb after_bb builder);
(* Any new code will be inserted in after_bb. *)
position_at_end after_bb builder;
(* Restore the unshadowed variable. *)
begin match old_val with
| Some old_val -> Hashtbl.add named_values var_name old_val
| None -> ()
end;
(* for expr always returns 0.0. *)
const_null double_type
| Ast.Var (var_names, body) ->
let old_bindings = ref [] in
let the_function = block_parent (insertion_block builder) in
(* Register all variables and emit their initializer. *)
Array.iter (fun (var_name, init) ->
(* Emit the initializer before adding the variable to scope, this
* prevents the initializer from referencing the variable itself, and
* permits stuff like this:
* var a = 1 in
* var a = a in ... # refers to outer 'a'. *)
let init_val =
match init with
| Some init -> codegen_expr init
(* If not specified, use 0.0. *)
| None -> const_float double_type 0.0
in
let alloca = create_entry_block_alloca the_function var_name in
ignore(build_store init_val alloca builder);
(* Remember the old variable binding so that we can restore the binding
* when we unrecurse. *)
begin
try
let old_value = Hashtbl.find named_values var_name in
old_bindings := (var_name, old_value) :: !old_bindings;
with Not_found -> ()
end;
(* Remember this binding. *)
Hashtbl.add named_values var_name alloca;
) var_names;
(* Codegen the body, now that all vars are in scope. *)
let body_val = codegen_expr body in
(* Pop all our variables from scope. *)
List.iter (fun (var_name, old_value) ->
Hashtbl.add named_values var_name old_value
) !old_bindings;
(* Return the body computation. *)
body_val
let codegen_proto = function
| Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) ->
(* Make the function type: double(double,double) etc. *)
let doubles = Array.make (Array.length args) double_type in
let ft = function_type double_type doubles in
let f =
match lookup_function name the_module with
| None -> declare_function name ft the_module
(* If 'f' conflicted, there was already something named 'name'. If it
* has a body, don't allow redefinition or reextern. *)
| Some f ->
(* If 'f' already has a body, reject this. *)
if block_begin f <> At_end f then
raise (Error "redefinition of function");
(* If 'f' took a different number of arguments, reject. *)
if element_type (type_of f) <> ft then
raise (Error "redefinition of function with different # args");
f
in
(* Set names for all arguments. *)
Array.iteri (fun i a ->
let n = args.(i) in
set_value_name n a;
Hashtbl.add named_values n a;
) (params f);
f
(* Create an alloca for each argument and register the argument in the symbol
* table so that references to it will succeed. *)
let create_argument_allocas the_function proto =
let args = match proto with
| Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -> args
in
Array.iteri (fun i ai ->
let var_name = args.(i) in
(* Create an alloca for this variable. *)
let alloca = create_entry_block_alloca the_function var_name in
(* Store the initial value into the alloca. *)
ignore(build_store ai alloca builder);
(* Add arguments to variable symbol table. *)
Hashtbl.add named_values var_name alloca;
) (params the_function)
let codegen_func the_fpm = function
| Ast.Function (proto, body) ->
Hashtbl.clear named_values;
let the_function = codegen_proto proto in
(* If this is an operator, install it. *)
begin match proto with
| Ast.BinOpPrototype (name, args, prec) ->
let op = name.[String.length name - 1] in
Hashtbl.add Parser.binop_precedence op prec;
| _ -> ()
end;
(* Create a new basic block to start insertion into. *)
let bb = append_block context "entry" the_function in
position_at_end bb builder;
try
(* Add all arguments to the symbol table and create their allocas. *)
create_argument_allocas the_function proto;
let ret_val = codegen_expr body in
(* Finish off the function. *)
let _ = build_ret ret_val builder in
(* Validate the generated code, checking for consistency. *)
Llvm_analysis.assert_valid_function the_function;
(* Optimize the function. *)
let _ = PassManager.run_function the_function the_fpm in
the_function
with e ->
delete_function the_function;
raise e

View File

@ -0,0 +1,60 @@
(*===----------------------------------------------------------------------===
* Lexer
*===----------------------------------------------------------------------===*)
let rec lex = parser
(* Skip any whitespace. *)
| [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
(* identifier: [a-zA-Z][a-zA-Z0-9] *)
| [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_ident buffer stream
(* number: [0-9.]+ *)
| [< ' ('0' .. '9' as c); stream >] ->
let buffer = Buffer.create 1 in
Buffer.add_char buffer c;
lex_number buffer stream
(* Comment until end of line. *)
| [< ' ('#'); stream >] ->
lex_comment stream
(* Otherwise, just return the character as its ascii value. *)
| [< 'c; stream >] ->
[< 'Token.Kwd c; lex stream >]
(* end of stream. *)
| [< >] -> [< >]
and lex_number buffer = parser
| [< ' ('0' .. '9' | '.' as c); stream >] ->
Buffer.add_char buffer c;
lex_number buffer stream
| [< stream=lex >] ->
[< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
and lex_ident buffer = parser
| [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
Buffer.add_char buffer c;
lex_ident buffer stream
| [< stream=lex >] ->
match Buffer.contents buffer with
| "def" -> [< 'Token.Def; stream >]
| "extern" -> [< 'Token.Extern; stream >]
| "if" -> [< 'Token.If; stream >]
| "then" -> [< 'Token.Then; stream >]
| "else" -> [< 'Token.Else; stream >]
| "for" -> [< 'Token.For; stream >]
| "in" -> [< 'Token.In; stream >]
| "binary" -> [< 'Token.Binary; stream >]
| "unary" -> [< 'Token.Unary; stream >]
| "var" -> [< 'Token.Var; stream >]
| id -> [< 'Token.Ident id; stream >]
and lex_comment = parser
| [< ' ('\n'); stream=lex >] -> stream
| [< 'c; e=lex_comment >] -> e
| [< >] -> [< >]

View File

@ -0,0 +1,10 @@
open Ocamlbuild_plugin;;
ocaml_lib ~extern:true "llvm";;
ocaml_lib ~extern:true "llvm_analysis";;
ocaml_lib ~extern:true "llvm_executionengine";;
ocaml_lib ~extern:true "llvm_target";;
ocaml_lib ~extern:true "llvm_scalar_opts";;
flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;

View File

@ -0,0 +1,221 @@
(*===---------------------------------------------------------------------===
* Parser
*===---------------------------------------------------------------------===*)
(* binop_precedence - This holds the precedence for each binary operator that is
* defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
(* primary
* ::= identifier
* ::= numberexpr
* ::= parenexpr
* ::= ifexpr
* ::= forexpr
* ::= varexpr *)
let rec parse_primary = parser
(* numberexpr ::= number *)
| [< 'Token.Number n >] -> Ast.Number n
(* parenexpr ::= '(' expression ')' *)
| [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
(* identifierexpr
* ::= identifier
* ::= identifier '(' argumentexpr ')' *)
| [< 'Token.Ident id; stream >] ->
let rec parse_args accumulator = parser
| [< e=parse_expr; stream >] ->
begin parser
| [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
| [< >] -> e :: accumulator
end stream
| [< >] -> accumulator
in
let rec parse_ident id = parser
(* Call. *)
| [< 'Token.Kwd '(';
args=parse_args [];
'Token.Kwd ')' ?? "expected ')'">] ->
Ast.Call (id, Array.of_list (List.rev args))
(* Simple variable ref. *)
| [< >] -> Ast.Variable id
in
parse_ident id stream
(* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
| [< 'Token.If; c=parse_expr;
'Token.Then ?? "expected 'then'"; t=parse_expr;
'Token.Else ?? "expected 'else'"; e=parse_expr >] ->
Ast.If (c, t, e)
(* forexpr
::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
| [< 'Token.For;
'Token.Ident id ?? "expected identifier after for";
'Token.Kwd '=' ?? "expected '=' after for";
stream >] ->
begin parser
| [<
start=parse_expr;
'Token.Kwd ',' ?? "expected ',' after for";
end_=parse_expr;
stream >] ->
let step =
begin parser
| [< 'Token.Kwd ','; step=parse_expr >] -> Some step
| [< >] -> None
end stream
in
begin parser
| [< 'Token.In; body=parse_expr >] ->
Ast.For (id, start, end_, step, body)
| [< >] ->
raise (Stream.Error "expected 'in' after for")
end stream
| [< >] ->
raise (Stream.Error "expected '=' after for")
end stream
(* varexpr
* ::= 'var' identifier ('=' expression?
* (',' identifier ('=' expression)?)* 'in' expression *)
| [< 'Token.Var;
(* At least one variable name is required. *)
'Token.Ident id ?? "expected identifier after var";
init=parse_var_init;
var_names=parse_var_names [(id, init)];
(* At this point, we have to have 'in'. *)
'Token.In ?? "expected 'in' keyword after 'var'";
body=parse_expr >] ->
Ast.Var (Array.of_list (List.rev var_names), body)
| [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
(* unary
* ::= primary
* ::= '!' unary *)
and parse_unary = parser
(* If this is a unary operator, read it. *)
| [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] ->
Ast.Unary (op, operand)
(* If the current token is not an operator, it must be a primary expr. *)
| [< stream >] -> parse_primary stream
(* binoprhs
* ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
match Stream.peek stream with
(* If this is a binop, find its precedence. *)
| Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
let token_prec = precedence c in
(* If this is a binop that binds at least as tightly as the current binop,
* consume it, otherwise we are done. *)
if token_prec < expr_prec then lhs else begin
(* Eat the binop. *)
Stream.junk stream;
(* Parse the primary expression after the binary operator. *)
let rhs = parse_unary stream in
(* Okay, we know this is a binop. *)
let rhs =
match Stream.peek stream with
| Some (Token.Kwd c2) ->
(* If BinOp binds less tightly with rhs than the operator after
* rhs, let the pending operator take rhs as its lhs. *)
let next_prec = precedence c2 in
if token_prec < next_prec
then parse_bin_rhs (token_prec + 1) rhs stream
else rhs
| _ -> rhs
in
(* Merge lhs/rhs. *)
let lhs = Ast.Binary (c, lhs, rhs) in
parse_bin_rhs expr_prec lhs stream
end
| _ -> lhs
and parse_var_init = parser
(* read in the optional initializer. *)
| [< 'Token.Kwd '='; e=parse_expr >] -> Some e
| [< >] -> None
and parse_var_names accumulator = parser
| [< 'Token.Kwd ',';
'Token.Ident id ?? "expected identifier list after var";
init=parse_var_init;
e=parse_var_names ((id, init) :: accumulator) >] -> e
| [< >] -> accumulator
(* expression
* ::= primary binoprhs *)
and parse_expr = parser
| [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream
(* prototype
* ::= id '(' id* ')'
* ::= binary LETTER number? (id, id)
* ::= unary LETTER number? (id) *)
let parse_prototype =
let rec parse_args accumulator = parser
| [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
| [< >] -> accumulator
in
let parse_operator = parser
| [< 'Token.Unary >] -> "unary", 1
| [< 'Token.Binary >] -> "binary", 2
in
let parse_binary_precedence = parser
| [< 'Token.Number n >] -> int_of_float n
| [< >] -> 30
in
parser
| [< 'Token.Ident id;
'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
(* success. *)
Ast.Prototype (id, Array.of_list (List.rev args))
| [< (prefix, kind)=parse_operator;
'Token.Kwd op ?? "expected an operator";
(* Read the precedence if present. *)
binary_precedence=parse_binary_precedence;
'Token.Kwd '(' ?? "expected '(' in prototype";
args=parse_args [];
'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
let name = prefix ^ (String.make 1 op) in
let args = Array.of_list (List.rev args) in
(* Verify right number of arguments for operator. *)
if Array.length args != kind
then raise (Stream.Error "invalid number of operands for operator")
else
if kind == 1 then
Ast.Prototype (name, args)
else
Ast.BinOpPrototype (name, args, binary_precedence)
| [< >] ->
raise (Stream.Error "expected function name in prototype")
(* definition ::= 'def' prototype expression *)
let parse_definition = parser
| [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
Ast.Function (p, e)
(* toplevelexpr ::= expression *)
let parse_toplevel = parser
| [< e=parse_expr >] ->
(* Make an anonymous proto. *)
Ast.Function (Ast.Prototype ("", [||]), e)
(* external ::= 'extern' prototype *)
let parse_extern = parser
| [< 'Token.Extern; e=parse_prototype >] -> e

View File

@ -0,0 +1,25 @@
(*===----------------------------------------------------------------------===
* Lexer Tokens
*===----------------------------------------------------------------------===*)
(* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
* these others for known things. *)
type token =
(* commands *)
| Def | Extern
(* primary *)
| Ident of string | Number of float
(* unknown *)
| Kwd of char
(* control *)
| If | Then | Else
| For | In
(* operators *)
| Binary | Unary
(* var definition *)
| Var

View File

@ -0,0 +1,49 @@
(*===----------------------------------------------------------------------===
* Top-Level parsing and JIT Driver
*===----------------------------------------------------------------------===*)
open Llvm
open Llvm_executionengine
(* top ::= definition | external | expression | ';' *)
let rec main_loop the_fpm the_execution_engine stream =
match Stream.peek stream with
| None -> ()
(* ignore top-level semicolons. *)
| Some (Token.Kwd ';') ->
Stream.junk stream;
main_loop the_fpm the_execution_engine stream
| Some token ->
begin
try match token with
| Token.Def ->
let e = Parser.parse_definition stream in
print_endline "parsed a function definition.";
dump_value (Codegen.codegen_func the_fpm e);
| Token.Extern ->
let e = Parser.parse_extern stream in
print_endline "parsed an extern.";
dump_value (Codegen.codegen_proto e);
| _ ->
(* Evaluate a top-level expression into an anonymous function. *)
let e = Parser.parse_toplevel stream in
print_endline "parsed a top-level expr";
let the_function = Codegen.codegen_func the_fpm e in
dump_value the_function;
(* JIT the function, returning a function pointer. *)
let result = ExecutionEngine.run_function the_function [||]
the_execution_engine in
print_string "Evaluated to ";
print_float (GenericValue.as_float Codegen.double_type result);
print_newline ();
with Stream.Error s | Codegen.Error s ->
(* Skip token for error recovery. *)
Stream.junk stream;
print_endline s;
end;
print_string "ready> "; flush stdout;
main_loop the_fpm the_execution_engine stream

View File

@ -0,0 +1,57 @@
(*===----------------------------------------------------------------------===
* Main driver code.
*===----------------------------------------------------------------------===*)
open Llvm
open Llvm_executionengine
open Llvm_target
open Llvm_scalar_opts
let main () =
ignore (initialize_native_target ());
(* Install standard binary operators.
* 1 is the lowest precedence. *)
Hashtbl.add Parser.binop_precedence '=' 2;
Hashtbl.add Parser.binop_precedence '<' 10;
Hashtbl.add Parser.binop_precedence '+' 20;
Hashtbl.add Parser.binop_precedence '-' 20;
Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
(* Prime the first token. *)
print_string "ready> "; flush stdout;
let stream = Lexer.lex (Stream.of_channel stdin) in
(* Create the JIT. *)
let the_execution_engine = ExecutionEngine.create Codegen.the_module in
let the_fpm = PassManager.create_function Codegen.the_module in
(* Set up the optimizer pipeline. Start with registering info about how the
* target lays out data structures. *)
TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
(* Promote allocas to registers. *)
add_memory_to_register_promotion the_fpm;
(* Do simple "peephole" optimizations and bit-twiddling optzn. *)
add_instruction_combination the_fpm;
(* reassociate expressions. *)
add_reassociation the_fpm;
(* Eliminate Common SubExpressions. *)
add_gvn the_fpm;
(* Simplify the control flow graph (deleting unreachable blocks, etc). *)
add_cfg_simplification the_fpm;
ignore (PassManager.initialize the_fpm);
(* Run the main "interpreter loop" now. *)
Toplevel.main_loop the_fpm the_execution_engine stream;
(* Print out all the generated code. *)
dump_module Codegen.the_module
;;
main ()

View File

@ -0,0 +1,15 @@
##===- examples/OCaml-Kaleidoscope/Makefile ----------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
LEVEL=../..
include $(LEVEL)/Makefile.config
PARALLEL_DIRS:= Chapter2 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7
include $(LEVEL)/Makefile.common

View File

@ -79,6 +79,10 @@ void LLVMAddSCCPPass(LLVMPassManagerRef PM);
/** See llvm::createScalarReplAggregatesPass function. */
void LLVMAddScalarReplAggregatesPass(LLVMPassManagerRef PM);
/** See llvm::createScalarReplAggregatesPass function. */
void LLVMAddScalarReplAggregatesPassWithThreshold(LLVMPassManagerRef PM,
int Threshold);
/** See llvm::createSimplifyLibCallsPass function. */
void LLVMAddSimplifyLibCallsPass(LLVMPassManagerRef PM);
@ -91,6 +95,9 @@ void LLVMAddConstantPropagationPass(LLVMPassManagerRef PM);
/** See llvm::demotePromoteMemoryToRegisterPass function. */
void LLVMAddDemoteMemoryToRegisterPass(LLVMPassManagerRef PM);
/** See llvm::createVerifierPass function. */
void LLVMAddVerifierPass(LLVMPassManagerRef PM);
#ifdef __cplusplus
}
#endif /* defined(__cplusplus) */

View File

@ -279,6 +279,28 @@ static inline void array_pod_sort(IteratorTy Start, IteratorTy End,
qsort(&*Start, End-Start, sizeof(*Start), Compare);
}
//===----------------------------------------------------------------------===//
// Extra additions to <algorithm>
//===----------------------------------------------------------------------===//
/// For a container of pointers, deletes the pointers and then clears the
/// container.
template<typename Container>
void DeleteContainerPointers(Container &C) {
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
delete *I;
C.clear();
}
/// In a container of pairs (usually a map) whose second element is a pointer,
/// deletes the second elements and then clears the container.
template<typename Container>
void DeleteContainerSeconds(Container &C) {
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
delete I->second;
C.clear();
}
} // End llvm namespace
#endif

View File

@ -18,6 +18,7 @@
#include <climits>
#include <map>
#include <vector>
#include "llvm/ADT/DenseMap.h"
namespace llvm {
@ -42,6 +43,9 @@ namespace llvm {
/// is used to estimate the code size cost of inlining it.
unsigned NumInsts, NumBlocks;
/// NumBBInsts - Keeps track of basic block code size estimates.
DenseMap<const BasicBlock *, unsigned> NumBBInsts;
/// NumCalls - Keep track of the number of calls to 'big' functions.
unsigned NumCalls;

View File

@ -571,7 +571,7 @@ public:
unsigned getSmallConstantTripMultiple() const;
/// isLCSSAForm - Return true if the Loop is in LCSSA form
bool isLCSSAForm() const;
bool isLCSSAForm(DominatorTree &DT) const;
/// isLoopSimplifyForm - Return true if the Loop is in the form that
/// the LoopSimplify form transforms loops to, which is sometimes called

View File

@ -44,6 +44,9 @@ namespace CallingConv {
// call does not break any live ranges in the caller side.
Cold = 9,
// GHC - Calling convention used by the Glasgow Haskell Compiler (GHC).
GHC = 10,
// Target - This is the start of the target-specific calling conventions,
// e.g. fastcall and thiscall on X86.
FirstTargetCC = 64,

View File

@ -143,8 +143,7 @@ namespace llvm {
protected:
explicit AsmPrinter(formatted_raw_ostream &o, TargetMachine &TM,
MCContext &Ctx, MCStreamer &Streamer,
const MCAsmInfo *T);
MCStreamer &Streamer);
public:
virtual ~AsmPrinter();
@ -306,18 +305,10 @@ namespace llvm {
unsigned ForcedAlignBits = 0,
bool UseFillExpr = true) const;
/// printLabel - This method prints a local label used by debug and
/// exception handling tables.
void printLabel(unsigned Id) const;
/// printDeclare - This method prints a local variable declaration used by
/// debug tables.
void printDeclare(const MachineInstr *MI) const;
/// GetGlobalValueSymbol - Return the MCSymbol for the specified global
/// value.
virtual MCSymbol *GetGlobalValueSymbol(const GlobalValue *GV) const;
/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
/// global value name as its base, with the specified suffix, and where the
/// symbol is forced to have private linkage if ForcePrivate is true.
@ -342,8 +333,7 @@ namespace llvm {
/// GetBlockAddressSymbol - Return the MCSymbol used to satisfy BlockAddress
/// uses of the specified basic block.
MCSymbol *GetBlockAddressSymbol(const BlockAddress *BA) const;
MCSymbol *GetBlockAddressSymbol(const Function *F,
const BasicBlock *BB) const;
MCSymbol *GetBlockAddressSymbol(const BasicBlock *BB) const;
/// EmitBasicBlockStart - This method prints the label for the specified
/// MachineBasicBlock, an alignment (if present) and a comment describing

View File

@ -38,12 +38,10 @@
#include "llvm/ADT/StringMap.h"
namespace llvm {
class AsmPrinter;
class GCStrategy;
class Constant;
class MCAsmInfo;
class MCSymbol;
namespace GC {
/// PointKind - The type of a collector-safe point.
@ -60,9 +58,9 @@ namespace llvm {
///
struct GCPoint {
GC::PointKind Kind; //< The kind of the safe point.
unsigned Num; //< Usually a label.
MCSymbol *Label; //< A label.
GCPoint(GC::PointKind K, unsigned N) : Kind(K), Num(N) {}
GCPoint(GC::PointKind K, MCSymbol *L) : Kind(K), Label(L) {}
};
/// GCRoot - Metadata for a pointer to an object managed by the garbage
@ -123,8 +121,8 @@ namespace llvm {
/// addSafePoint - Notes the existence of a safe point. Num is the ID of the
/// label just prior to the safe point (if the code generator is using
/// MachineModuleInfo).
void addSafePoint(GC::PointKind Kind, unsigned Num) {
SafePoints.push_back(GCPoint(Kind, Num));
void addSafePoint(GC::PointKind Kind, MCSymbol *Label) {
SafePoints.push_back(GCPoint(Kind, Label));
}
/// getFrameSize/setFrameSize - Records the function's frame size.

View File

@ -28,6 +28,7 @@ namespace llvm {
class GCMetadataPrinter;
class raw_ostream;
class MCAsmInfo;
/// GCMetadataPrinterRegistry - The GC assembly printer registry uses all the
/// defaults from Registry.

View File

@ -35,7 +35,7 @@ class MachineRelocation;
class Value;
class GlobalValue;
class Function;
/// JITCodeEmitter - This class defines two sorts of methods: those for
/// emitting the actual bytes of machine code, and those for emitting auxillary
/// structures, such as jump tables, relocations, etc.
@ -242,7 +242,7 @@ public:
/// emitLabel - Emits a label
virtual void emitLabel(uint64_t LabelID) = 0;
virtual void emitLabel(MCSymbol *Label) = 0;
/// allocateSpace - Allocate a block of space in the current output buffer,
/// returning null (and setting conditions to indicate buffer overflow) on
@ -316,10 +316,10 @@ public:
///
virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0;
/// getLabelAddress - Return the address of the specified LabelID, only usable
/// after the LabelID has been emitted.
/// getLabelAddress - Return the address of the specified Label, only usable
/// after the Label has been emitted.
///
virtual uintptr_t getLabelAddress(uint64_t LabelID) const = 0;
virtual uintptr_t getLabelAddress(MCSymbol *Label) const = 0;
/// Specifies the MachineModuleInfo object. This is used for exception handling
/// purposes.

View File

@ -127,11 +127,11 @@ namespace llvm {
bool conflictsWithPhysReg(const LiveInterval &li, VirtRegMap &vrm,
unsigned reg);
/// conflictsWithPhysRegRef - Similar to conflictsWithPhysRegRef except
/// it can check use as well.
bool conflictsWithPhysRegRef(LiveInterval &li, unsigned Reg,
bool CheckUse,
SmallPtrSet<MachineInstr*,32> &JoinedCopies);
/// conflictsWithSubPhysRegRef - Similar to conflictsWithPhysRegRef except
/// it checks for sub-register reference and it can check use as well.
bool conflictsWithSubPhysRegRef(LiveInterval &li, unsigned Reg,
bool CheckUse,
SmallPtrSet<MachineInstr*,32> &JoinedCopies);
// Interval creation
LiveInterval &getOrCreateInterval(unsigned reg) {

View File

@ -21,7 +21,6 @@ namespace llvm {
class BasicBlock;
class MachineFunction;
class MCContext;
class MCSymbol;
class StringRef;
class raw_ostream;
@ -352,7 +351,7 @@ public:
/// getSymbol - Return the MCSymbol for this basic block.
///
MCSymbol *getSymbol(MCContext &Ctx) const;
MCSymbol *getSymbol() const;
private: // Methods used to maintain doubly linked list of blocks...
friend struct ilist_traits<MachineBasicBlock>;

View File

@ -31,6 +31,7 @@ class MachineRelocation;
class Value;
class GlobalValue;
class Function;
class MCSymbol;
/// MachineCodeEmitter - This class defines two sorts of methods: those for
/// emitting the actual bytes of machine code, and those for emitting auxillary
@ -247,7 +248,7 @@ public:
virtual void processDebugLoc(DebugLoc DL, bool BeforePrintintInsn) {}
/// emitLabel - Emits a label
virtual void emitLabel(uint64_t LabelID) = 0;
virtual void emitLabel(MCSymbol *Label) = 0;
/// allocateSpace - Allocate a block of space in the current output buffer,
/// returning null (and setting conditions to indicate buffer overflow) on
@ -316,10 +317,10 @@ public:
///
virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0;
/// getLabelAddress - Return the address of the specified LabelID, only usable
/// getLabelAddress - Return the address of the specified Label, only usable
/// after the LabelID has been emitted.
///
virtual uintptr_t getLabelAddress(uint64_t LabelID) const = 0;
virtual uintptr_t getLabelAddress(MCSymbol *Label) const = 0;
/// Specifies the MachineModuleInfo object. This is used for exception handling
/// purposes.

View File

@ -33,6 +33,7 @@ class MachineRegisterInfo;
class MachineFrameInfo;
class MachineConstantPool;
class MachineJumpTableInfo;
class MCContext;
class Pass;
class TargetMachine;
class TargetRegisterClass;
@ -71,6 +72,7 @@ struct MachineFunctionInfo {
class MachineFunction {
Function *Fn;
const TargetMachine &Target;
MCContext &Ctx;
// RegInfo - Information about each register in use in the function.
MachineRegisterInfo *RegInfo;
@ -121,13 +123,16 @@ class MachineFunction {
// The alignment of the function.
unsigned Alignment;
MachineFunction(const MachineFunction &); // intentionally unimplemented
void operator=(const MachineFunction&); // intentionally unimplemented
MachineFunction(const MachineFunction &); // DO NOT IMPLEMENT
void operator=(const MachineFunction&); // DO NOT IMPLEMENT
public:
MachineFunction(Function *Fn, const TargetMachine &TM, unsigned FunctionNum);
MachineFunction(Function *Fn, const TargetMachine &TM, unsigned FunctionNum,
MCContext &Ctx);
~MachineFunction();
MCContext &getContext() const { return Ctx; }
/// getFunction - Return the LLVM function that this machine code represents
///
Function *getFunction() const { return Fn; }

View File

@ -131,6 +131,11 @@ public:
MI->addOperand(MachineOperand::CreateMetadata(MD));
return *this;
}
const MachineInstrBuilder &addSym(MCSymbol *Sym) const {
MI->addOperand(MachineOperand::CreateMCSymbol(Sym));
return *this;
}
};
/// BuildMI - Builder interface. Specify how to create the initial instruction

View File

@ -61,7 +61,11 @@ public:
/// .set L4_5_set_123, LBB123 - LJTI1_2
/// .word L4_5_set_123
EK_LabelDifference32,
/// EK_Inline - Jump table entries are emitted inline at their point of
/// use. It is the responsibility of the target to emit the entries.
EK_Inline,
/// EK_Custom32 - Each entry is a 32-bit value that is custom lowered by the
/// TargetLowering::LowerCustomJumpTableEntry hook.
EK_Custom32

View File

@ -22,13 +22,13 @@
#define LLVM_CODEGEN_MACHINELOCATION_H
namespace llvm {
class MCSymbol;
class MachineLocation {
private:
bool IsRegister; // True if location is a register.
unsigned Register; // gcc/gdb register number.
int Offset; // Displacement if not register.
public:
enum {
// The target register number for an abstract frame pointer. The value is
@ -36,20 +36,11 @@ public:
VirtualFP = ~0U
};
MachineLocation()
: IsRegister(false)
, Register(0)
, Offset(0)
{}
: IsRegister(false), Register(0), Offset(0) {}
explicit MachineLocation(unsigned R)
: IsRegister(true)
, Register(R)
, Offset(0)
{}
: IsRegister(true), Register(R), Offset(0) {}
MachineLocation(unsigned R, int O)
: IsRegister(false)
, Register(R)
, Offset(O)
{}
: IsRegister(false), Register(R), Offset(O) {}
// Accessors
bool isReg() const { return IsRegister; }
@ -74,29 +65,25 @@ public:
#endif
};
/// MachineMove - This class represents the save or restore of a callee saved
/// register that exception or debug info needs to know about.
class MachineMove {
private:
unsigned LabelID; // Label ID number for post-instruction
// address when result of move takes
// effect.
MachineLocation Destination; // Move to location.
MachineLocation Source; // Move from location.
/// Label - Symbol for post-instruction address when result of move takes
/// effect.
MCSymbol *Label;
// Move to & from location.
MachineLocation Destination, Source;
public:
MachineMove()
: LabelID(0)
, Destination()
, Source()
{}
MachineMove() : Label(0) {}
MachineMove(unsigned ID, MachineLocation &D, MachineLocation &S)
: LabelID(ID)
, Destination(D)
, Source(S)
{}
MachineMove(MCSymbol *label, const MachineLocation &D,
const MachineLocation &S)
: Label(label), Destination(D), Source(S) {}
// Accessors
unsigned getLabelID() const { return LabelID; }
MCSymbol *getLabel() const { return Label; }
const MachineLocation &getDestination() const { return Destination; }
const MachineLocation &getSource() const { return Source; }
};

View File

@ -31,48 +31,43 @@
#ifndef LLVM_CODEGEN_MACHINEMODULEINFO_H
#define LLVM_CODEGEN_MACHINEMODULEINFO_H
#include "llvm/Support/Dwarf.h"
#include "llvm/System/DataTypes.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/GlobalValue.h"
#include "llvm/Pass.h"
#include "llvm/GlobalValue.h"
#include "llvm/Metadata.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/System/DataTypes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
namespace llvm {
//===----------------------------------------------------------------------===//
// Forward declarations.
class Constant;
class MCSymbol;
class MDNode;
class GlobalVariable;
class MDNode;
class MachineBasicBlock;
class MachineFunction;
class Module;
class PointerType;
class StructType;
/// MachineModuleInfoImpl - This class can be derived from and used by targets
/// to hold private target-specific information for each Module. Objects of
/// type are accessed/created with MMI::getInfo and destroyed when the
/// MachineModuleInfo is destroyed.
class MachineModuleInfoImpl {
public:
typedef PointerIntPair<MCSymbol*, 1, bool> StubValueTy;
virtual ~MachineModuleInfoImpl();
typedef std::vector<std::pair<MCSymbol*, MCSymbol*> >
SymbolListTy;
typedef std::vector<std::pair<MCSymbol*, StubValueTy> > SymbolListTy;
protected:
static SymbolListTy
GetSortedStubs(const DenseMap<MCSymbol*, MCSymbol*> &Map);
static SymbolListTy GetSortedStubs(const DenseMap<MCSymbol*, StubValueTy>&);
};
@ -82,37 +77,33 @@ protected:
/// the current function.
///
struct LandingPadInfo {
MachineBasicBlock *LandingPadBlock; // Landing pad block.
SmallVector<unsigned, 1> BeginLabels; // Labels prior to invoke.
SmallVector<unsigned, 1> EndLabels; // Labels after invoke.
unsigned LandingPadLabel; // Label at beginning of landing pad.
Function *Personality; // Personality function.
std::vector<int> TypeIds; // List of type ids (filters negative)
MachineBasicBlock *LandingPadBlock; // Landing pad block.
SmallVector<MCSymbol*, 1> BeginLabels; // Labels prior to invoke.
SmallVector<MCSymbol*, 1> EndLabels; // Labels after invoke.
MCSymbol *LandingPadLabel; // Label at beginning of landing pad.
Function *Personality; // Personality function.
std::vector<int> TypeIds; // List of type ids (filters negative)
explicit LandingPadInfo(MachineBasicBlock *MBB)
: LandingPadBlock(MBB)
, LandingPadLabel(0)
, Personality(NULL)
{}
: LandingPadBlock(MBB), LandingPadLabel(0), Personality(0) {}
};
class MMIAddrLabelMap;
//===----------------------------------------------------------------------===//
/// MachineModuleInfo - This class contains meta information specific to a
/// module. Queries can be made by different debugging and exception handling
/// schemes and reformated for specific use.
///
class MachineModuleInfo : public ImmutablePass {
/// Context - This is the MCContext used for the entire code generator.
MCContext Context;
/// ObjFileMMI - This is the object-file-format-specific implementation of
/// MachineModuleInfoImpl, which lets targets accumulate whatever info they
/// want.
MachineModuleInfoImpl *ObjFileMMI;
// LabelIDList - One entry per assigned label. Normally the entry is equal to
// the list index(+1). If the entry is zero then the label has been deleted.
// Any other value indicates the label has been deleted by is mapped to
// another label.
std::vector<unsigned> LabelIDList;
// FrameMoves - List of moves done by a function's prolog. Used to construct
// frame maps by debug and exception handling consumers.
std::vector<MachineMove> FrameMoves;
@ -123,7 +114,7 @@ class MachineModuleInfo : public ImmutablePass {
// Map of invoke call site index values to associated begin EH_LABEL for
// the current function.
DenseMap<unsigned, unsigned> CallSiteMap;
DenseMap<MCSymbol*, unsigned> CallSiteMap;
// The current call site index being processed, if any. 0 if none.
unsigned CurCallSite;
@ -150,6 +141,11 @@ class MachineModuleInfo : public ImmutablePass {
/// llvm.compiler.used.
SmallPtrSet<const Function *, 32> UsedFunctions;
/// AddrLabelSymbols - This map keeps track of which symbol is being used for
/// the specified basic block's address of label.
MMIAddrLabelMap *AddrLabelSymbols;
bool CallsEHReturn;
bool CallsUnwindInit;
@ -165,7 +161,8 @@ public:
VariableDbgInfoMapTy;
VariableDbgInfoMapTy VariableDbgInfo;
MachineModuleInfo();
MachineModuleInfo(); // DUMMY CONSTRUCTOR, DO NOT CALL.
MachineModuleInfo(const MCAsmInfo &MAI); // Real constructor.
~MachineModuleInfo();
bool doInitialization();
@ -174,6 +171,9 @@ public:
/// EndFunction - Discard function meta information.
///
void EndFunction();
const MCContext &getContext() const { return Context; }
MCContext &getContext() { return Context; }
/// getInfo - Keep track of various per-function pieces of information for
/// backends that would like to do so.
@ -205,37 +205,30 @@ public:
bool callsUnwindInit() const { return CallsUnwindInit; }
void setCallsUnwindInit(bool b) { CallsUnwindInit = b; }
/// NextLabelID - Return the next unique label id.
///
unsigned NextLabelID() {
unsigned ID = (unsigned)LabelIDList.size() + 1;
LabelIDList.push_back(ID);
return ID;
}
/// InvalidateLabel - Inhibit use of the specified label # from
/// MachineModuleInfo, for example because the code was deleted.
void InvalidateLabel(unsigned LabelID) {
// Remap to zero to indicate deletion.
assert(0 < LabelID && LabelID <= LabelIDList.size() &&
"Old label ID out of range.");
LabelIDList[LabelID - 1] = 0;
}
/// isLabelDeleted - Return true if the label was deleted.
/// FIXME: This should eventually be eliminated and use the 'is emitted' bit
/// on MCSymbol.
bool isLabelDeleted(unsigned LabelID) const {
assert(LabelID <= LabelIDList.size() && "Debug label ID out of range.");
return LabelID == 0 || LabelIDList[LabelID - 1] == 0;
}
/// getFrameMoves - Returns a reference to a list of moves done in the current
/// function's prologue. Used to construct frame maps for debug and exception
/// handling comsumers.
std::vector<MachineMove> &getFrameMoves() { return FrameMoves; }
//===-EH-----------------------------------------------------------------===//
/// getAddrLabelSymbol - Return the symbol to be used for the specified basic
/// block when its address is taken. This cannot be its normal LBB label
/// because the block may be accessed outside its containing function.
MCSymbol *getAddrLabelSymbol(const BasicBlock *BB);
/// getAddrLabelSymbolToEmit - Return the symbol to be used for the specified
/// basic block when its address is taken. If other blocks were RAUW'd to
/// this one, we may have to emit them as well, return the whole set.
std::vector<MCSymbol*> getAddrLabelSymbolToEmit(const BasicBlock *BB);
/// takeDeletedSymbolsForFunction - If the specified function has had any
/// references to address-taken blocks generated, but the block got deleted,
/// return the symbol now so we can emit it. This prevents emitting a
/// reference to a symbol that has no definition.
void takeDeletedSymbolsForFunction(const Function *F,
std::vector<MCSymbol*> &Result);
//===- EH ---------------------------------------------------------------===//
/// getOrCreateLandingPadInfo - Find or create an LandingPadInfo for the
/// specified MachineBasicBlock.
@ -243,12 +236,12 @@ public:
/// addInvoke - Provide the begin and end labels of an invoke style call and
/// associate it with a try landing pad block.
void addInvoke(MachineBasicBlock *LandingPad, unsigned BeginLabel,
unsigned EndLabel);
void addInvoke(MachineBasicBlock *LandingPad,
MCSymbol *BeginLabel, MCSymbol *EndLabel);
/// addLandingPad - Add a new panding pad. Returns the label ID for the
/// landing pad entry.
unsigned addLandingPad(MachineBasicBlock *LandingPad);
MCSymbol *addLandingPad(MachineBasicBlock *LandingPad);
/// addPersonality - Provide the personality function for the exception
/// information.
@ -303,12 +296,12 @@ public:
}
/// setCallSiteBeginLabel - Map the begin label for a call site
void setCallSiteBeginLabel(unsigned BeginLabel, unsigned Site) {
void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) {
CallSiteMap[BeginLabel] = Site;
}
/// getCallSiteBeginLabel - Get the call site number for a begin label
unsigned getCallSiteBeginLabel(unsigned BeginLabel) {
unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) {
assert(CallSiteMap.count(BeginLabel) &&
"Missing call site number for EH_LABEL!");
return CallSiteMap[BeginLabel];

View File

@ -25,32 +25,34 @@ namespace llvm {
class MachineModuleInfoMachO : public MachineModuleInfoImpl {
/// FnStubs - Darwin '$stub' stubs. The key is something like "Lfoo$stub",
/// the value is something like "_foo".
DenseMap<MCSymbol*, MCSymbol*> FnStubs;
DenseMap<MCSymbol*, StubValueTy> FnStubs;
/// GVStubs - Darwin '$non_lazy_ptr' stubs. The key is something like
/// "Lfoo$non_lazy_ptr", the value is something like "_foo".
DenseMap<MCSymbol*, MCSymbol*> GVStubs;
/// "Lfoo$non_lazy_ptr", the value is something like "_foo". The extra bit
/// is true if this GV is external.
DenseMap<MCSymbol*, StubValueTy> GVStubs;
/// HiddenGVStubs - Darwin '$non_lazy_ptr' stubs. The key is something like
/// "Lfoo$non_lazy_ptr", the value is something like "_foo". Unlike GVStubs
/// these are for things with hidden visibility.
DenseMap<MCSymbol*, MCSymbol*> HiddenGVStubs;
/// these are for things with hidden visibility. The extra bit is true if
/// this GV is external.
DenseMap<MCSymbol*, StubValueTy> HiddenGVStubs;
virtual void Anchor(); // Out of line virtual method.
public:
MachineModuleInfoMachO(const MachineModuleInfo &) {}
MCSymbol *&getFnStubEntry(MCSymbol *Sym) {
StubValueTy &getFnStubEntry(MCSymbol *Sym) {
assert(Sym && "Key cannot be null");
return FnStubs[Sym];
}
MCSymbol *&getGVStubEntry(MCSymbol *Sym) {
StubValueTy &getGVStubEntry(MCSymbol *Sym) {
assert(Sym && "Key cannot be null");
return GVStubs[Sym];
}
MCSymbol *&getHiddenGVStubEntry(MCSymbol *Sym) {
StubValueTy &getHiddenGVStubEntry(MCSymbol *Sym) {
assert(Sym && "Key cannot be null");
return HiddenGVStubs[Sym];
}
@ -72,13 +74,13 @@ namespace llvm {
class MachineModuleInfoELF : public MachineModuleInfoImpl {
/// GVStubs - These stubs are used to materialize global addresses in PIC
/// mode.
DenseMap<MCSymbol*, MCSymbol*> GVStubs;
DenseMap<MCSymbol*, StubValueTy> GVStubs;
virtual void Anchor(); // Out of line virtual method.
public:
MachineModuleInfoELF(const MachineModuleInfo &) {}
MCSymbol *&getGVStubEntry(MCSymbol *Sym) {
StubValueTy &getGVStubEntry(MCSymbol *Sym) {
assert(Sym && "Key cannot be null");
return GVStubs[Sym];
}

View File

@ -28,6 +28,7 @@ class MachineRegisterInfo;
class MDNode;
class TargetMachine;
class raw_ostream;
class MCSymbol;
/// MachineOperand class - Representation of each machine instruction operand.
///
@ -44,7 +45,8 @@ public:
MO_ExternalSymbol, ///< Name of external global symbol
MO_GlobalAddress, ///< Address of a global value
MO_BlockAddress, ///< Address of a basic block
MO_Metadata ///< Metadata reference (for debug info)
MO_Metadata, ///< Metadata reference (for debug info)
MO_MCSymbol ///< MCSymbol reference (for debug/eh info)
};
private:
@ -101,6 +103,7 @@ private:
const ConstantFP *CFP; // For MO_FPImmediate.
int64_t ImmVal; // For MO_Immediate.
const MDNode *MD; // For MO_Metadata.
MCSymbol *Sym; // For MO_MCSymbol
struct { // For MO_Register.
unsigned RegNo;
@ -167,6 +170,7 @@ public:
bool isBlockAddress() const { return OpKind == MO_BlockAddress; }
/// isMetadata - Tests if this is a MO_Metadata operand.
bool isMetadata() const { return OpKind == MO_Metadata; }
bool isMCSymbol() const { return OpKind == MO_MCSymbol; }
//===--------------------------------------------------------------------===//
// Accessors for Register Operands
@ -315,6 +319,11 @@ public:
assert(isBlockAddress() && "Wrong MachineOperand accessor");
return Contents.OffsetedInfo.Val.BA;
}
MCSymbol *getMCSymbol() const {
assert(isMCSymbol() && "Wrong MachineOperand accessor");
return Contents.Sym;
}
/// getOffset - Return the offset from the symbol in this operand. This always
/// returns 0 for ExternalSymbol operands.
@ -473,6 +482,12 @@ public:
return Op;
}
static MachineOperand CreateMCSymbol(MCSymbol *Sym) {
MachineOperand Op(MachineOperand::MO_MCSymbol);
Op.Contents.Sym = Sym;
return Op;
}
friend class MachineInstr;
friend class MachineRegisterInfo;
private:

View File

@ -137,13 +137,6 @@ public:
/// emitted.
virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const;
/// emitLabel - Emits a label
virtual void emitLabel(uint64_t LabelID) = 0;
/// getLabelAddress - Return the address of the specified LabelID, only usable
/// after the LabelID has been emitted.
virtual uintptr_t getLabelAddress(uint64_t LabelID) const = 0;
/// emitJumpTables - Emit all the jump tables for a given jump table info
/// record to the appropriate section.
virtual void emitJumpTables(MachineJumpTableInfo *MJTI) = 0;

View File

@ -150,9 +150,15 @@ namespace RTLIB {
FLOOR_F64,
FLOOR_F80,
FLOOR_PPCF128,
COPYSIGN_F32,
COPYSIGN_F64,
COPYSIGN_F80,
COPYSIGN_PPCF128,
// CONVERSION
FPEXT_F32_F64,
FPEXT_F16_F32,
FPROUND_F32_F16,
FPROUND_F64_F32,
FPROUND_F80_F32,
FPROUND_PPCF128_F32,

View File

@ -227,6 +227,7 @@ namespace llvm {
private:
SDNode *Node; // Representative node.
MachineInstr *Instr; // Alternatively, a MachineInstr.
MachineInstr *DbgInstr; // A dbg_value referencing this.
public:
SUnit *OrigNode; // If not this, the node from which
// this node was cloned.
@ -269,10 +270,10 @@ namespace llvm {
/// SUnit - Construct an SUnit for pre-regalloc scheduling to represent
/// an SDNode and any nodes flagged to it.
SUnit(SDNode *node, unsigned nodenum)
: Node(node), Instr(0), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
hasPhysRegClobbers(false),
: Node(node), Instr(0), DbgInstr(0), OrigNode(0), NodeNum(nodenum),
NodeQueueId(0), Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
NumSuccsLeft(0), isTwoAddress(false), isCommutable(false),
hasPhysRegDefs(false), hasPhysRegClobbers(false),
isPending(false), isAvailable(false), isScheduled(false),
isScheduleHigh(false), isCloned(false),
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
@ -281,10 +282,10 @@ namespace llvm {
/// SUnit - Construct an SUnit for post-regalloc scheduling to represent
/// a MachineInstr.
SUnit(MachineInstr *instr, unsigned nodenum)
: Node(0), Instr(instr), OrigNode(0), NodeNum(nodenum), NodeQueueId(0),
Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
hasPhysRegClobbers(false),
: Node(0), Instr(instr), DbgInstr(0), OrigNode(0), NodeNum(nodenum),
NodeQueueId(0), Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
NumSuccsLeft(0), isTwoAddress(false), isCommutable(false),
hasPhysRegDefs(false), hasPhysRegClobbers(false),
isPending(false), isAvailable(false), isScheduled(false),
isScheduleHigh(false), isCloned(false),
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
@ -292,10 +293,10 @@ namespace llvm {
/// SUnit - Construct a placeholder SUnit.
SUnit()
: Node(0), Instr(0), OrigNode(0), NodeNum(~0u), NodeQueueId(0),
Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0), NumSuccsLeft(0),
isTwoAddress(false), isCommutable(false), hasPhysRegDefs(false),
hasPhysRegClobbers(false),
: Node(0), Instr(0), DbgInstr(0), OrigNode(0), NodeNum(~0u),
NodeQueueId(0), Latency(0), NumPreds(0), NumSuccs(0), NumPredsLeft(0),
NumSuccsLeft(0), isTwoAddress(false), isCommutable(false),
hasPhysRegDefs(false), hasPhysRegClobbers(false),
isPending(false), isAvailable(false), isScheduled(false),
isScheduleHigh(false), isCloned(false),
isDepthCurrent(false), isHeightCurrent(false), Depth(0), Height(0),
@ -329,6 +330,20 @@ namespace llvm {
return Instr;
}
/// setDbgInstr - Assign the debug instruction for the SUnit.
/// This may be used during post-regalloc scheduling.
void setDbgInstr(MachineInstr *MI) {
assert(!Node && "Setting debug MachineInstr of SUnit with SDNode!");
DbgInstr = MI;
}
/// getDbgInstr - Return the debug MachineInstr for this SUnit.
/// This may be used during post-regalloc scheduling.
MachineInstr *getDbgInstr() const {
assert(!Node && "Reading debug MachineInstr of SUnit with SDNode!");
return DbgInstr;
}
/// addPred - This adds the specified edge as a pred of the current node if
/// not already. It also adds the current node as a successor of the
/// specified node.

View File

@ -35,6 +35,7 @@ class MachineConstantPoolValue;
class MachineFunction;
class MachineModuleInfo;
class SDNodeOrdering;
class SDDbgValue;
class TargetLowering;
template<> struct ilist_traits<SDNode> : public ilist_default_traits<SDNode> {
@ -57,6 +58,46 @@ private:
static void createNode(const SDNode &);
};
/// SDDbgInfo - Keeps track of dbg_value information through SDISel. We do
/// not build SDNodes for these so as not to perturb the generated code;
/// instead the info is kept off to the side in this structure. SDNodes may
/// have an associated dbg_value entry in DbgValMap. Debug info that is not
/// associated with any SDNode is held in DbgConstMap. It is possible for
/// optimizations to change a variable to a constant, in which case the
/// corresponding debug info is moved from the variable to the constant table
/// (NYI).
class SDDbgInfo {
DenseMap<const SDNode*, SDDbgValue*> DbgVblMap;
SmallVector<SDDbgValue*, 4> DbgConstMap;
void operator=(const SDDbgInfo&); // Do not implement.
SDDbgInfo(const SDDbgInfo&); // Do not implement.
public:
SDDbgInfo() {}
void add(const SDNode *Node, SDDbgValue *V) {
DbgVblMap[Node] = V;
}
void add(SDDbgValue *V) { DbgConstMap.push_back(V); }
void remove(const SDNode *Node) {
DenseMap<const SDNode*, SDDbgValue*>::iterator Itr =
DbgVblMap.find(Node);
if (Itr != DbgVblMap.end())
DbgVblMap.erase(Itr);
}
// No need to remove a constant.
void clear() {
DbgVblMap.clear();
DbgConstMap.clear();
}
SDDbgValue *getSDDbgValue(const SDNode *Node) {
return DbgVblMap[Node];
}
typedef SmallVector<SDDbgValue*, 4>::iterator ConstDbgIterator;
ConstDbgIterator DbgConstBegin() { return DbgConstMap.begin(); }
ConstDbgIterator DbgConstEnd() { return DbgConstMap.end(); }
};
enum CombineLevel {
Unrestricted, // Combine may create illegal operations and illegal types.
NoIllegalTypes, // Combine may create illegal operations but no illegal types.
@ -119,6 +160,9 @@ class SelectionDAG {
/// the ordering of the original LLVM instructions.
SDNodeOrdering *Ordering;
/// DbgInfo - Tracks dbg_value information through SDISel.
SDDbgInfo *DbgInfo;
/// VerifyNode - Sanity check the given node. Aborts if it is invalid.
void VerifyNode(SDNode *N);
@ -339,8 +383,7 @@ public:
unsigned char TargetFlags = 0);
SDValue getValueType(EVT);
SDValue getRegister(unsigned Reg, EVT VT);
SDValue getLabel(unsigned Opcode, DebugLoc dl, SDValue Root,
unsigned LabelID);
SDValue getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label);
SDValue getBlockAddress(BlockAddress *BA, EVT VT,
bool isTarget = false, unsigned char TargetFlags = 0);
@ -828,6 +871,20 @@ public:
/// GetOrdering - Get the order for the SDNode.
unsigned GetOrdering(const SDNode *SD) const;
/// AssignDbgInfo - Assign debug info to the SDNode.
void AssignDbgInfo(SDNode *SD, SDDbgValue *db);
/// RememberDbgInfo - Remember debug info with no associated SDNode.
void RememberDbgInfo(SDDbgValue *db);
/// GetDbgInfo - Get the debug info for the SDNode.
SDDbgValue *GetDbgInfo(const SDNode* SD);
SDDbgInfo::ConstDbgIterator DbgConstBegin() {
return DbgInfo->DbgConstBegin();
}
SDDbgInfo::ConstDbgIterator DbgConstEnd() { return DbgInfo->DbgConstEnd(); }
void dump() const;
/// CreateStackTemporary - Create a stack temporary, suitable for holding the

View File

@ -274,7 +274,6 @@ private:
// Calls to these functions are generated by tblgen.
SDNode *Select_INLINEASM(SDNode *N);
SDNode *Select_UNDEF(SDNode *N);
SDNode *Select_EH_LABEL(SDNode *N);
void CannotYetSelect(SDNode *N);
private:

View File

@ -40,6 +40,7 @@ class MachineBasicBlock;
class MachineConstantPoolValue;
class SDNode;
class Value;
class MCSymbol;
template <typename T> struct DenseMapInfo;
template <typename T> struct simplify_type;
template <typename T> struct ilist_traits;
@ -438,6 +439,12 @@ namespace ISD {
// 5) ISD::CvtCode indicating the type of conversion to do
CONVERT_RNDSAT,
// FP16_TO_FP32, FP32_TO_FP16 - These operators are used to perform
// promotions and truncation for half-precision (16 bit) floating
// numbers. We need special nodes since FP16 is a storage-only type with
// special semantics of operations.
FP16_TO_FP32, FP32_TO_FP16,
// FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
// FLOG, FLOG2, FLOG10, FEXP, FEXP2,
// FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
@ -1383,9 +1390,9 @@ protected:
/// This constructor adds no operands itself; operands can be
/// set later with InitOperands.
SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
: NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
NumOperands(0), NumValues(VTs.NumVTs),
: NodeType(Opc), OperandsNeedDelete(false), HasDebugValue(false),
SubclassData(0), NodeId(-1), OperandList(0), ValueList(VTs.VTs),
UseList(NULL), NumOperands(0), NumValues(VTs.NumVTs),
debugLoc(dl) {}
/// InitOperands - Initialize the operands list of this with 1 operand.
@ -2088,18 +2095,18 @@ public:
}
};
class LabelSDNode : public SDNode {
class EHLabelSDNode : public SDNode {
SDUse Chain;
unsigned LabelID;
MCSymbol *Label;
friend class SelectionDAG;
LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
: SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
EHLabelSDNode(DebugLoc dl, SDValue ch, MCSymbol *L)
: SDNode(ISD::EH_LABEL, dl, getSDVTList(MVT::Other)), Label(L) {
InitOperands(&Chain, ch);
}
public:
unsigned getLabelID() const { return LabelID; }
MCSymbol *getLabel() const { return Label; }
static bool classof(const LabelSDNode *) { return true; }
static bool classof(const EHLabelSDNode *) { return true; }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::EH_LABEL;
}

View File

@ -78,12 +78,13 @@ public:
SelectSectionForGlobal(const GlobalValue *GV, SectionKind Kind,
Mangler *Mang, const TargetMachine &TM) const;
/// getSymbolForDwarfGlobalReference - Return an MCExpr to use for a reference
/// getExprForDwarfGlobalReference - Return an MCExpr to use for a reference
/// to the specified global variable from exception handling information.
///
virtual const MCExpr *
getSymbolForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang,
MachineModuleInfo *MMI, unsigned Encoding) const;
getExprForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang,
MachineModuleInfo *MMI, unsigned Encoding,
MCStreamer &Streamer) const;
};
@ -166,11 +167,12 @@ public:
return NonLazySymbolPointerSection;
}
/// getSymbolForDwarfGlobalReference - The mach-o version of this method
/// getExprForDwarfGlobalReference - The mach-o version of this method
/// defaults to returning a stub reference.
virtual const MCExpr *
getSymbolForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang,
MachineModuleInfo *MMI, unsigned Encoding) const;
getExprForDwarfGlobalReference(const GlobalValue *GV, Mangler *Mang,
MachineModuleInfo *MMI, unsigned Encoding,
MCStreamer &Streamer) const;
virtual unsigned getPersonalityEncoding() const;
virtual unsigned getLSDAEncoding() const;

View File

@ -452,6 +452,9 @@
/* Define to 1 if the system has the type `u_int64_t'. */
#undef HAVE_U_INT64_T
/* Define to 1 if you have the <valgrind/valgrind.h> header file. */
#cmakedefine HAVE_VALGRIND_VALGRIND_H ${HAVE_VALGRIND_VALGRIND_H}
/* Define to 1 if you have the <windows.h> header file. */
#cmakedefine HAVE_WINDOWS_H ${HAVE_WINDOWS_H}

View File

@ -440,6 +440,9 @@
/* Define to 1 if the system has the type `u_int64_t'. */
#undef HAVE_U_INT64_T
/* Define to 1 if you have the <valgrind/valgrind.h> header file. */
#undef HAVE_VALGRIND_VALGRIND_H
/* Define to 1 if you have the <windows.h> header file. */
#undef HAVE_WINDOWS_H

View File

@ -1984,7 +1984,7 @@ public:
};
template <>
struct OperandTraits<ReturnInst> : public OptionalOperandTraits<> {
struct OperandTraits<ReturnInst> : public VariadicOperandTraits<> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)

View File

@ -450,6 +450,14 @@ def int_flt_rounds : Intrinsic<[llvm_i32_ty]>,
def int_trap : Intrinsic<[llvm_void_ty]>,
GCCBuiltin<"__builtin_trap">;
// Intrisics to support half precision floating point format
let Properties = [IntrNoMem] in {
def int_convert_to_fp16 : Intrinsic<[llvm_i16_ty], [llvm_float_ty]>,
GCCBuiltin<"__gnu_f2h_ieee">;
def int_convert_from_fp16 : Intrinsic<[llvm_float_ty], [llvm_i16_ty]>,
GCCBuiltin<"__gnu_h2f_ieee">;
}
// These convert intrinsics are to support various conversions between
// various types with rounding and saturation. NOTE: avoid using these
// intrinsics as they might be removed sometime in the future and

Some files were not shown because too many files have changed in this diff Show More