Fix CPU load reporting independent of scheduler used.

- Sample CPU usage data from kern.cp_times, this makes for a far more
  accurate and scheduler independent algorithm.
- Rip out the process list scraping that is no longer required.
- Don't update CPU usage sampling on every request, but every 15s
  instead. This makes it impossible for an attacker to hide the CPU load
  by triggering 4 samplings in short succession when the system is idle.
- After reaching the steady-state, the system will always report the
  average CPU load of the last 60 sampled seconds.
- Untangling of call graph.

PR:		kern/130222
Tested by:	Julian Dunn <jdunn@aquezada.com>
		Gustau Pérez <gperez@entel.upc.edu>
		Jürgen Weiß <weiss@uni-mainz.de>
MFC after:	2 weeks

I'm unsure if some MIB standard states this must be the load average
for, eg. 300s, it looks like net-snmp isn't even bothering to implement
the CPU load reporting at all.
This commit is contained in:
uqs 2010-10-28 20:18:26 +00:00
parent 0e642ca0cb
commit 14c0facba5

View File

@ -56,19 +56,15 @@
struct processor_entry { struct processor_entry {
int32_t index; int32_t index;
const struct asn_oid *frwId; const struct asn_oid *frwId;
int32_t load; int32_t load; /* average cpu usage */
int32_t sample_cnt; /* number of usage samples */
int32_t cur_sample_idx; /* current valid sample */
TAILQ_ENTRY(processor_entry) link; TAILQ_ENTRY(processor_entry) link;
u_char cpu_no; /* which cpu, counted from 0 */ u_char cpu_no; /* which cpu, counted from 0 */
pid_t idle_pid; /* PID of idle process for this CPU */
/* the samples from the last minute, as required by MIB */ /* the samples from the last minute, as required by MIB */
double samples[MAX_CPU_SAMPLES]; double samples[MAX_CPU_SAMPLES];
long states[MAX_CPU_SAMPLES][CPUSTATES];
/* current sample to fill in next time, must be < MAX_CPU_SAMPLES */
uint32_t cur_sample_idx;
/* number of useful samples */
uint32_t sample_cnt;
}; };
TAILQ_HEAD(processor_tbl, processor_entry); TAILQ_HEAD(processor_tbl, processor_entry);
@ -82,65 +78,78 @@ static int32_t detected_processor_count;
/* sysctlbyname(hw.ncpu) */ /* sysctlbyname(hw.ncpu) */
static int hw_ncpu; static int hw_ncpu;
/* sysctlbyname(kern.{ccpu,fscale}) */ /* sysctlbyname(kern.cp_times) */
static fixpt_t ccpu; static int cpmib[2];
static int fscale; static size_t cplen;
/* tick of PDU where we have refreshed the processor table last */
static uint64_t proctbl_tick;
/* periodic timer used to get cpu load stats */ /* periodic timer used to get cpu load stats */
static void *cpus_load_timer; static void *cpus_load_timer;
/* /**
* Average the samples. The entire algorithm seems to be wrong XXX. * Returns the CPU usage of a given processor entry.
*
* It needs at least two cp_times "tick" samples to calculate a delta and
* thus, the usage over the sampling period.
*/ */
static int static int
get_avg_load(struct processor_entry *e) get_avg_load(struct processor_entry *e)
{ {
u_int i; u_int i, oldest;
double sum = 0.0; long delta = 0;
double usage = 0.0;
assert(e != NULL); assert(e != NULL);
if (e->sample_cnt == 0) /* Need two samples to perform delta calculation. */
if (e->sample_cnt <= 1)
return (0); return (0);
for (i = 0; i < e->sample_cnt; i++) /* Oldest usable index, we wrap around. */
sum += e->samples[i]; if (e->sample_cnt == MAX_CPU_SAMPLES)
oldest = (e->cur_sample_idx + 1) % MAX_CPU_SAMPLES;
else
oldest = 0;
return ((int)floor((double)sum/(double)e->sample_cnt)); /* Sum delta for all states. */
} for (i = 0; i < CPUSTATES; i++) {
delta += e->states[e->cur_sample_idx][i];
delta -= e->states[oldest][i];
}
if (delta == 0)
return 0;
/* /* Take idle time from the last element and convert to
* Stolen from /usr/src/bin/ps/print.c. The idle process should never * percent usage by contrasting with total ticks delta. */
* be swapped out :-) usage = (double)(e->states[e->cur_sample_idx][CPUSTATES-1] -
*/ e->states[oldest][CPUSTATES-1]) / delta;
static double usage = 100 - (usage * 100);
processor_getpcpu(struct kinfo_proc *ki_p) HRDBG("CPU no. %d, delta ticks %ld, pct usage %.2f", e->cpu_no,
{ delta, usage);
if (ccpu == 0 || fscale == 0) return ((int)(usage));
return (0.0);
#define fxtofl(fixpt) ((double)(fixpt) / fscale)
return (100.0 * fxtofl(ki_p->ki_pctcpu) /
(1.0 - exp(ki_p->ki_swtime * log(fxtofl(ccpu)))));
} }
/** /**
* Save a new sample * Save a new sample to proc entry and get the average usage.
*
* Samples are stored in a ringbuffer from 0..(MAX_CPU_SAMPLES-1)
*/ */
static void static void
save_sample(struct processor_entry *e, struct kinfo_proc *kp) save_sample(struct processor_entry *e, long *cp_times)
{ {
int i;
e->samples[e->cur_sample_idx] = 100.0 - processor_getpcpu(kp);
e->load = get_avg_load(e);
e->cur_sample_idx = (e->cur_sample_idx + 1) % MAX_CPU_SAMPLES; e->cur_sample_idx = (e->cur_sample_idx + 1) % MAX_CPU_SAMPLES;
for (i = 0; cp_times != NULL && i < CPUSTATES; i++)
e->states[e->cur_sample_idx][i] = cp_times[i];
if (++e->sample_cnt > MAX_CPU_SAMPLES) e->sample_cnt++;
if (e->sample_cnt > MAX_CPU_SAMPLES)
e->sample_cnt = MAX_CPU_SAMPLES; e->sample_cnt = MAX_CPU_SAMPLES;
HRDBG("sample count for CPU no. %d went to %d", e->cpu_no, e->sample_cnt);
e->load = get_avg_load(e);
} }
/** /**
@ -178,8 +187,9 @@ proc_create_entry(u_int cpu_no, struct device_map_entry *map)
entry->index = map->hrIndex; entry->index = map->hrIndex;
entry->load = 0; entry->load = 0;
entry->sample_cnt = 0;
entry->cur_sample_idx = -1;
entry->cpu_no = (u_char)cpu_no; entry->cpu_no = (u_char)cpu_no;
entry->idle_pid = 0;
entry->frwId = &oid_zeroDotZero; /* unknown id FIXME */ entry->frwId = &oid_zeroDotZero; /* unknown id FIXME */
INSERT_OBJECT_INT(entry, &processor_tbl); INSERT_OBJECT_INT(entry, &processor_tbl);
@ -190,65 +200,12 @@ proc_create_entry(u_int cpu_no, struct device_map_entry *map)
return (entry); return (entry);
} }
/**
* Get the PIDs for the idle processes of the CPUs.
*/
static void
processor_get_pids(void)
{
struct kinfo_proc *plist, *kp;
int i;
int nproc;
int cpu;
int nchars;
struct processor_entry *entry;
plist = kvm_getprocs(hr_kd, KERN_PROC_ALL, 0, &nproc);
if (plist == NULL || nproc < 0) {
syslog(LOG_ERR, "hrProcessor: kvm_getprocs() failed: %m");
return;
}
for (i = 0, kp = plist; i < nproc; i++, kp++) {
if (!IS_KERNPROC(kp))
continue;
if (strcmp(kp->ki_comm, "idle") == 0) {
/* single processor system */
cpu = 0;
} else if (sscanf(kp->ki_comm, "idle: cpu%d%n", &cpu, &nchars)
== 1 && (u_int)nchars == strlen(kp->ki_comm)) {
/* MP system */
} else
/* not an idle process */
continue;
HRDBG("'%s' proc with pid %d is on CPU #%d (last on #%d)",
kp->ki_comm, kp->ki_pid, kp->ki_oncpu, kp->ki_lastcpu);
TAILQ_FOREACH(entry, &processor_tbl, link)
if (entry->cpu_no == kp->ki_lastcpu)
break;
if (entry == NULL) {
/* create entry on non-ACPI systems */
if ((entry = proc_create_entry(cpu, NULL)) == NULL)
continue;
detected_processor_count++;
}
entry->idle_pid = kp->ki_pid;
HRDBG("CPU no. %d with SNMP index=%d has idle PID %d",
entry->cpu_no, entry->index, entry->idle_pid);
save_sample(entry, kp);
}
}
/** /**
* Scan the device map table for CPUs and create an entry into the * Scan the device map table for CPUs and create an entry into the
* processor table for each CPU. Then fetch the idle PIDs for all CPUs. * processor table for each CPU.
*
* Make sure that the number of processors announced by the kernel hw.ncpu
* is equal to the number of processors we have found in the device table.
*/ */
static void static void
create_proc_table(void) create_proc_table(void)
@ -256,6 +213,7 @@ create_proc_table(void)
struct device_map_entry *map; struct device_map_entry *map;
struct processor_entry *entry; struct processor_entry *entry;
int cpu_no; int cpu_no;
size_t len;
detected_processor_count = 0; detected_processor_count = 0;
@ -265,7 +223,7 @@ create_proc_table(void)
* If not, no entries will be present in the hrProcessor Table. * If not, no entries will be present in the hrProcessor Table.
* *
* For non-ACPI system the processors are not in the device table, * For non-ACPI system the processors are not in the device table,
* therefor insert them when getting the idle pids. XXX * therefore insert them after checking hw.ncpu.
*/ */
STAILQ_FOREACH(map, &device_map, link) STAILQ_FOREACH(map, &device_map, link)
if (strncmp(map->name_key, "cpu", strlen("cpu")) == 0 && if (strncmp(map->name_key, "cpu", strlen("cpu")) == 0 &&
@ -283,9 +241,34 @@ create_proc_table(void)
detected_processor_count++; detected_processor_count++;
} }
HRDBG("%d CPUs detected", detected_processor_count); len = sizeof(hw_ncpu);
if (sysctlbyname("hw.ncpu", &hw_ncpu, &len, NULL, 0) == -1 ||
len != sizeof(hw_ncpu)) {
syslog(LOG_ERR, "hrProcessorTable: sysctl(hw.ncpu) failed");
hw_ncpu = 0;
}
HRDBG("%d CPUs detected via device table; hw.ncpu is %d",
detected_processor_count, hw_ncpu);
/* XXX Can happen on non-ACPI systems? Create entries by hand. */
for (; detected_processor_count < hw_ncpu; detected_processor_count++)
proc_create_entry(detected_processor_count, NULL);
len = 2;
if (sysctlnametomib("kern.cp_times", cpmib, &len)) {
syslog(LOG_ERR, "hrProcessorTable: sysctlnametomib(kern.cp_times) failed");
cpmib[0] = 0;
cpmib[1] = 0;
cplen = 0;
} else if (sysctl(cpmib, 2, NULL, &len, NULL, 0)) {
syslog(LOG_ERR, "hrProcessorTable: sysctl(kern.cp_times) length query failed");
cplen = 0;
} else {
cplen = len / sizeof(long);
}
HRDBG("%zu entries for kern.cp_times", cplen);
processor_get_pids();
} }
/** /**
@ -306,78 +289,6 @@ free_proc_table(void)
detected_processor_count = 0; detected_processor_count = 0;
} }
/**
* Init the things for hrProcessorTable.
* Scan the device table for processor entries.
*/
void
init_processor_tbl(void)
{
size_t len;
/* get various parameters from the kernel */
len = sizeof(ccpu);
if (sysctlbyname("kern.ccpu", &ccpu, &len, NULL, 0) == -1) {
syslog(LOG_ERR, "hrProcessorTable: sysctl(kern.ccpu) failed");
ccpu = 0;
}
len = sizeof(fscale);
if (sysctlbyname("kern.fscale", &fscale, &len, NULL, 0) == -1) {
syslog(LOG_ERR, "hrProcessorTable: sysctl(kern.fscale) failed");
fscale = 0;
}
/* create the initial processor table */
create_proc_table();
}
/**
* Finalization routine for hrProcessorTable.
* It destroys the lists and frees any allocated heap memory.
*/
void
fini_processor_tbl(void)
{
if (cpus_load_timer != NULL) {
timer_stop(cpus_load_timer);
cpus_load_timer = NULL;
}
free_proc_table();
}
/**
* Make sure that the number of processors announced by the kernel hw.ncpu
* is equal to the number of processors we have found in the device table.
* If they differ rescan the device table.
*/
static void
processor_refill_tbl(void)
{
HRDBG("hw_ncpu=%d detected_processor_count=%d", hw_ncpu,
detected_processor_count);
if (hw_ncpu <= 0) {
size_t size = sizeof(hw_ncpu);
if (sysctlbyname("hw.ncpu", &hw_ncpu, &size, NULL, 0) == -1 ||
size != sizeof(hw_ncpu)) {
syslog(LOG_ERR, "hrProcessorTable: "
"sysctl(hw.ncpu) failed: %m");
hw_ncpu = 0;
return;
}
}
if (hw_ncpu != detected_processor_count) {
free_proc_table();
create_proc_table();
}
}
/** /**
* Refresh all values in the processor table. We call this once for * Refresh all values in the processor table. We call this once for
* every PDU that accesses the table. * every PDU that accesses the table.
@ -386,37 +297,23 @@ static void
refresh_processor_tbl(void) refresh_processor_tbl(void)
{ {
struct processor_entry *entry; struct processor_entry *entry;
int need_pids; size_t size;
struct kinfo_proc *plist;
int nproc;
processor_refill_tbl(); long pcpu_cp_times[cplen];
memset(pcpu_cp_times, 0, sizeof(pcpu_cp_times));
need_pids = 0; size = cplen * sizeof(long);
TAILQ_FOREACH(entry, &processor_tbl, link) { if (sysctl(cpmib, 2, pcpu_cp_times, &size, NULL, 0) == -1 &&
if (entry->idle_pid <= 0) { !(errno == ENOMEM && size >= cplen * sizeof(long))) {
need_pids = 1; syslog(LOG_ERR, "hrProcessorTable: sysctl(kern.cp_times) failed");
continue; return;
}
assert(hr_kd != NULL);
plist = kvm_getprocs(hr_kd, KERN_PROC_PID,
entry->idle_pid, &nproc);
if (plist == NULL || nproc != 1) {
syslog(LOG_ERR, "%s: missing item with "
"PID = %d for CPU #%d\n ", __func__,
entry->idle_pid, entry->cpu_no);
need_pids = 1;
continue;
}
save_sample(entry, plist);
} }
if (need_pids == 1) TAILQ_FOREACH(entry, &processor_tbl, link) {
processor_get_pids(); assert(hr_kd != NULL);
save_sample(entry, &pcpu_cp_times[entry->cpu_no * CPUSTATES]);
}
proctbl_tick = this_tick;
} }
/** /**
@ -450,6 +347,36 @@ start_processor_tbl(struct lmodule *mod)
get_cpus_samples, NULL, mod); get_cpus_samples, NULL, mod);
} }
/**
* Init the things for hrProcessorTable.
* Scan the device table for processor entries.
*/
void
init_processor_tbl(void)
{
/* create the initial processor table */
create_proc_table();
/* and get first samples */
refresh_processor_tbl();
}
/**
* Finalization routine for hrProcessorTable.
* It destroys the lists and frees any allocated heap memory.
*/
void
fini_processor_tbl(void)
{
if (cpus_load_timer != NULL) {
timer_stop(cpus_load_timer);
cpus_load_timer = NULL;
}
free_proc_table();
}
/** /**
* Access routine for the processor table. * Access routine for the processor table.
*/ */
@ -460,9 +387,6 @@ op_hrProcessorTable(struct snmp_context *ctx __unused,
{ {
struct processor_entry *entry; struct processor_entry *entry;
if (this_tick != proctbl_tick)
refresh_processor_tbl();
switch (curr_op) { switch (curr_op) {
case SNMP_OP_GETNEXT: case SNMP_OP_GETNEXT: