libkvm: Put private kvm routines in kvm_private.c.
This commit is contained in:
parent
4386fba70c
commit
197eca22ed
@ -11,7 +11,7 @@ CFLAGS+=-DLIBC_SCCS -I${.CURDIR}
|
||||
WARNS?= 3
|
||||
|
||||
SRCS= kvm.c kvm_cptime.c kvm_getloadavg.c \
|
||||
kvm_getswapinfo.c kvm_pcpu.c kvm_proc.c kvm_vnet.c \
|
||||
kvm_getswapinfo.c kvm_pcpu.c kvm_private.c kvm_proc.c kvm_vnet.c \
|
||||
kvm_minidump_aarch64.c \
|
||||
kvm_amd64.c kvm_minidump_amd64.c \
|
||||
kvm_arm.c kvm_minidump_arm.c \
|
||||
|
463
lib/libkvm/kvm.c
463
lib/libkvm/kvm.c
@ -66,114 +66,12 @@ static char sccsid[] = "@(#)kvm.c 8.2 (Berkeley) 2/13/94";
|
||||
|
||||
SET_DECLARE(kvm_arch, struct kvm_arch);
|
||||
|
||||
/* from src/lib/libc/gen/nlist.c */
|
||||
int __fdnlist(int, struct nlist *);
|
||||
|
||||
static int
|
||||
kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
|
||||
{
|
||||
kvaddr_t addr;
|
||||
int error, nfail;
|
||||
|
||||
if (kd->resolve_symbol == NULL) {
|
||||
struct nlist *nl;
|
||||
int count, i;
|
||||
|
||||
for (count = 0; list[count].n_name != NULL &&
|
||||
list[count].n_name[0] != '\0'; count++)
|
||||
;
|
||||
nl = calloc(count + 1, sizeof(*nl));
|
||||
for (i = 0; i < count; i++)
|
||||
nl[i].n_name = list[i].n_name;
|
||||
nfail = __fdnlist(kd->nlfd, nl);
|
||||
for (i = 0; i < count; i++) {
|
||||
list[i].n_type = nl[i].n_type;
|
||||
list[i].n_value = nl[i].n_value;
|
||||
}
|
||||
free(nl);
|
||||
return (nfail);
|
||||
}
|
||||
|
||||
nfail = 0;
|
||||
while (list->n_name != NULL && list->n_name[0] != '\0') {
|
||||
error = kd->resolve_symbol(list->n_name, &addr);
|
||||
if (error != 0) {
|
||||
nfail++;
|
||||
list->n_value = 0;
|
||||
list->n_type = 0;
|
||||
} else {
|
||||
list->n_value = addr;
|
||||
list->n_type = N_DATA | N_EXT;
|
||||
}
|
||||
list++;
|
||||
}
|
||||
return (nfail);
|
||||
}
|
||||
|
||||
char *
|
||||
kvm_geterr(kvm_t *kd)
|
||||
{
|
||||
return (kd->errbuf);
|
||||
}
|
||||
|
||||
#include <stdarg.h>
|
||||
|
||||
/*
|
||||
* Report an error using printf style arguments. "program" is kd->program
|
||||
* on hard errors, and 0 on soft errors, so that under sun error emulation,
|
||||
* only hard errors are printed out (otherwise, programs like gdb will
|
||||
* generate tons of error messages when trying to access bogus pointers).
|
||||
*/
|
||||
void
|
||||
_kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
|
||||
{
|
||||
va_list ap;
|
||||
|
||||
va_start(ap, fmt);
|
||||
if (program != NULL) {
|
||||
(void)fprintf(stderr, "%s: ", program);
|
||||
(void)vfprintf(stderr, fmt, ap);
|
||||
(void)fputc('\n', stderr);
|
||||
} else
|
||||
(void)vsnprintf(kd->errbuf,
|
||||
sizeof(kd->errbuf), fmt, ap);
|
||||
|
||||
va_end(ap);
|
||||
}
|
||||
|
||||
void
|
||||
_kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
|
||||
{
|
||||
va_list ap;
|
||||
int n;
|
||||
|
||||
va_start(ap, fmt);
|
||||
if (program != NULL) {
|
||||
(void)fprintf(stderr, "%s: ", program);
|
||||
(void)vfprintf(stderr, fmt, ap);
|
||||
(void)fprintf(stderr, ": %s\n", strerror(errno));
|
||||
} else {
|
||||
char *cp = kd->errbuf;
|
||||
|
||||
(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
|
||||
n = strlen(cp);
|
||||
(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
|
||||
strerror(errno));
|
||||
}
|
||||
va_end(ap);
|
||||
}
|
||||
|
||||
void *
|
||||
_kvm_malloc(kvm_t *kd, size_t n)
|
||||
{
|
||||
void *p;
|
||||
|
||||
if ((p = calloc(n, sizeof(char))) == NULL)
|
||||
_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
|
||||
n, strerror(errno));
|
||||
return (p);
|
||||
}
|
||||
|
||||
static int
|
||||
_kvm_read_kernel_ehdr(kvm_t *kd)
|
||||
{
|
||||
@ -210,166 +108,6 @@ _kvm_read_kernel_ehdr(kvm_t *kd)
|
||||
}
|
||||
}
|
||||
|
||||
int
|
||||
_kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
|
||||
{
|
||||
|
||||
return (kd->nlehdr.e_ident[EI_CLASS] == class &&
|
||||
kd->nlehdr.e_type == ET_EXEC &&
|
||||
kd->nlehdr.e_machine == machine);
|
||||
}
|
||||
|
||||
int
|
||||
_kvm_is_minidump(kvm_t *kd)
|
||||
{
|
||||
char minihdr[8];
|
||||
|
||||
if (kd->rawdump)
|
||||
return (0);
|
||||
if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
|
||||
memcmp(&minihdr, "minidump", 8) == 0)
|
||||
return (1);
|
||||
return (0);
|
||||
}
|
||||
|
||||
/*
|
||||
* The powerpc backend has a hack to strip a leading kerneldump
|
||||
* header from the core before treating it as an ELF header.
|
||||
*
|
||||
* We can add that here if we can get a change to libelf to support
|
||||
* an initial offset into the file. Alternatively we could patch
|
||||
* savecore to extract cores from a regular file instead.
|
||||
*/
|
||||
int
|
||||
_kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
|
||||
{
|
||||
GElf_Ehdr ehdr;
|
||||
GElf_Phdr *phdr;
|
||||
Elf *elf;
|
||||
size_t i, phnum;
|
||||
|
||||
elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
|
||||
if (elf == NULL) {
|
||||
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
||||
return (-1);
|
||||
}
|
||||
if (elf_kind(elf) != ELF_K_ELF) {
|
||||
_kvm_err(kd, kd->program, "invalid core");
|
||||
goto bad;
|
||||
}
|
||||
if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
|
||||
_kvm_err(kd, kd->program, "invalid core");
|
||||
goto bad;
|
||||
}
|
||||
if (gelf_getehdr(elf, &ehdr) == NULL) {
|
||||
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
||||
goto bad;
|
||||
}
|
||||
if (ehdr.e_type != ET_CORE) {
|
||||
_kvm_err(kd, kd->program, "invalid core");
|
||||
goto bad;
|
||||
}
|
||||
if (ehdr.e_machine != kd->nlehdr.e_machine) {
|
||||
_kvm_err(kd, kd->program, "invalid core");
|
||||
goto bad;
|
||||
}
|
||||
|
||||
if (elf_getphdrnum(elf, &phnum) == -1) {
|
||||
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
||||
goto bad;
|
||||
}
|
||||
|
||||
phdr = calloc(phnum, sizeof(*phdr));
|
||||
if (phdr == NULL) {
|
||||
_kvm_err(kd, kd->program, "failed to allocate phdrs");
|
||||
goto bad;
|
||||
}
|
||||
|
||||
for (i = 0; i < phnum; i++) {
|
||||
if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
|
||||
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
||||
goto bad;
|
||||
}
|
||||
}
|
||||
elf_end(elf);
|
||||
*phnump = phnum;
|
||||
*phdrp = phdr;
|
||||
return (0);
|
||||
|
||||
bad:
|
||||
elf_end(elf);
|
||||
return (-1);
|
||||
}
|
||||
|
||||
static void
|
||||
_kvm_hpt_insert(struct hpt *hpt, uint64_t pa, off_t off)
|
||||
{
|
||||
struct hpte *hpte;
|
||||
uint32_t fnv = FNV1_32_INIT;
|
||||
|
||||
fnv = fnv_32_buf(&pa, sizeof(pa), fnv);
|
||||
fnv &= (HPT_SIZE - 1);
|
||||
hpte = malloc(sizeof(*hpte));
|
||||
hpte->pa = pa;
|
||||
hpte->off = off;
|
||||
hpte->next = hpt->hpt_head[fnv];
|
||||
hpt->hpt_head[fnv] = hpte;
|
||||
}
|
||||
|
||||
void
|
||||
_kvm_hpt_init(kvm_t *kd, struct hpt *hpt, void *base, size_t len, off_t off,
|
||||
int page_size, int word_size)
|
||||
{
|
||||
uint64_t bits, idx, pa;
|
||||
uint64_t *base64;
|
||||
uint32_t *base32;
|
||||
|
||||
base64 = base;
|
||||
base32 = base;
|
||||
for (idx = 0; idx < len / word_size; idx++) {
|
||||
if (word_size == sizeof(uint64_t))
|
||||
bits = _kvm64toh(kd, base64[idx]);
|
||||
else
|
||||
bits = _kvm32toh(kd, base32[idx]);
|
||||
pa = idx * word_size * NBBY * page_size;
|
||||
for (; bits != 0; bits >>= 1, pa += page_size) {
|
||||
if ((bits & 1) == 0)
|
||||
continue;
|
||||
_kvm_hpt_insert(hpt, pa, off);
|
||||
off += page_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
off_t
|
||||
_kvm_hpt_find(struct hpt *hpt, uint64_t pa)
|
||||
{
|
||||
struct hpte *hpte;
|
||||
uint32_t fnv = FNV1_32_INIT;
|
||||
|
||||
fnv = fnv_32_buf(&pa, sizeof(pa), fnv);
|
||||
fnv &= (HPT_SIZE - 1);
|
||||
for (hpte = hpt->hpt_head[fnv]; hpte != NULL; hpte = hpte->next) {
|
||||
if (pa == hpte->pa)
|
||||
return (hpte->off);
|
||||
}
|
||||
return (-1);
|
||||
}
|
||||
|
||||
void
|
||||
_kvm_hpt_free(struct hpt *hpt)
|
||||
{
|
||||
struct hpte *hpte, *next;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < HPT_SIZE; i++) {
|
||||
for (hpte = hpt->hpt_head[i]; hpte != NULL; hpte = next) {
|
||||
next = hpte->next;
|
||||
free(hpte);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static kvm_t *
|
||||
_kvm_open(kvm_t *kd, const char *uf, const char *mf, int flag, char *errout)
|
||||
{
|
||||
@ -550,207 +288,6 @@ kvm_close(kvm_t *kd)
|
||||
return (0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Walk the list of unresolved symbols, generate a new list and prefix the
|
||||
* symbol names, try again, and merge back what we could resolve.
|
||||
*/
|
||||
static int
|
||||
kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
|
||||
const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
|
||||
{
|
||||
struct kvm_nlist *n, *np, *p;
|
||||
char *cp, *ce;
|
||||
const char *ccp;
|
||||
size_t len;
|
||||
int slen, unresolved;
|
||||
|
||||
/*
|
||||
* Calculate the space we need to malloc for nlist and names.
|
||||
* We are going to store the name twice for later lookups: once
|
||||
* with the prefix and once the unmodified name delmited by \0.
|
||||
*/
|
||||
len = 0;
|
||||
unresolved = 0;
|
||||
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
||||
if (p->n_type != N_UNDF)
|
||||
continue;
|
||||
len += sizeof(struct kvm_nlist) + strlen(prefix) +
|
||||
2 * (strlen(p->n_name) + 1);
|
||||
unresolved++;
|
||||
}
|
||||
if (unresolved == 0)
|
||||
return (unresolved);
|
||||
/* Add space for the terminating nlist entry. */
|
||||
len += sizeof(struct kvm_nlist);
|
||||
unresolved++;
|
||||
|
||||
/* Alloc one chunk for (nlist, [names]) and setup pointers. */
|
||||
n = np = malloc(len);
|
||||
bzero(n, len);
|
||||
if (n == NULL)
|
||||
return (missing);
|
||||
cp = ce = (char *)np;
|
||||
cp += unresolved * sizeof(struct kvm_nlist);
|
||||
ce += len;
|
||||
|
||||
/* Generate shortened nlist with special prefix. */
|
||||
unresolved = 0;
|
||||
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
||||
if (p->n_type != N_UNDF)
|
||||
continue;
|
||||
*np = *p;
|
||||
/* Save the new\0orig. name so we can later match it again. */
|
||||
slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
|
||||
(prefix[0] != '\0' && p->n_name[0] == '_') ?
|
||||
(p->n_name + 1) : p->n_name, '\0', p->n_name);
|
||||
if (slen < 0 || slen >= ce - cp)
|
||||
continue;
|
||||
np->n_name = cp;
|
||||
cp += slen + 1;
|
||||
np++;
|
||||
unresolved++;
|
||||
}
|
||||
|
||||
/* Do lookup on the reduced list. */
|
||||
np = n;
|
||||
unresolved = kvm_fdnlist(kd, np);
|
||||
|
||||
/* Check if we could resolve further symbols and update the list. */
|
||||
if (unresolved >= 0 && unresolved < missing) {
|
||||
/* Find the first freshly resolved entry. */
|
||||
for (; np->n_name && np->n_name[0]; np++)
|
||||
if (np->n_type != N_UNDF)
|
||||
break;
|
||||
/*
|
||||
* The lists are both in the same order,
|
||||
* so we can walk them in parallel.
|
||||
*/
|
||||
for (p = nl; np->n_name && np->n_name[0] &&
|
||||
p->n_name && p->n_name[0]; ++p) {
|
||||
if (p->n_type != N_UNDF)
|
||||
continue;
|
||||
/* Skip expanded name and compare to orig. one. */
|
||||
ccp = np->n_name + strlen(np->n_name) + 1;
|
||||
if (strcmp(ccp, p->n_name) != 0)
|
||||
continue;
|
||||
/* Update nlist with new, translated results. */
|
||||
p->n_type = np->n_type;
|
||||
if (validate_fn)
|
||||
p->n_value = (*validate_fn)(kd, np->n_value);
|
||||
else
|
||||
p->n_value = np->n_value;
|
||||
missing--;
|
||||
/* Find next freshly resolved entry. */
|
||||
for (np++; np->n_name && np->n_name[0]; np++)
|
||||
if (np->n_type != N_UNDF)
|
||||
break;
|
||||
}
|
||||
}
|
||||
/* We could assert missing = unresolved here. */
|
||||
|
||||
free(n);
|
||||
return (unresolved);
|
||||
}
|
||||
|
||||
int
|
||||
_kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
|
||||
{
|
||||
struct kvm_nlist *p;
|
||||
int nvalid;
|
||||
struct kld_sym_lookup lookup;
|
||||
int error;
|
||||
const char *prefix = "";
|
||||
char symname[1024]; /* XXX-BZ symbol name length limit? */
|
||||
int tried_vnet, tried_dpcpu;
|
||||
|
||||
/*
|
||||
* If we can't use the kld symbol lookup, revert to the
|
||||
* slow library call.
|
||||
*/
|
||||
if (!ISALIVE(kd)) {
|
||||
error = kvm_fdnlist(kd, nl);
|
||||
if (error <= 0) /* Hard error or success. */
|
||||
return (error);
|
||||
|
||||
if (_kvm_vnet_initialized(kd, initialize))
|
||||
error = kvm_fdnlist_prefix(kd, nl, error,
|
||||
VNET_SYMPREFIX, _kvm_vnet_validaddr);
|
||||
|
||||
if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
|
||||
error = kvm_fdnlist_prefix(kd, nl, error,
|
||||
DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
|
||||
|
||||
return (error);
|
||||
}
|
||||
|
||||
/*
|
||||
* We can use the kld lookup syscall. Go through each nlist entry
|
||||
* and look it up with a kldsym(2) syscall.
|
||||
*/
|
||||
nvalid = 0;
|
||||
tried_vnet = 0;
|
||||
tried_dpcpu = 0;
|
||||
again:
|
||||
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
||||
if (p->n_type != N_UNDF)
|
||||
continue;
|
||||
|
||||
lookup.version = sizeof(lookup);
|
||||
lookup.symvalue = 0;
|
||||
lookup.symsize = 0;
|
||||
|
||||
error = snprintf(symname, sizeof(symname), "%s%s", prefix,
|
||||
(prefix[0] != '\0' && p->n_name[0] == '_') ?
|
||||
(p->n_name + 1) : p->n_name);
|
||||
if (error < 0 || error >= (int)sizeof(symname))
|
||||
continue;
|
||||
lookup.symname = symname;
|
||||
if (lookup.symname[0] == '_')
|
||||
lookup.symname++;
|
||||
|
||||
if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
|
||||
p->n_type = N_TEXT;
|
||||
if (_kvm_vnet_initialized(kd, initialize) &&
|
||||
strcmp(prefix, VNET_SYMPREFIX) == 0)
|
||||
p->n_value =
|
||||
_kvm_vnet_validaddr(kd, lookup.symvalue);
|
||||
else if (_kvm_dpcpu_initialized(kd, initialize) &&
|
||||
strcmp(prefix, DPCPU_SYMPREFIX) == 0)
|
||||
p->n_value =
|
||||
_kvm_dpcpu_validaddr(kd, lookup.symvalue);
|
||||
else
|
||||
p->n_value = lookup.symvalue;
|
||||
++nvalid;
|
||||
/* lookup.symsize */
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Check the number of entries that weren't found. If they exist,
|
||||
* try again with a prefix for virtualized or DPCPU symbol names.
|
||||
*/
|
||||
error = ((p - nl) - nvalid);
|
||||
if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
|
||||
tried_vnet = 1;
|
||||
prefix = VNET_SYMPREFIX;
|
||||
goto again;
|
||||
}
|
||||
if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
|
||||
tried_dpcpu = 1;
|
||||
prefix = DPCPU_SYMPREFIX;
|
||||
goto again;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return the number of entries that weren't found. If they exist,
|
||||
* also fill internal error buffer.
|
||||
*/
|
||||
error = ((p - nl) - nvalid);
|
||||
if (error)
|
||||
_kvm_syserr(kd, kd->program, "kvm_nlist");
|
||||
return (error);
|
||||
}
|
||||
|
||||
int
|
||||
kvm_nlist2(kvm_t *kd, struct kvm_nlist *nl)
|
||||
{
|
||||
|
525
lib/libkvm/kvm_private.c
Normal file
525
lib/libkvm/kvm_private.c
Normal file
@ -0,0 +1,525 @@
|
||||
/*-
|
||||
* Copyright (c) 1989, 1992, 1993
|
||||
* The Regents of the University of California. All rights reserved.
|
||||
*
|
||||
* This code is derived from software developed by the Computer Systems
|
||||
* Engineering group at Lawrence Berkeley Laboratory under DARPA contract
|
||||
* BG 91-66 and contributed to Berkeley.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 4. Neither the name of the University nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <sys/param.h>
|
||||
#include <sys/fnv_hash.h>
|
||||
|
||||
#define _WANT_VNET
|
||||
|
||||
#include <sys/user.h>
|
||||
#include <sys/linker.h>
|
||||
#include <sys/pcpu.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#include <net/vnet.h>
|
||||
|
||||
#include <fcntl.h>
|
||||
#include <kvm.h>
|
||||
#include <limits.h>
|
||||
#include <paths.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <unistd.h>
|
||||
#include <stdarg.h>
|
||||
|
||||
#include "kvm_private.h"
|
||||
|
||||
/*
|
||||
* Routines private to libkvm.
|
||||
*/
|
||||
|
||||
/* from src/lib/libc/gen/nlist.c */
|
||||
int __fdnlist(int, struct nlist *);
|
||||
|
||||
/*
|
||||
* Report an error using printf style arguments. "program" is kd->program
|
||||
* on hard errors, and 0 on soft errors, so that under sun error emulation,
|
||||
* only hard errors are printed out (otherwise, programs like gdb will
|
||||
* generate tons of error messages when trying to access bogus pointers).
|
||||
*/
|
||||
void
|
||||
_kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
|
||||
{
|
||||
va_list ap;
|
||||
|
||||
va_start(ap, fmt);
|
||||
if (program != NULL) {
|
||||
(void)fprintf(stderr, "%s: ", program);
|
||||
(void)vfprintf(stderr, fmt, ap);
|
||||
(void)fputc('\n', stderr);
|
||||
} else
|
||||
(void)vsnprintf(kd->errbuf,
|
||||
sizeof(kd->errbuf), fmt, ap);
|
||||
|
||||
va_end(ap);
|
||||
}
|
||||
|
||||
void
|
||||
_kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
|
||||
{
|
||||
va_list ap;
|
||||
int n;
|
||||
|
||||
va_start(ap, fmt);
|
||||
if (program != NULL) {
|
||||
(void)fprintf(stderr, "%s: ", program);
|
||||
(void)vfprintf(stderr, fmt, ap);
|
||||
(void)fprintf(stderr, ": %s\n", strerror(errno));
|
||||
} else {
|
||||
char *cp = kd->errbuf;
|
||||
|
||||
(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
|
||||
n = strlen(cp);
|
||||
(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
|
||||
strerror(errno));
|
||||
}
|
||||
va_end(ap);
|
||||
}
|
||||
|
||||
void *
|
||||
_kvm_malloc(kvm_t *kd, size_t n)
|
||||
{
|
||||
void *p;
|
||||
|
||||
if ((p = calloc(n, sizeof(char))) == NULL)
|
||||
_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
|
||||
n, strerror(errno));
|
||||
return (p);
|
||||
}
|
||||
|
||||
int
|
||||
_kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
|
||||
{
|
||||
|
||||
return (kd->nlehdr.e_ident[EI_CLASS] == class &&
|
||||
kd->nlehdr.e_type == ET_EXEC &&
|
||||
kd->nlehdr.e_machine == machine);
|
||||
}
|
||||
|
||||
int
|
||||
_kvm_is_minidump(kvm_t *kd)
|
||||
{
|
||||
char minihdr[8];
|
||||
|
||||
if (kd->rawdump)
|
||||
return (0);
|
||||
if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
|
||||
memcmp(&minihdr, "minidump", 8) == 0)
|
||||
return (1);
|
||||
return (0);
|
||||
}
|
||||
|
||||
/*
|
||||
* The powerpc backend has a hack to strip a leading kerneldump
|
||||
* header from the core before treating it as an ELF header.
|
||||
*
|
||||
* We can add that here if we can get a change to libelf to support
|
||||
* an initial offset into the file. Alternatively we could patch
|
||||
* savecore to extract cores from a regular file instead.
|
||||
*/
|
||||
int
|
||||
_kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
|
||||
{
|
||||
GElf_Ehdr ehdr;
|
||||
GElf_Phdr *phdr;
|
||||
Elf *elf;
|
||||
size_t i, phnum;
|
||||
|
||||
elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
|
||||
if (elf == NULL) {
|
||||
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
||||
return (-1);
|
||||
}
|
||||
if (elf_kind(elf) != ELF_K_ELF) {
|
||||
_kvm_err(kd, kd->program, "invalid core");
|
||||
goto bad;
|
||||
}
|
||||
if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
|
||||
_kvm_err(kd, kd->program, "invalid core");
|
||||
goto bad;
|
||||
}
|
||||
if (gelf_getehdr(elf, &ehdr) == NULL) {
|
||||
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
||||
goto bad;
|
||||
}
|
||||
if (ehdr.e_type != ET_CORE) {
|
||||
_kvm_err(kd, kd->program, "invalid core");
|
||||
goto bad;
|
||||
}
|
||||
if (ehdr.e_machine != kd->nlehdr.e_machine) {
|
||||
_kvm_err(kd, kd->program, "invalid core");
|
||||
goto bad;
|
||||
}
|
||||
|
||||
if (elf_getphdrnum(elf, &phnum) == -1) {
|
||||
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
||||
goto bad;
|
||||
}
|
||||
|
||||
phdr = calloc(phnum, sizeof(*phdr));
|
||||
if (phdr == NULL) {
|
||||
_kvm_err(kd, kd->program, "failed to allocate phdrs");
|
||||
goto bad;
|
||||
}
|
||||
|
||||
for (i = 0; i < phnum; i++) {
|
||||
if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
|
||||
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
||||
goto bad;
|
||||
}
|
||||
}
|
||||
elf_end(elf);
|
||||
*phnump = phnum;
|
||||
*phdrp = phdr;
|
||||
return (0);
|
||||
|
||||
bad:
|
||||
elf_end(elf);
|
||||
return (-1);
|
||||
}
|
||||
|
||||
static void
|
||||
_kvm_hpt_insert(struct hpt *hpt, uint64_t pa, off_t off)
|
||||
{
|
||||
struct hpte *hpte;
|
||||
uint32_t fnv = FNV1_32_INIT;
|
||||
|
||||
fnv = fnv_32_buf(&pa, sizeof(pa), fnv);
|
||||
fnv &= (HPT_SIZE - 1);
|
||||
hpte = malloc(sizeof(*hpte));
|
||||
hpte->pa = pa;
|
||||
hpte->off = off;
|
||||
hpte->next = hpt->hpt_head[fnv];
|
||||
hpt->hpt_head[fnv] = hpte;
|
||||
}
|
||||
|
||||
void
|
||||
_kvm_hpt_init(kvm_t *kd, struct hpt *hpt, void *base, size_t len, off_t off,
|
||||
int page_size, int word_size)
|
||||
{
|
||||
uint64_t bits, idx, pa;
|
||||
uint64_t *base64;
|
||||
uint32_t *base32;
|
||||
|
||||
base64 = base;
|
||||
base32 = base;
|
||||
for (idx = 0; idx < len / word_size; idx++) {
|
||||
if (word_size == sizeof(uint64_t))
|
||||
bits = _kvm64toh(kd, base64[idx]);
|
||||
else
|
||||
bits = _kvm32toh(kd, base32[idx]);
|
||||
pa = idx * word_size * NBBY * page_size;
|
||||
for (; bits != 0; bits >>= 1, pa += page_size) {
|
||||
if ((bits & 1) == 0)
|
||||
continue;
|
||||
_kvm_hpt_insert(hpt, pa, off);
|
||||
off += page_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
off_t
|
||||
_kvm_hpt_find(struct hpt *hpt, uint64_t pa)
|
||||
{
|
||||
struct hpte *hpte;
|
||||
uint32_t fnv = FNV1_32_INIT;
|
||||
|
||||
fnv = fnv_32_buf(&pa, sizeof(pa), fnv);
|
||||
fnv &= (HPT_SIZE - 1);
|
||||
for (hpte = hpt->hpt_head[fnv]; hpte != NULL; hpte = hpte->next) {
|
||||
if (pa == hpte->pa)
|
||||
return (hpte->off);
|
||||
}
|
||||
return (-1);
|
||||
}
|
||||
|
||||
void
|
||||
_kvm_hpt_free(struct hpt *hpt)
|
||||
{
|
||||
struct hpte *hpte, *next;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < HPT_SIZE; i++) {
|
||||
for (hpte = hpt->hpt_head[i]; hpte != NULL; hpte = next) {
|
||||
next = hpte->next;
|
||||
free(hpte);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int
|
||||
kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
|
||||
{
|
||||
kvaddr_t addr;
|
||||
int error, nfail;
|
||||
|
||||
if (kd->resolve_symbol == NULL) {
|
||||
struct nlist *nl;
|
||||
int count, i;
|
||||
|
||||
for (count = 0; list[count].n_name != NULL &&
|
||||
list[count].n_name[0] != '\0'; count++)
|
||||
;
|
||||
nl = calloc(count + 1, sizeof(*nl));
|
||||
for (i = 0; i < count; i++)
|
||||
nl[i].n_name = list[i].n_name;
|
||||
nfail = __fdnlist(kd->nlfd, nl);
|
||||
for (i = 0; i < count; i++) {
|
||||
list[i].n_type = nl[i].n_type;
|
||||
list[i].n_value = nl[i].n_value;
|
||||
}
|
||||
free(nl);
|
||||
return (nfail);
|
||||
}
|
||||
|
||||
nfail = 0;
|
||||
while (list->n_name != NULL && list->n_name[0] != '\0') {
|
||||
error = kd->resolve_symbol(list->n_name, &addr);
|
||||
if (error != 0) {
|
||||
nfail++;
|
||||
list->n_value = 0;
|
||||
list->n_type = 0;
|
||||
} else {
|
||||
list->n_value = addr;
|
||||
list->n_type = N_DATA | N_EXT;
|
||||
}
|
||||
list++;
|
||||
}
|
||||
return (nfail);
|
||||
}
|
||||
|
||||
/*
|
||||
* Walk the list of unresolved symbols, generate a new list and prefix the
|
||||
* symbol names, try again, and merge back what we could resolve.
|
||||
*/
|
||||
static int
|
||||
kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
|
||||
const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
|
||||
{
|
||||
struct kvm_nlist *n, *np, *p;
|
||||
char *cp, *ce;
|
||||
const char *ccp;
|
||||
size_t len;
|
||||
int slen, unresolved;
|
||||
|
||||
/*
|
||||
* Calculate the space we need to malloc for nlist and names.
|
||||
* We are going to store the name twice for later lookups: once
|
||||
* with the prefix and once the unmodified name delmited by \0.
|
||||
*/
|
||||
len = 0;
|
||||
unresolved = 0;
|
||||
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
||||
if (p->n_type != N_UNDF)
|
||||
continue;
|
||||
len += sizeof(struct kvm_nlist) + strlen(prefix) +
|
||||
2 * (strlen(p->n_name) + 1);
|
||||
unresolved++;
|
||||
}
|
||||
if (unresolved == 0)
|
||||
return (unresolved);
|
||||
/* Add space for the terminating nlist entry. */
|
||||
len += sizeof(struct kvm_nlist);
|
||||
unresolved++;
|
||||
|
||||
/* Alloc one chunk for (nlist, [names]) and setup pointers. */
|
||||
n = np = malloc(len);
|
||||
bzero(n, len);
|
||||
if (n == NULL)
|
||||
return (missing);
|
||||
cp = ce = (char *)np;
|
||||
cp += unresolved * sizeof(struct kvm_nlist);
|
||||
ce += len;
|
||||
|
||||
/* Generate shortened nlist with special prefix. */
|
||||
unresolved = 0;
|
||||
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
||||
if (p->n_type != N_UNDF)
|
||||
continue;
|
||||
*np = *p;
|
||||
/* Save the new\0orig. name so we can later match it again. */
|
||||
slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
|
||||
(prefix[0] != '\0' && p->n_name[0] == '_') ?
|
||||
(p->n_name + 1) : p->n_name, '\0', p->n_name);
|
||||
if (slen < 0 || slen >= ce - cp)
|
||||
continue;
|
||||
np->n_name = cp;
|
||||
cp += slen + 1;
|
||||
np++;
|
||||
unresolved++;
|
||||
}
|
||||
|
||||
/* Do lookup on the reduced list. */
|
||||
np = n;
|
||||
unresolved = kvm_fdnlist(kd, np);
|
||||
|
||||
/* Check if we could resolve further symbols and update the list. */
|
||||
if (unresolved >= 0 && unresolved < missing) {
|
||||
/* Find the first freshly resolved entry. */
|
||||
for (; np->n_name && np->n_name[0]; np++)
|
||||
if (np->n_type != N_UNDF)
|
||||
break;
|
||||
/*
|
||||
* The lists are both in the same order,
|
||||
* so we can walk them in parallel.
|
||||
*/
|
||||
for (p = nl; np->n_name && np->n_name[0] &&
|
||||
p->n_name && p->n_name[0]; ++p) {
|
||||
if (p->n_type != N_UNDF)
|
||||
continue;
|
||||
/* Skip expanded name and compare to orig. one. */
|
||||
ccp = np->n_name + strlen(np->n_name) + 1;
|
||||
if (strcmp(ccp, p->n_name) != 0)
|
||||
continue;
|
||||
/* Update nlist with new, translated results. */
|
||||
p->n_type = np->n_type;
|
||||
if (validate_fn)
|
||||
p->n_value = (*validate_fn)(kd, np->n_value);
|
||||
else
|
||||
p->n_value = np->n_value;
|
||||
missing--;
|
||||
/* Find next freshly resolved entry. */
|
||||
for (np++; np->n_name && np->n_name[0]; np++)
|
||||
if (np->n_type != N_UNDF)
|
||||
break;
|
||||
}
|
||||
}
|
||||
/* We could assert missing = unresolved here. */
|
||||
|
||||
free(n);
|
||||
return (unresolved);
|
||||
}
|
||||
|
||||
int
|
||||
_kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
|
||||
{
|
||||
struct kvm_nlist *p;
|
||||
int nvalid;
|
||||
struct kld_sym_lookup lookup;
|
||||
int error;
|
||||
const char *prefix = "";
|
||||
char symname[1024]; /* XXX-BZ symbol name length limit? */
|
||||
int tried_vnet, tried_dpcpu;
|
||||
|
||||
/*
|
||||
* If we can't use the kld symbol lookup, revert to the
|
||||
* slow library call.
|
||||
*/
|
||||
if (!ISALIVE(kd)) {
|
||||
error = kvm_fdnlist(kd, nl);
|
||||
if (error <= 0) /* Hard error or success. */
|
||||
return (error);
|
||||
|
||||
if (_kvm_vnet_initialized(kd, initialize))
|
||||
error = kvm_fdnlist_prefix(kd, nl, error,
|
||||
VNET_SYMPREFIX, _kvm_vnet_validaddr);
|
||||
|
||||
if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
|
||||
error = kvm_fdnlist_prefix(kd, nl, error,
|
||||
DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
|
||||
|
||||
return (error);
|
||||
}
|
||||
|
||||
/*
|
||||
* We can use the kld lookup syscall. Go through each nlist entry
|
||||
* and look it up with a kldsym(2) syscall.
|
||||
*/
|
||||
nvalid = 0;
|
||||
tried_vnet = 0;
|
||||
tried_dpcpu = 0;
|
||||
again:
|
||||
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
||||
if (p->n_type != N_UNDF)
|
||||
continue;
|
||||
|
||||
lookup.version = sizeof(lookup);
|
||||
lookup.symvalue = 0;
|
||||
lookup.symsize = 0;
|
||||
|
||||
error = snprintf(symname, sizeof(symname), "%s%s", prefix,
|
||||
(prefix[0] != '\0' && p->n_name[0] == '_') ?
|
||||
(p->n_name + 1) : p->n_name);
|
||||
if (error < 0 || error >= (int)sizeof(symname))
|
||||
continue;
|
||||
lookup.symname = symname;
|
||||
if (lookup.symname[0] == '_')
|
||||
lookup.symname++;
|
||||
|
||||
if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
|
||||
p->n_type = N_TEXT;
|
||||
if (_kvm_vnet_initialized(kd, initialize) &&
|
||||
strcmp(prefix, VNET_SYMPREFIX) == 0)
|
||||
p->n_value =
|
||||
_kvm_vnet_validaddr(kd, lookup.symvalue);
|
||||
else if (_kvm_dpcpu_initialized(kd, initialize) &&
|
||||
strcmp(prefix, DPCPU_SYMPREFIX) == 0)
|
||||
p->n_value =
|
||||
_kvm_dpcpu_validaddr(kd, lookup.symvalue);
|
||||
else
|
||||
p->n_value = lookup.symvalue;
|
||||
++nvalid;
|
||||
/* lookup.symsize */
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Check the number of entries that weren't found. If they exist,
|
||||
* try again with a prefix for virtualized or DPCPU symbol names.
|
||||
*/
|
||||
error = ((p - nl) - nvalid);
|
||||
if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
|
||||
tried_vnet = 1;
|
||||
prefix = VNET_SYMPREFIX;
|
||||
goto again;
|
||||
}
|
||||
if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
|
||||
tried_dpcpu = 1;
|
||||
prefix = DPCPU_SYMPREFIX;
|
||||
goto again;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return the number of entries that weren't found. If they exist,
|
||||
* also fill internal error buffer.
|
||||
*/
|
||||
error = ((p - nl) - nvalid);
|
||||
if (error)
|
||||
_kvm_syserr(kd, kd->program, "kvm_nlist");
|
||||
return (error);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user