Import updated device-tree files from:

git://xenbits.xen.org/people/ianc/device-tree-rebasing.git
 @afaecb70e7ebb983c86d5eb45ff952e9af79c462
This commit is contained in:
Andrew Turner 2016-01-28 20:21:15 +00:00
parent da75c2cc58
commit 235ad806ee
2163 changed files with 173885 additions and 25999 deletions

View File

@ -0,0 +1,17 @@
* ARC HS Performance Counters
The ARC HS can be configured with a pipeline performance monitor for counting
CPU and cache events like cache misses and hits. Like conventional PCT there
are 100+ hardware conditions dynamically mapped to upto 32 counters.
It also supports overflow interrupts.
Required properties:
- compatible : should contain
"snps,archs-pct"
Example:
pmu {
compatible = "snps,archs-pct";
};

7
Bindings/arc/axs101.txt Normal file
View File

@ -0,0 +1,7 @@
Synopsys DesignWare ARC Software Development Platforms Device Tree Bindings
---------------------------------------------------------------------------
SDP Main Board with an AXC001 CPU Card hoisting ARC700 core in silicon
Required root node properties:
- compatible = "snps,axs101", "snps,arc-sdp";

8
Bindings/arc/axs103.txt Normal file
View File

@ -0,0 +1,8 @@
Synopsys DesignWare ARC Software Development Platforms Device Tree Bindings
---------------------------------------------------------------------------
SDP Main Board with an AXC003 FPGA Card which can contain various flavours of
HS38x cores.
Required root node properties:
- compatible = "snps,axs103", "snps,arc-sdp";

20
Bindings/arc/pct.txt Normal file
View File

@ -0,0 +1,20 @@
* ARC Performance Counters
The ARC700 can be configured with a pipeline performance monitor for counting
CPU and cache events like cache misses and hits. Like conventional PCT there
are 100+ hardware conditions dynamically mapped to upto 32 counters
Note that:
* The ARC 700 PCT does not support interrupts; although HW events may be
counted, the HW events themselves cannot serve as a trigger for a sample.
Required properties:
- compatible : should contain
"snps,arc700-pct"
Example:
pmu {
compatible = "snps,arc700-pct";
};

View File

@ -1,24 +0,0 @@
* ARC Performance Monitor Unit
The ARC 700 can be configured with a pipeline performance monitor for counting
CPU and cache events like cache misses and hits.
Note that:
* ARC 700 refers to a family of ARC processor cores;
- There is only one type of PMU available for the whole family;
- The PMU may support different sets of events; supported events are probed
at boot time, as required by the reference manual.
* The ARC 700 PMU does not support interrupts; although HW events may be
counted, the HW events themselves cannot serve as a trigger for a sample.
Required properties:
- compatible : should contain
"snps,arc700-pmu"
Example:
pmu {
compatible = "snps,arc700-pmu";
};

View File

@ -0,0 +1,88 @@
Annapurna Labs Alpine Platform Device Tree Bindings
---------------------------------------------------------------
Boards in the Alpine family shall have the following properties:
* Required root node properties:
compatible: must contain "al,alpine"
* Example:
/ {
model = "Annapurna Labs Alpine Dev Board";
compatible = "al,alpine";
...
}
* CPU node:
The Alpine platform includes cortex-a15 cores.
enable-method: must be "al,alpine-smp" to allow smp [1]
Example:
cpus {
#address-cells = <1>;
#size-cells = <0>;
enable-method = "al,alpine-smp";
cpu@0 {
compatible = "arm,cortex-a15";
device_type = "cpu";
reg = <0>;
};
cpu@1 {
compatible = "arm,cortex-a15";
device_type = "cpu";
reg = <1>;
};
cpu@2 {
compatible = "arm,cortex-a15";
device_type = "cpu";
reg = <2>;
};
cpu@3 {
compatible = "arm,cortex-a15";
device_type = "cpu";
reg = <3>;
};
};
* Alpine CPU resume registers
The CPU resume register are used to define required resume address after
reset.
Properties:
- compatible : Should contain "al,alpine-cpu-resume".
- reg : Offset and length of the register set for the device
Example:
cpu_resume {
compatible = "al,alpine-cpu-resume";
reg = <0xfbff5ed0 0x30>;
};
* Alpine System-Fabric Service Registers
The System-Fabric Service Registers allow various operation on CPU and
system fabric, like powering CPUs off.
Properties:
- compatible : Should contain "al,alpine-sysfabric-service" and "syscon".
- reg : Offset and length of the register set for the device
Example:
nb_service {
compatible = "al,alpine-sysfabric-service", "syscon";
reg = <0xfb070000 0x10000>;
};
[1] arm/cpu-enable-method/al,alpine-smp

14
Bindings/arm/altera.txt Normal file
View File

@ -0,0 +1,14 @@
Altera's SoCFPGA platform device tree bindings
---------------------------------------------
Boards with Cyclone 5 SoC:
Required root node properties:
compatible = "altr,socfpga-cyclone5", "altr,socfpga";
Boards with Arria 5 SoC:
Required root node properties:
compatible = "altr,socfpga-arria5", "altr,socfpga";
Boards with Arria 10 SoC:
Required root node properties:
compatible = "altr,socfpga-arria10", "altr,socfpga";

View File

@ -1,11 +0,0 @@
Altera SOCFPGA Reset Manager
Required properties:
- compatible : "altr,rst-mgr"
- reg : Should contain 1 register ranges(address and length)
Example:
rstmgr@ffd05000 {
compatible = "altr,rst-mgr";
reg = <0xffd05000 0x1000>;
};

View File

@ -0,0 +1,12 @@
Altera SOCFPGA SDRAM Controller
Required properties:
- compatible : Should contain "altr,sdr-ctl" and "syscon".
syscon is required by the Altera SOCFPGA SDRAM EDAC.
- reg : Should contain 1 register range (address and length)
Example:
sdr: sdr@ffc25000 {
compatible = "altr,sdr-ctl", "syscon";
reg = <0xffc25000 0x1000>;
};

View File

@ -2,7 +2,7 @@ Altera SOCFPGA SDRAM Error Detection & Correction [EDAC]
The EDAC accesses a range of registers in the SDRAM controller.
Required properties:
- compatible : should contain "altr,sdram-edac";
- compatible : should contain "altr,sdram-edac" or "altr,sdram-edac-a10"
- altr,sdr-syscon : phandle of the sdr module
- interrupts : Should contain the SDRAM ECC IRQ in the
appropriate format for the IRQ controller.

View File

@ -8,3 +8,13 @@ Boards with the Amlogic Meson6 SoC shall have the following properties:
Boards with the Amlogic Meson8 SoC shall have the following properties:
Required root node property:
compatible: "amlogic,meson8";
Boards with the Amlogic Meson8b SoC shall have the following properties:
Required root node property:
compatible: "amlogic,meson8b";
Board compatible values:
- "geniatech,atv1200" (Meson6)
- "minix,neo-x8" (Meson8)
- "tronfy,mxq" (Meson8b)
- "hardkernel,odroid-c1" (Meson8b)

17
Bindings/arm/apm/scu.txt Normal file
View File

@ -0,0 +1,17 @@
APM X-GENE SoC series SCU Registers
This system clock unit contain various register that control block resets,
clock enable/disables, clock divisors and other deepsleep registers.
Properties:
- compatible : should contain two values. First value must be:
- "apm,xgene-scu"
second value must be always "syscon".
- reg : offset and length of the register set.
Example :
scu: system-clk-controller@17000000 {
compatible = "apm,xgene-scu","syscon";
reg = <0x0 0x17000000 0x0 0x400>;
};

View File

@ -17,7 +17,10 @@ to deliver its interrupts via SPIs.
- interrupts : Interrupt list for secure, non-secure, virtual and
hypervisor timers, in that order.
- clock-frequency : The frequency of the main counter, in Hz. Optional.
- clock-frequency : The frequency of the main counter, in Hz. Should be present
only where necessary to work around broken firmware which does not configure
CNTFRQ on all CPUs to a uniform correct value. Use of this property is
strongly discouraged; fix your firmware unless absolutely impossible.
- always-on : a boolean property. If present, the timer is powered through an
always-on power domain, therefore it never loses context.
@ -46,7 +49,8 @@ Example:
- compatible : Should at least contain "arm,armv7-timer-mem".
- clock-frequency : The frequency of the main counter, in Hz. Optional.
- clock-frequency : The frequency of the main counter, in Hz. Should be present
only when firmware has not configured the MMIO CNTFRQ registers.
- reg : The control frame base address.

188
Bindings/arm/arm,scpi.txt Normal file
View File

@ -0,0 +1,188 @@
System Control and Power Interface (SCPI) Message Protocol
----------------------------------------------------------
Firmware implementing the SCPI described in ARM document number ARM DUI 0922B
("ARM Compute Subsystem SCP: Message Interface Protocols")[0] can be used
by Linux to initiate various system control and power operations.
Required properties:
- compatible : should be "arm,scpi"
- mboxes: List of phandle and mailbox channel specifiers
All the channels reserved by remote SCP firmware for use by
SCPI message protocol should be specified in any order
- shmem : List of phandle pointing to the shared memory(SHM) area between the
processors using these mailboxes for IPC, one for each mailbox
SHM can be any memory reserved for the purpose of this communication
between the processors.
See Documentation/devicetree/bindings/mailbox/mailbox.txt
for more details about the generic mailbox controller and
client driver bindings.
Clock bindings for the clocks based on SCPI Message Protocol
------------------------------------------------------------
This binding uses the common clock binding[1].
Container Node
==============
Required properties:
- compatible : should be "arm,scpi-clocks"
All the clocks provided by SCP firmware via SCPI message
protocol much be listed as sub-nodes under this node.
Sub-nodes
=========
Required properties:
- compatible : shall include one of the following
"arm,scpi-dvfs-clocks" - all the clocks that are variable and index based.
These clocks don't provide an entire range of values between the
limits but only discrete points within the range. The firmware
provides the mapping for each such operating frequency and the
index associated with it. The firmware also manages the
voltage scaling appropriately with the clock scaling.
"arm,scpi-variable-clocks" - all the clocks that are variable and provide full
range within the specified range. The firmware provides the
range of values within a specified range.
Other required properties for all clocks(all from common clock binding):
- #clock-cells : Should be 1. Contains the Clock ID value used by SCPI commands.
- clock-output-names : shall be the corresponding names of the outputs.
- clock-indices: The identifying number for the clocks(i.e.clock_id) in the
node. It can be non linear and hence provide the mapping of identifiers
into the clock-output-names array.
SRAM and Shared Memory for SCPI
-------------------------------
A small area of SRAM is reserved for SCPI communication between application
processors and SCP.
Required properties:
- compatible : should be "arm,juno-sram-ns" for Non-secure SRAM on Juno
The rest of the properties should follow the generic mmio-sram description
found in ../../sram/sram.txt
Each sub-node represents the reserved area for SCPI.
Required sub-node properties:
- reg : The base offset and size of the reserved area with the SRAM
- compatible : should be "arm,juno-scp-shmem" for Non-secure SRAM based
shared memory on Juno platforms
Sensor bindings for the sensors based on SCPI Message Protocol
--------------------------------------------------------------
SCPI provides an API to access the various sensors on the SoC.
Required properties:
- compatible : should be "arm,scpi-sensors".
- #thermal-sensor-cells: should be set to 1. This property follows the
thermal device tree bindings[2].
Valid cell values are raw identifiers (Sensor
ID) as used by the firmware. Refer to
platform documentation for your
implementation for the IDs to use. For Juno
R0 and Juno R1 refer to [3].
[0] http://infocenter.arm.com/help/topic/com.arm.doc.dui0922b/index.html
[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
[2] Documentation/devicetree/bindings/thermal/thermal.txt
[3] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0922b/apas03s22.html
Example:
sram: sram@50000000 {
compatible = "arm,juno-sram-ns", "mmio-sram";
reg = <0x0 0x50000000 0x0 0x10000>;
#address-cells = <1>;
#size-cells = <1>;
ranges = <0 0x0 0x50000000 0x10000>;
cpu_scp_lpri: scp-shmem@0 {
compatible = "arm,juno-scp-shmem";
reg = <0x0 0x200>;
};
cpu_scp_hpri: scp-shmem@200 {
compatible = "arm,juno-scp-shmem";
reg = <0x200 0x200>;
};
};
mailbox: mailbox0@40000000 {
....
#mbox-cells = <1>;
};
scpi_protocol: scpi@2e000000 {
compatible = "arm,scpi";
mboxes = <&mailbox 0 &mailbox 1>;
shmem = <&cpu_scp_lpri &cpu_scp_hpri>;
clocks {
compatible = "arm,scpi-clocks";
scpi_dvfs: scpi_clocks@0 {
compatible = "arm,scpi-dvfs-clocks";
#clock-cells = <1>;
clock-indices = <0>, <1>, <2>;
clock-output-names = "atlclk", "aplclk","gpuclk";
};
scpi_clk: scpi_clocks@3 {
compatible = "arm,scpi-variable-clocks";
#clock-cells = <1>;
clock-indices = <3>, <4>;
clock-output-names = "pxlclk0", "pxlclk1";
};
};
scpi_sensors0: sensors {
compatible = "arm,scpi-sensors";
#thermal-sensor-cells = <1>;
};
};
cpu@0 {
...
reg = <0 0>;
clocks = <&scpi_dvfs 0>;
};
hdlcd@7ff60000 {
...
reg = <0 0x7ff60000 0 0x1000>;
clocks = <&scpi_clk 4>;
};
thermal-zones {
soc_thermal {
polling-delay-passive = <100>;
polling-delay = <1000>;
/* sensor ID */
thermal-sensors = <&scpi_sensors0 3>;
...
};
};
In the above example, the #clock-cells is set to 1 as required.
scpi_dvfs has 3 output clocks namely: atlclk, aplclk, and gpuclk with 0,
1 and 2 as clock-indices. scpi_clk has 2 output clocks namely: pxlclk0
and pxlclk1 with 3 and 4 as clock-indices.
The first consumer in the example is cpu@0 and it has '0' as the clock
specifier which points to the first entry in the output clocks of
scpi_dvfs i.e. "atlclk".
Similarly the second example is hdlcd@7ff60000 and it has pxlclk1 as input
clock. '4' in the clock specifier here points to the second entry
in the output clocks of scpi_clocks i.e. "pxlclk1"
The thermal-sensors property in the soc_thermal node uses the
temperature sensor provided by SCP firmware to setup a thermal
zone. The ID "3" is the sensor identifier for the temperature sensor
as used by the firmware.

View File

@ -157,3 +157,69 @@ Example:
};
};
ARM Versatile Express Boards
-----------------------------
For details on the device tree bindings for ARM Versatile Express boards
please consult the vexpress.txt file in the same directory as this file.
ARM Juno Boards
----------------
The Juno boards are targeting development for AArch64 systems. The first
iteration, Juno r0, is a vehicle for evaluating big.LITTLE on AArch64,
with the second iteration, Juno r1, mainly aimed at development of PCIe
based systems. Juno r1 also has support for AXI masters placed on the TLX
connectors to join the coherency domain.
Juno boards are described in a similar way to ARM Versatile Express boards,
with the motherboard part of the hardware being described in a separate file
to highlight the fact that is part of the support infrastructure for the SoC.
Juno device tree bindings also share the Versatile Express bindings as
described under the RS1 memory mapping.
Required properties (in root node):
compatible = "arm,juno"; /* For Juno r0 board */
compatible = "arm,juno-r1"; /* For Juno r1 board */
Required nodes:
The description for the board must include:
- a "psci" node describing the boot method used for the secondary CPUs.
A detailed description of the bindings used for "psci" nodes is present
in the psci.txt file.
- a "cpus" node describing the available cores and their associated
"enable-method"s. For more details see cpus.txt file.
Example:
/dts-v1/;
/ {
model = "ARM Juno development board (r0)";
compatible = "arm,juno", "arm,vexpress";
interrupt-parent = <&gic>;
#address-cells = <2>;
#size-cells = <2>;
cpus {
#address-cells = <2>;
#size-cells = <0>;
A57_0: cpu@0 {
compatible = "arm,cortex-a57","arm,armv8";
reg = <0x0 0x0>;
device_type = "cpu";
enable-method = "psci";
};
.....
A53_0: cpu@100 {
compatible = "arm,cortex-a53","arm,armv8";
reg = <0x0 0x100>;
device_type = "cpu";
enable-method = "psci";
};
.....
};
};

View File

@ -1,32 +0,0 @@
Marvell Armada 370 and Armada XP Interrupt Controller
-----------------------------------------------------
Required properties:
- compatible: Should be "marvell,mpic"
- interrupt-controller: Identifies the node as an interrupt controller.
- msi-controller: Identifies the node as an PCI Message Signaled
Interrupt controller.
- #interrupt-cells: The number of cells to define the interrupts. Should be 1.
The cell is the IRQ number
- reg: Should contain PMIC registers location and length. First pair
for the main interrupt registers, second pair for the per-CPU
interrupt registers. For this last pair, to be compliant with SMP
support, the "virtual" must be use (For the record, these registers
automatically map to the interrupt controller registers of the
current CPU)
Example:
mpic: interrupt-controller@d0020000 {
compatible = "marvell,mpic";
#interrupt-cells = <1>;
#address-cells = <1>;
#size-cells = <1>;
interrupt-controller;
msi-controller;
reg = <0xd0020a00 0x1d0>,
<0xd0021070 0x58>;
};

View File

@ -0,0 +1,20 @@
Marvell Armada 39x Platforms Device Tree Bindings
-------------------------------------------------
Boards with a SoC of the Marvell Armada 39x family shall have the
following property:
Required root node property:
- compatible: must contain "marvell,armada390"
In addition, boards using the Marvell Armada 398 SoC shall have the
following property before the previous one:
Required root node property:
compatible: must contain "marvell,armada398"
Example:
compatible = "marvell,a398-db", "marvell,armada398", "marvell,armada390";

View File

@ -0,0 +1,26 @@
* ARMv7M System Timer
ARMv7-M includes a system timer, known as SysTick. Current driver only
implements the clocksource feature.
Required properties:
- compatible : Should be "arm,armv7m-systick"
- reg : The address range of the timer
Required clocking property, have to be one of:
- clocks : The input clock of the timer
- clock-frequency : The rate in HZ in input of the ARM SysTick
Examples:
systick: timer@e000e010 {
compatible = "arm,armv7m-systick";
reg = <0xe000e010 0x10>;
clocks = <&clk_systick>;
};
systick: timer@e000e010 {
compatible = "arm,armv7m-systick";
reg = <0xe000e010 0x10>;
clock-frequency = <90000000>;
};

View File

@ -1,81 +0,0 @@
* AT91's Analog to Digital Converter (ADC)
Required properties:
- compatible: Should be "atmel,<chip>-adc"
<chip> can be "at91sam9260", "at91sam9g45" or "at91sam9x5"
- reg: Should contain ADC registers location and length
- interrupts: Should contain the IRQ line for the ADC
- atmel,adc-channels-used: Bitmask of the channels muxed and enable for this
device
- atmel,adc-startup-time: Startup Time of the ADC in microseconds as
defined in the datasheet
- atmel,adc-vref: Reference voltage in millivolts for the conversions
- atmel,adc-res: List of resolution in bits supported by the ADC. List size
must be two at least.
- atmel,adc-res-names: Contains one identifier string for each resolution
in atmel,adc-res property. "lowres" and "highres"
identifiers are required.
Optional properties:
- atmel,adc-use-external: Boolean to enable of external triggers
- atmel,adc-use-res: String corresponding to an identifier from
atmel,adc-res-names property. If not specified, the highest
resolution will be used.
- atmel,adc-sleep-mode: Boolean to enable sleep mode when no conversion
- atmel,adc-sample-hold-time: Sample and Hold Time in microseconds
- atmel,adc-ts-wires: Number of touch screen wires. Should be 4 or 5. If this
value is set, then adc driver will enable touch screen
support.
NOTE: when adc touch screen enabled, the adc hardware trigger will be
disabled. Since touch screen will occupied the trigger register.
- atmel,adc-ts-pressure-threshold: a pressure threshold for touchscreen. It
make touch detect more precision.
Optional trigger Nodes:
- Required properties:
* trigger-name: Name of the trigger exposed to the user
* trigger-value: Value to put in the Trigger register
to activate this trigger
- Optional properties:
* trigger-external: Is the trigger an external trigger?
Examples:
adc0: adc@fffb0000 {
compatible = "atmel,at91sam9260-adc";
reg = <0xfffb0000 0x100>;
interrupts = <20 4>;
atmel,adc-channel-base = <0x30>;
atmel,adc-channels-used = <0xff>;
atmel,adc-drdy-mask = <0x10000>;
atmel,adc-num-channels = <8>;
atmel,adc-startup-time = <40>;
atmel,adc-status-register = <0x1c>;
atmel,adc-trigger-register = <0x08>;
atmel,adc-use-external;
atmel,adc-vref = <3300>;
atmel,adc-res = <8 10>;
atmel,adc-res-names = "lowres", "highres";
atmel,adc-use-res = "lowres";
trigger@0 {
trigger-name = "external-rising";
trigger-value = <0x1>;
trigger-external;
};
trigger@1 {
trigger-name = "external-falling";
trigger-value = <0x2>;
trigger-external;
};
trigger@2 {
trigger-name = "external-any";
trigger-value = <0x3>;
trigger-external;
};
trigger@3 {
trigger-name = "continuous";
trigger-value = <0x6>;
};
};

View File

@ -1,42 +0,0 @@
* Advanced Interrupt Controller (AIC)
Required properties:
- compatible: Should be "atmel,<chip>-aic"
<chip> can be "at91rm9200" or "sama5d3"
- interrupt-controller: Identifies the node as an interrupt controller.
- interrupt-parent: For single AIC system, it is an empty property.
- #interrupt-cells: The number of cells to define the interrupts. It should be 3.
The first cell is the IRQ number (aka "Peripheral IDentifier" on datasheet).
The second cell is used to specify flags:
bits[3:0] trigger type and level flags:
1 = low-to-high edge triggered.
2 = high-to-low edge triggered.
4 = active high level-sensitive.
8 = active low level-sensitive.
Valid combinations are 1, 2, 3, 4, 8.
Default flag for internal sources should be set to 4 (active high).
The third cell is used to specify the irq priority from 0 (lowest) to 7
(highest).
- reg: Should contain AIC registers location and length
- atmel,external-irqs: u32 array of external irqs.
Examples:
/*
* AIC
*/
aic: interrupt-controller@fffff000 {
compatible = "atmel,at91rm9200-aic";
interrupt-controller;
interrupt-parent;
#interrupt-cells = <3>;
reg = <0xfffff000 0x200>;
};
/*
* An interrupt generating device that is wired to an AIC.
*/
dma: dma-controller@ffffec00 {
compatible = "atmel,at91sam9g45-dma";
reg = <0xffffec00 0x200>;
interrupts = <21 4 5>;
};

View File

@ -27,6 +27,8 @@ compatible: must be one of:
o "atmel,at91sam9xe"
* "atmel,sama5" for SoCs using a Cortex-A5, shall be extended with the specific
SoC family:
o "atmel,sama5d2" shall be extended with the specific SoC compatible:
- "atmel,sama5d27"
o "atmel,sama5d3" shall be extended with the specific SoC compatible:
- "atmel,sama5d31"
- "atmel,sama5d33"
@ -46,10 +48,13 @@ PIT Timer required properties:
shared across all System Controller members.
System Timer (ST) required properties:
- compatible: Should be "atmel,at91rm9200-st"
- compatible: Should be "atmel,at91rm9200-st", "syscon", "simple-mfd"
- reg: Should contain registers location and length
- interrupts: Should contain interrupt for the ST which is the IRQ line
shared across all System Controller members.
- clocks: phandle to input clock.
Its subnodes can be:
- watchdog: compatible should be "atmel,at91rm9200-wdt"
TC/TCLIB Timer required properties:
- compatible: Should be "atmel,<chip>-tcb".
@ -59,7 +64,7 @@ TC/TCLIB Timer required properties:
Note that you can specify several interrupt cells if the TC
block has one interrupt per channel.
- clock-names: tuple listing input clock names.
Required elements: "t0_clk"
Required elements: "t0_clk", "slow_clk"
Optional elements: "t1_clk", "t2_clk"
- clocks: phandles to input clocks.
@ -85,18 +90,20 @@ One interrupt per TC channel in a TC block:
RSTC Reset Controller required properties:
- compatible: Should be "atmel,<chip>-rstc".
<chip> can be "at91sam9260" or "at91sam9g45"
<chip> can be "at91sam9260" or "at91sam9g45" or "sama5d3"
- reg: Should contain registers location and length
- clocks: phandle to input clock.
Example:
rstc@fffffd00 {
compatible = "atmel,at91sam9260-rstc";
reg = <0xfffffd00 0x10>;
clocks = <&clk32k>;
};
RAMC SDRAM/DDR Controller required properties:
- compatible: Should be "atmel,at91rm9200-sdramc",
- compatible: Should be "atmel,at91rm9200-sdramc", "syscon"
"atmel,at91sam9260-sdramc",
"atmel,at91sam9g45-ddramc",
"atmel,sama5d3-ddramc",
@ -115,6 +122,7 @@ required properties:
- compatible: Should be "atmel,<chip>-shdwc".
<chip> can be "at91sam9260", "at91sam9rl" or "at91sam9x5".
- reg: Should contain registers location and length
- clocks: phandle to input clock.
optional properties:
- atmel,wakeup-mode: String, operation mode of the wakeup mode.
@ -133,9 +141,10 @@ optional at91sam9x5 properties:
Example:
rstc@fffffd00 {
compatible = "atmel,at91sam9260-rstc";
reg = <0xfffffd00 0x10>;
shdwc@fffffd10 {
compatible = "atmel,at91sam9260-shdwc";
reg = <0xfffffd10 0x10>;
clocks = <&clk32k>;
};
Special Function Registers (SFR)

View File

@ -1,9 +0,0 @@
Broadcom BCM63138 DSL System-on-a-Chip device tree bindings
-----------------------------------------------------------
Boards compatible with the BCM63138 DSL System-on-a-Chip should have the
following properties:
Required root node property:
compatible: should be "brcm,bcm63138"

View File

@ -0,0 +1,39 @@
Broadcom BCM2835 device tree bindings
-------------------------------------------
Raspberry Pi Model A
Required root node properties:
compatible = "raspberrypi,model-a", "brcm,bcm2835";
Raspberry Pi Model A+
Required root node properties:
compatible = "raspberrypi,model-a-plus", "brcm,bcm2835";
Raspberry Pi Model B
Required root node properties:
compatible = "raspberrypi,model-b", "brcm,bcm2835";
Raspberry Pi Model B (no P5)
early model B with I2C0 rather than I2C1 routed to the expansion header
Required root node properties:
compatible = "raspberrypi,model-b-i2c0", "brcm,bcm2835";
Raspberry Pi Model B rev2
Required root node properties:
compatible = "raspberrypi,model-b-rev2", "brcm,bcm2835";
Raspberry Pi Model B+
Required root node properties:
compatible = "raspberrypi,model-b-plus", "brcm,bcm2835";
Raspberry Pi 2 Model B
Required root node properties:
compatible = "raspberrypi,2-model-b", "brcm,bcm2836";
Raspberry Pi Compute Module
Required root node properties:
compatible = "raspberrypi,compute-module", "brcm,bcm2835";
Generic BCM2835 board
Required root node properties:
compatible = "brcm,bcm2835";

View File

@ -5,4 +5,11 @@ Boards with the BCM4708 SoC shall have the following properties:
Required root node property:
bcm4708
compatible = "brcm,bcm4708";
bcm4709
compatible = "brcm,bcm4709";
bcm53012
compatible = "brcm,bcm53012";

View File

@ -0,0 +1,85 @@
Broadcom BCM63138 DSL System-on-a-Chip device tree bindings
-----------------------------------------------------------
Boards compatible with the BCM63138 DSL System-on-a-Chip should have the
following properties:
Required root node property:
compatible: should be "brcm,bcm63138"
An optional Boot lookup table Device Tree node is required for secondary CPU
initialization as well as a 'resets' phandle to the correct PMB controller as
defined in reset/brcm,bcm63138-pmb.txt for this secondary CPU, and an
'enable-method' property.
Required properties for the Boot lookup table node:
- compatible: should be "brcm,bcm63138-bootlut"
- reg: register base address and length for the Boot Lookup table
Optional properties for the primary CPU node:
- enable-method: should be "brcm,bcm63138"
Optional properties for the secondary CPU node:
- enable-method: should be "brcm,bcm63138"
- resets: phandle to the relevant PMB controller, one integer indicating the internal
bus number, and a second integer indicating the address of the CPU in the PMB
internal bus number.
Example:
cpus {
cpu@0 {
compatible = "arm,cotex-a9";
reg = <0>;
...
enable-method = "brcm,bcm63138";
};
cpu@1 {
compatible = "arm,cortex-a9";
reg = <1>;
...
enable-method = "brcm,bcm63138";
resets = <&pmb0 4 1>;
};
};
bootlut: bootlut@8000 {
compatible = "brcm,bcm63138-bootlut";
reg = <0x8000 0x50>;
};
=======
reboot
------
Two nodes are required for software reboot: a timer node and a syscon-reboot node.
Timer node:
- compatible: Must be "brcm,bcm6328-timer", "syscon"
- reg: Register base address and length
Syscon reboot node:
See Documentation/devicetree/bindings/power/reset/syscon-reboot.txt for the
detailed list of properties, the two values defined below are specific to the
BCM6328-style timer:
- offset: Should be 0x34 to denote the offset of the TIMER_WD_TIMER_RESET register
from the beginning of the TIMER block
- mask: Should be 1 for the SoftRst bit.
Example:
timer: timer@80 {
compatible = "brcm,bcm6328-timer", "syscon";
reg = <0x80 0x3c>;
};
reboot {
compatible = "syscon-reboot";
regmap = <&timer>;
offset = <0x34>;
mask = <0x1>;
};

View File

@ -0,0 +1,255 @@
ARM Broadcom STB platforms Device Tree Bindings
-----------------------------------------------
Boards with Broadcom Brahma15 ARM-based BCMxxxx (generally BCM7xxx variants)
SoC shall have the following DT organization:
Required root node properties:
- compatible: "brcm,bcm<chip_id>", "brcm,brcmstb"
example:
/ {
#address-cells = <2>;
#size-cells = <2>;
model = "Broadcom STB (bcm7445)";
compatible = "brcm,bcm7445", "brcm,brcmstb";
Further, syscon nodes that map platform-specific registers used for general
system control is required:
- compatible: "brcm,bcm<chip_id>-sun-top-ctrl", "syscon"
- compatible: "brcm,bcm<chip_id>-hif-cpubiuctrl", "syscon"
- compatible: "brcm,bcm<chip_id>-hif-continuation", "syscon"
hif-cpubiuctrl node
-------------------
SoCs with Broadcom Brahma15 ARM-based CPUs have a specific Bus Interface Unit
(BIU) block which controls and interfaces the CPU complex to the different
Memory Controller Ports (MCP), one per memory controller (MEMC). This BIU block
offers a feature called Write Pairing which consists in collapsing two adjacent
cache lines into a single (bursted) write transaction towards the memory
controller (MEMC) to maximize write bandwidth.
Required properties:
- compatible: must be "brcm,bcm7445-hif-cpubiuctrl", "syscon"
Optional properties:
- brcm,write-pairing:
Boolean property, which when present indicates that the chip
supports write-pairing.
example:
rdb {
#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
ranges = <0 0x00 0xf0000000 0x1000000>;
sun_top_ctrl: syscon@404000 {
compatible = "brcm,bcm7445-sun-top-ctrl", "syscon";
reg = <0x404000 0x51c>;
};
hif_cpubiuctrl: syscon@3e2400 {
compatible = "brcm,bcm7445-hif-cpubiuctrl", "syscon";
reg = <0x3e2400 0x5b4>;
brcm,write-pairing;
};
hif_continuation: syscon@452000 {
compatible = "brcm,bcm7445-hif-continuation", "syscon";
reg = <0x452000 0x100>;
};
};
Nodes that allow for support of SMP initialization and reboot are required:
smpboot
-------
Required properties:
- compatible
The string "brcm,brcmstb-smpboot".
- syscon-cpu
A phandle / integer array property which lets the BSP know the location
of certain CPU power-on registers.
The layout of the property is as follows:
o a phandle to the "hif_cpubiuctrl" syscon node
o offset to the base CPU power zone register
o offset to the base CPU reset register
- syscon-cont
A phandle pointing to the syscon node which describes the CPU boot
continuation registers.
o a phandle to the "hif_continuation" syscon node
example:
smpboot {
compatible = "brcm,brcmstb-smpboot";
syscon-cpu = <&hif_cpubiuctrl 0x88 0x178>;
syscon-cont = <&hif_continuation>;
};
reboot
-------
Required properties
- compatible
The string property "brcm,brcmstb-reboot" for 40nm/28nm chips with
the new SYS_CTRL interface, or "brcm,bcm7038-reboot" for 65nm
chips with the old SUN_TOP_CTRL interface.
- syscon
A phandle / integer array that points to the syscon node which describes
the general system reset registers.
o a phandle to "sun_top_ctrl"
o offset to the "reset source enable" register
o offset to the "software master reset" register
example:
reboot {
compatible = "brcm,brcmstb-reboot";
syscon = <&sun_top_ctrl 0x304 0x308>;
};
Power management
----------------
For power management (particularly, S2/S3/S5 system suspend), the following SoC
components are needed:
= Always-On control block (AON CTRL)
This hardware provides control registers for the "always-on" (even in low-power
modes) hardware, such as the Power Management State Machine (PMSM).
Required properties:
- compatible : should contain "brcm,brcmstb-aon-ctrl"
- reg : the register start and length for the AON CTRL block
Example:
aon-ctrl@410000 {
compatible = "brcm,brcmstb-aon-ctrl";
reg = <0x410000 0x400>;
};
= Memory controllers
A Broadcom STB SoC typically has a number of independent memory controllers,
each of which may have several associated hardware blocks, which are versioned
independently (control registers, DDR PHYs, etc.). One might consider
describing these controllers as a parent "memory controllers" block, which
contains N sub-nodes (one for each controller in the system), each of which is
associated with a number of hardware register resources (e.g., its PHY). See
the example device tree snippet below.
== MEMC (MEMory Controller)
Represents a single memory controller instance.
Required properties:
- compatible : should contain "brcm,brcmstb-memc" and "simple-bus"
Should contain subnodes for any of the following relevant hardware resources:
== DDR PHY control
Control registers for this memory controller's DDR PHY.
Required properties:
- compatible : should contain one of these
"brcm,brcmstb-ddr-phy-v225.1"
"brcm,brcmstb-ddr-phy-v240.1"
"brcm,brcmstb-ddr-phy-v240.2"
- reg : the DDR PHY register range
== DDR SHIMPHY
Control registers for this memory controller's DDR SHIMPHY.
Required properties:
- compatible : should contain "brcm,brcmstb-ddr-shimphy-v1.0"
- reg : the DDR SHIMPHY register range
== MEMC DDR control
Sequencer DRAM parameters and control registers. Used for Self-Refresh
Power-Down (SRPD), among other things.
Required properties:
- compatible : should contain "brcm,brcmstb-memc-ddr"
- reg : the MEMC DDR register range
Example:
memory_controllers {
ranges;
compatible = "simple-bus";
memc@0 {
compatible = "brcm,brcmstb-memc", "simple-bus";
ranges;
ddr-phy@f1106000 {
compatible = "brcm,brcmstb-ddr-phy-v240.1";
reg = <0xf1106000 0x21c>;
};
shimphy@f1108000 {
compatible = "brcm,brcmstb-ddr-shimphy-v1.0";
reg = <0xf1108000 0xe4>;
};
memc-ddr@f1102000 {
reg = <0xf1102000 0x800>;
compatible = "brcm,brcmstb-memc-ddr";
};
};
memc@1 {
compatible = "brcm,brcmstb-memc", "simple-bus";
ranges;
ddr-phy@f1186000 {
compatible = "brcm,brcmstb-ddr-phy-v240.1";
reg = <0xf1186000 0x21c>;
};
shimphy@f1188000 {
compatible = "brcm,brcmstb-ddr-shimphy-v1.0";
reg = <0xf1188000 0xe4>;
};
memc-ddr@f1182000 {
reg = <0xf1182000 0x800>;
compatible = "brcm,brcmstb-memc-ddr";
};
};
memc@2 {
compatible = "brcm,brcmstb-memc", "simple-bus";
ranges;
ddr-phy@f1206000 {
compatible = "brcm,brcmstb-ddr-phy-v240.1";
reg = <0xf1206000 0x21c>;
};
shimphy@f1208000 {
compatible = "brcm,brcmstb-ddr-shimphy-v1.0";
reg = <0xf1208000 0xe4>;
};
memc-ddr@f1202000 {
reg = <0xf1202000 0x800>;
compatible = "brcm,brcmstb-memc-ddr";
};
};
};

View File

@ -0,0 +1,39 @@
Broadcom Northstar Plus SoC CPU Enable Method
---------------------------------------------
This binding defines the enable method used for starting secondary
CPU in the following Broadcom SoCs:
BCM58522, BCM58525, BCM58535, BCM58622, BCM58623, BCM58625, BCM88312
The enable method is specified by defining the following required
properties in the corresponding secondary "cpu" device tree node:
- enable-method = "brcm,bcm-nsp-smp";
- secondary-boot-reg = <...>;
The secondary-boot-reg property is a u32 value that specifies the
physical address of the register which should hold the common
entry point for a secondary CPU. This entry is cpu node specific
and should be added per cpu. E.g., in case of NSP (BCM58625) which
is a dual core CPU SoC, this entry should be added to cpu1 node.
Example:
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu0: cpu@0 {
device_type = "cpu";
compatible = "arm,cortex-a9";
next-level-cache = <&L2>;
reg = <0>;
};
cpu1: cpu@1 {
device_type = "cpu";
compatible = "arm,cortex-a9";
next-level-cache = <&L2>;
enable-method = "brcm,bcm-nsp-smp";
secondary-boot-reg = <0xffff042c>;
reg = <1>;
};
};

View File

@ -0,0 +1,34 @@
Broadcom Northstar Plus device tree bindings
--------------------------------------------
Broadcom Northstar Plus family of SoCs are used for switching control
and management applications as well as residential router/gateway
applications. The SoC features dual core Cortex A9 ARM CPUs, integrating
several peripheral interfaces including multiple Gigabit Ethernet PHYs,
DDR3 memory, PCIE Gen-2, USB 2.0 and USB 3.0, serial and NAND flash,
SATA and several other IO controllers.
Boards with Northstar Plus SoCs shall have the following properties:
Required root node property:
BCM58522
compatible = "brcm,bcm58522", "brcm,nsp";
BCM58525
compatible = "brcm,bcm58525", "brcm,nsp";
BCM58535
compatible = "brcm,bcm58535", "brcm,nsp";
BCM58622
compatible = "brcm,bcm58622", "brcm,nsp";
BCM58623
compatible = "brcm,bcm58623", "brcm,nsp";
BCM58625
compatible = "brcm,bcm58625", "brcm,nsp";
BCM88312
compatible = "brcm,bcm88312", "brcm,nsp";

9
Bindings/arm/bcm/ns2.txt Normal file
View File

@ -0,0 +1,9 @@
Broadcom North Star 2 (NS2) device tree bindings
------------------------------------------------
Boards with NS2 shall have the following properties:
Required root node property:
NS2 SVK board
compatible = "brcm,ns2-svk", "brcm,ns2";

View File

@ -0,0 +1,14 @@
Raspberry Pi VideoCore firmware driver
Required properties:
- compatible: Should be "raspberrypi,bcm2835-firmware"
- mboxes: Phandle to the firmware device's Mailbox.
(See: ../mailbox/mailbox.txt for more information)
Example:
firmware {
compatible = "raspberrypi,bcm2835-firmware";
mboxes = <&mailbox>;
};

View File

@ -1,8 +0,0 @@
Broadcom BCM2835 device tree bindings
-------------------------------------------
Boards with the BCM2835 SoC shall have the following properties:
Required root node property:
compatible = "brcm,bcm2835";

View File

@ -1,97 +0,0 @@
ARM Broadcom STB platforms Device Tree Bindings
-----------------------------------------------
Boards with Broadcom Brahma15 ARM-based BCMxxxx (generally BCM7xxx variants)
SoC shall have the following DT organization:
Required root node properties:
- compatible: "brcm,bcm<chip_id>", "brcm,brcmstb"
example:
/ {
#address-cells = <2>;
#size-cells = <2>;
model = "Broadcom STB (bcm7445)";
compatible = "brcm,bcm7445", "brcm,brcmstb";
Further, syscon nodes that map platform-specific registers used for general
system control is required:
- compatible: "brcm,bcm<chip_id>-sun-top-ctrl", "syscon"
- compatible: "brcm,bcm<chip_id>-hif-cpubiuctrl", "syscon"
- compatible: "brcm,bcm<chip_id>-hif-continuation", "syscon"
example:
rdb {
#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
ranges = <0 0x00 0xf0000000 0x1000000>;
sun_top_ctrl: syscon@404000 {
compatible = "brcm,bcm7445-sun-top-ctrl", "syscon";
reg = <0x404000 0x51c>;
};
hif_cpubiuctrl: syscon@3e2400 {
compatible = "brcm,bcm7445-hif-cpubiuctrl", "syscon";
reg = <0x3e2400 0x5b4>;
};
hif_continuation: syscon@452000 {
compatible = "brcm,bcm7445-hif-continuation", "syscon";
reg = <0x452000 0x100>;
};
};
Lastly, nodes that allow for support of SMP initialization and reboot are
required:
smpboot
-------
Required properties:
- compatible
The string "brcm,brcmstb-smpboot".
- syscon-cpu
A phandle / integer array property which lets the BSP know the location
of certain CPU power-on registers.
The layout of the property is as follows:
o a phandle to the "hif_cpubiuctrl" syscon node
o offset to the base CPU power zone register
o offset to the base CPU reset register
- syscon-cont
A phandle pointing to the syscon node which describes the CPU boot
continuation registers.
o a phandle to the "hif_continuation" syscon node
example:
smpboot {
compatible = "brcm,brcmstb-smpboot";
syscon-cpu = <&hif_cpubiuctrl 0x88 0x178>;
syscon-cont = <&hif_continuation>;
};
reboot
-------
Required properties
- compatible
The string property "brcm,brcmstb-reboot" for 40nm/28nm chips with
the new SYS_CTRL interface, or "brcm,bcm7038-reboot" for 65nm
chips with the old SUN_TOP_CTRL interface.
- syscon
A phandle / integer array that points to the syscon node which describes
the general system reset registers.
o a phandle to "sun_top_ctrl"
o offset to the "reset source enable" register
o offset to the "software master reset" register
example:
reboot {
compatible = "brcm,brcmstb-reboot";
syscon = <&sun_top_ctrl 0x304 0x308>;
};

View File

@ -31,8 +31,9 @@ specific to ARM.
- compatible
Usage: required
Value type: <string>
Definition: must be set to
Definition: must contain one of the following:
"arm,cci-400"
"arm,cci-500"
- reg
Usage: required
@ -94,8 +95,12 @@ specific to ARM.
- compatible
Usage: required
Value type: <string>
Definition: must be "arm,cci-400-pmu"
Definition: Must contain one of:
"arm,cci-400-pmu,r0"
"arm,cci-400-pmu,r1"
"arm,cci-400-pmu" - DEPRECATED, permitted only where OS has
secure acces to CCI registers
"arm,cci-500-pmu,r0"
- reg:
Usage: required
Value type: Integer cells. A register entry, expressed

View File

@ -27,6 +27,11 @@ Required properties:
* For "marvell,armada-380-coherency-fabric", only one pair is needed
for the per-CPU fabric registers.
Optional properties:
- broken-idle: boolean to set when the Idle mode is not supported by the
hardware.
Examples:
coherency-fabric@d0020200 {

View File

@ -0,0 +1,25 @@
CompuLab SB-SOM is a multi-module baseboard capable of carrying:
- CM-T43
- CM-T54
- CM-QS600
- CL-SOM-AM57x
- CL-SOM-iMX7
modules with minor modifications to the SB-SOM assembly.
Required root node properties:
- compatible = should be "compulab,sb-som"
Compulab CL-SOM-iMX7 is a miniature System-on-Module (SoM) based on
Freescale i.MX7 ARM Cortex-A7 System-on-Chip.
Required root node properties:
- compatible = "compulab,cl-som-imx7", "fsl,imx7d";
Compulab SBC-iMX7 is a single board computer based on the
Freescale i.MX7 system-on-chip. SBC-iMX7 is implemented with
the CL-SOM-iMX7 System-on-Module providing most of the functions,
and SB-SOM-iMX7 carrier board providing additional peripheral
functions and connectors.
Required root node properties:
- compatible = "compulab,sbc-imx7", "compulab,cl-som-imx7", "fsl,imx7d";

View File

@ -17,15 +17,20 @@ its hardware characteristcs.
- "arm,coresight-tmc", "arm,primecell";
- "arm,coresight-funnel", "arm,primecell";
- "arm,coresight-etm3x", "arm,primecell";
- "arm,coresight-etm4x", "arm,primecell";
- "qcom,coresight-replicator1x", "arm,primecell";
* reg: physical base address and length of the register
set(s) of the component.
* clocks: the clock associated to this component.
* clocks: the clocks associated to this component.
* clock-names: the name of the clock as referenced by the code.
Since we are using the AMBA framework, the name should be
"apb_pclk".
* clock-names: the name of the clocks referenced by the code.
Since we are using the AMBA framework, the name of the clock
providing the interconnect should be "apb_pclk", and some
coresight blocks also have an additional clock "atclk", which
clocks the core of that coresight component. The latter clock
is optional.
* port or ports: The representation of the component's port
layout using the generic DT graph presentation found in
@ -61,7 +66,6 @@ Example:
compatible = "arm,coresight-etb10", "arm,primecell";
reg = <0 0x20010000 0 0x1000>;
coresight-default-sink;
clocks = <&oscclk6a>;
clock-names = "apb_pclk";
port {

View File

@ -0,0 +1,52 @@
========================================================
Secondary CPU enable-method "al,alpine-smp" binding
========================================================
This document describes the "al,alpine-smp" method for
enabling secondary CPUs. To apply to all CPUs, a single
"al,alpine-smp" enable method should be defined in the
"cpus" node.
Enable method name: "al,alpine-smp"
Compatible machines: "al,alpine"
Compatible CPUs: "arm,cortex-a15"
Related properties: (none)
Note:
This enable method requires valid nodes compatible with
"al,alpine-cpu-resume" and "al,alpine-nb-service"[1].
Example:
cpus {
#address-cells = <1>;
#size-cells = <0>;
enable-method = "al,alpine-smp";
cpu@0 {
compatible = "arm,cortex-a15";
device_type = "cpu";
reg = <0>;
};
cpu@1 {
compatible = "arm,cortex-a15";
device_type = "cpu";
reg = <1>;
};
cpu@2 {
compatible = "arm,cortex-a15";
device_type = "cpu";
reg = <2>;
};
cpu@3 {
compatible = "arm,cortex-a15";
device_type = "cpu";
reg = <3>;
};
};
--
[1] arm/al,alpine.txt

View File

@ -157,6 +157,7 @@ nodes to be present and contain the properties described below.
"arm,cortex-a17"
"arm,cortex-a53"
"arm,cortex-a57"
"arm,cortex-a72"
"arm,cortex-m0"
"arm,cortex-m0+"
"arm,cortex-m1"
@ -188,15 +189,23 @@ nodes to be present and contain the properties described below.
# On ARM 32-bit systems this property is optional and
can be one of:
"allwinner,sun6i-a31"
"allwinner,sun8i-a23"
"arm,psci"
"arm,realview-smp"
"brcm,bcm-nsp-smp"
"brcm,brahma-b15"
"marvell,armada-375-smp"
"marvell,armada-380-smp"
"marvell,armada-390-smp"
"marvell,armada-xp-smp"
"mediatek,mt6589-smp"
"mediatek,mt81xx-tz-smp"
"qcom,gcc-msm8660"
"qcom,kpss-acc-v1"
"qcom,kpss-acc-v2"
"rockchip,rk3036-smp"
"rockchip,rk3066-smp"
"ste,dbx500-smp"
- cpu-release-addr
Usage: required for systems that have an "enable-method"
@ -237,6 +246,23 @@ nodes to be present and contain the properties described below.
Definition: Specifies the syscon node controlling the cpu core
power domains.
- dynamic-power-coefficient
Usage: optional
Value type: <prop-encoded-array>
Definition: A u32 value that represents the running time dynamic
power coefficient in units of mW/MHz/uVolt^2. The
coefficient can either be calculated from power
measurements or derived by analysis.
The dynamic power consumption of the CPU is
proportional to the square of the Voltage (V) and
the clock frequency (f). The coefficient is used to
calculate the dynamic power as below -
Pdyn = dynamic-power-coefficient * V^2 * f
where voltage is in uV, frequency is in MHz.
Example 1 (dual-cluster big.LITTLE system 32-bit):
cpus {

View File

@ -0,0 +1,14 @@
Freescale Vybrid Miscellaneous System Control - CPU Configuration
The MSCM IP contains multiple sub modules, this binding describes the first
block of registers which contains CPU configuration information.
Required properties:
- compatible: "fsl,vf610-mscm-cpucfg", "syscon"
- reg: the register range of the MSCM CPU configuration registers
Example:
mscm_cpucfg: cpucfg@40001000 {
compatible = "fsl,vf610-mscm-cpucfg", "syscon";
reg = <0x40001000 0x800>;
}

View File

@ -0,0 +1,33 @@
Freescale Vybrid Miscellaneous System Control - Interrupt Router
The MSCM IP contains multiple sub modules, this binding describes the second
block of registers which control the interrupt router. The interrupt router
allows to configure the recipient of each peripheral interrupt. Furthermore
it controls the directed processor interrupts. The module is available in all
Vybrid SoC's but is only really useful in dual core configurations (VF6xx
which comes with a Cortex-A5/Cortex-M4 combination).
Required properties:
- compatible: "fsl,vf610-mscm-ir"
- reg: the register range of the MSCM Interrupt Router
- fsl,cpucfg: The handle to the MSCM CPU configuration node, required
to get the current CPU ID
- interrupt-controller: Identifies the node as an interrupt controller
- #interrupt-cells: Two cells, interrupt number and cells.
The hardware interrupt number according to interrupt
assignment of the interrupt router is required.
Flags get passed only when using GIC as parent. Flags
encoding as documented by the GIC bindings.
- interrupt-parent: Should be the phandle for the interrupt controller of
the CPU the device tree is intended to be used on. This
is either the node of the GIC or NVIC controller.
Example:
mscm_ir: interrupt-controller@40001800 {
compatible = "fsl,vf610-mscm-ir";
reg = <0x40001800 0x400>;
fsl,cpucfg = <&mscm_cpucfg>;
interrupt-controller;
#interrupt-cells = <2>;
interrupt-parent = <&intc>;
}

View File

@ -81,12 +81,15 @@ Freescale Vybrid Platform Device Tree Bindings
For the Vybrid SoC familiy all variants with DDR controller are supported,
which is the VF5xx and VF6xx series. Out of historical reasons, in most
places the kernel uses vf610 to refer to the whole familiy.
The compatible string "fsl,vf610m4" is used for the secondary Cortex-M4
core support.
Required root node compatible property (one of them):
- compatible = "fsl,vf500";
- compatible = "fsl,vf510";
- compatible = "fsl,vf600";
- compatible = "fsl,vf610";
- compatible = "fsl,vf610m4";
Freescale LS1021A Platform Device Tree Bindings
------------------------------------------------
@ -125,10 +128,22 @@ Example:
reg = <0x0 0x1ee0000 0x0 0x10000>;
};
Freescale LS2085A SoC Device Tree Bindings
------------------------------------------
Freescale ARMv8 based Layerscape SoC family Device Tree Bindings
----------------------------------------------------------------
LS2085A ARMv8 based Simulator model
LS1043A ARMv8 based RDB Board
Required root node properties:
- compatible = "fsl,ls2085a-simu", "fsl,ls2085a";
- compatible = "fsl,ls1043a-rdb", "fsl,ls1043a";
LS2080A ARMv8 based Simulator model
Required root node properties:
- compatible = "fsl,ls2080a-simu", "fsl,ls2080a";
LS2080A ARMv8 based QDS Board
Required root node properties:
- compatible = "fsl,ls2080a-qds", "fsl,ls2080a";
LS2080A ARMv8 based RDB Board
Required root node properties:
- compatible = "fsl,ls2080a-rdb", "fsl,ls2080a";

View File

@ -1,5 +0,0 @@
Geniatech platforms device tree bindings
-------------------------------------------
Geniatech ATV1200
- compatible = "geniatech,atv1200"

View File

@ -1,5 +1,8 @@
Hisilicon Platforms Device Tree Bindings
----------------------------------------------------
Hi6220 SoC
Required root node properties:
- compatible = "hisilicon,hi6220";
Hi4511 Board
Required root node properties:
@ -13,6 +16,13 @@ HiP01 ca9x2 Board
Required root node properties:
- compatible = "hisilicon,hip01-ca9x2";
HiKey Board
Required root node properties:
- compatible = "hisilicon,hi6220-hikey", "hisilicon,hi6220";
HiP05 D02 Board
Required root node properties:
- compatible = "hisilicon,hip05-d02";
Hisilicon system controller
@ -40,6 +50,105 @@ Example:
reboot-offset = <0x4>;
};
-----------------------------------------------------------------------
Hisilicon Hi6220 system controller
Required properties:
- compatible : "hisilicon,hi6220-sysctrl"
- reg : Register address and size
- #clock-cells: should be set to 1, many clock registers are defined
under this controller and this property must be present.
Hisilicon designs this controller as one of the system controllers,
its main functions are the same as Hisilicon system controller, but
the register offset of some core modules are different.
Example:
/*for Hi6220*/
sys_ctrl: sys_ctrl@f7030000 {
compatible = "hisilicon,hi6220-sysctrl", "syscon";
reg = <0x0 0xf7030000 0x0 0x2000>;
#clock-cells = <1>;
};
Hisilicon Hi6220 Power Always ON domain controller
Required properties:
- compatible : "hisilicon,hi6220-aoctrl"
- reg : Register address and size
- #clock-cells: should be set to 1, many clock registers are defined
under this controller and this property must be present.
Hisilicon designs this system controller to control the power always
on domain for mobile platform.
Example:
/*for Hi6220*/
ao_ctrl: ao_ctrl@f7800000 {
compatible = "hisilicon,hi6220-aoctrl", "syscon";
reg = <0x0 0xf7800000 0x0 0x2000>;
#clock-cells = <1>;
};
Hisilicon Hi6220 Media domain controller
Required properties:
- compatible : "hisilicon,hi6220-mediactrl"
- reg : Register address and size
- #clock-cells: should be set to 1, many clock registers are defined
under this controller and this property must be present.
Hisilicon designs this system controller to control the multimedia
domain(e.g. codec, G3D ...) for mobile platform.
Example:
/*for Hi6220*/
media_ctrl: media_ctrl@f4410000 {
compatible = "hisilicon,hi6220-mediactrl", "syscon";
reg = <0x0 0xf4410000 0x0 0x1000>;
#clock-cells = <1>;
};
Hisilicon Hi6220 Power Management domain controller
Required properties:
- compatible : "hisilicon,hi6220-pmctrl"
- reg : Register address and size
- #clock-cells: should be set to 1, some clock registers are define
under this controller and this property must be present.
Hisilicon designs this system controller to control the power management
domain for mobile platform.
Example:
/*for Hi6220*/
pm_ctrl: pm_ctrl@f7032000 {
compatible = "hisilicon,hi6220-pmctrl", "syscon";
reg = <0x0 0xf7032000 0x0 0x1000>;
#clock-cells = <1>;
};
Hisilicon Hi6220 SRAM controller
Required properties:
- compatible : "hisilicon,hi6220-sramctrl", "syscon"
- reg : Register address and size
Hisilicon's SoCs use sram for multiple purpose; on Hi6220 there have several
SRAM banks for power management, modem, security, etc. Further, use "syscon"
managing the common sram which can be shared by multiple modules.
Example:
/*for Hi6220*/
sram: sram@fff80000 {
compatible = "hisilicon,hi6220-sramctrl", "syscon";
reg = <0x0 0xfff80000 0x0 0x12000>;
};
-----------------------------------------------------------------------
Hisilicon HiP01 system controller
@ -62,6 +171,39 @@ Example:
};
-----------------------------------------------------------------------
Hisilicon HiP05 PCIe-SAS system controller
Required properties:
- compatible : "hisilicon,pcie-sas-subctrl", "syscon";
- reg : Register address and size
The HiP05 PCIe-SAS system controller is shared by PCIe and SAS controllers in
HiP05 Soc to implement some basic configurations.
Example:
/* for HiP05 PCIe-SAS system */
pcie_sas: system_controller@0xb0000000 {
compatible = "hisilicon,pcie-sas-subctrl", "syscon";
reg = <0xb0000000 0x10000>;
};
Hisilicon HiP05 PERISUB system controller
Required properties:
- compatible : "hisilicon,hip05-perisubc", "syscon";
- reg : Register address and size
The HiP05 PERISUB system controller is shared by peripheral controllers in
HiP05 Soc to implement some basic configurations. The peripheral
controllers include mdio, ddr, iic, uart, timer and so on.
Example:
/* for HiP05 perisub-ctrl-c system */
peri_c_subctrl: syscon@80000000 {
compatible = "hisilicon,hip05-perisubc", "syscon";
reg = <0x0 0x80000000 0x0 0x10000>;
};
-----------------------------------------------------------------------
Hisilicon CPU controller
Required properties:

View File

@ -497,7 +497,7 @@ cpus {
};
idle-states {
entry-method = "arm,psci";
entry-method = "psci";
CPU_RETENTION_0_0: cpu-retention-0-0 {
compatible = "arm,idle-state";

View File

@ -9,12 +9,26 @@ Required properties:
the form "ti,keystone-*". Generic devices like gic, arch_timers, ns16550
type UART should use the specified compatible for those devices.
SoC families:
- Keystone 2 generic SoC:
compatible = "ti,keystone"
SoCs:
- Keystone 2 Hawking/Kepler
compatible = "ti,k2hk", "ti,keystone"
- Keystone 2 Lamarr
compatible = "ti,k2l", "ti,keystone"
- Keystone 2 Edison
compatible = "ti,k2e", "ti,keystone"
Boards:
- Keystone 2 Hawking/Kepler EVM
compatible = "ti,k2hk-evm","ti,keystone"
compatible = "ti,k2hk-evm", "ti,k2hk", "ti,keystone"
- Keystone 2 Lamarr EVM
compatible = "ti,k2l-evm","ti,keystone"
compatible = "ti,k2l-evm", "ti, k2l", "ti,keystone"
- Keystone 2 Edison EVM
compatible = "ti,k2e-evm","ti,keystone"
compatible = "ti,k2e-evm", "ti,k2e", "ti,keystone"

View File

@ -1,7 +1,8 @@
* ARM L2 Cache Controller
ARM cores often have a separate level 2 cache controller. There are various
implementations of the L2 cache controller with compatible programming models.
ARM cores often have a separate L2C210/L2C220/L2C310 (also known as PL210/PL220/
PL310 and variants) based level 2 cache controller. All these various implementations
of the L2 cache controller have compatible programming models (Note 1).
Some of the properties that are just prefixed "cache-*" are taken from section
3.7.3 of the ePAPR v1.1 specification which can be found at:
https://www.power.org/wp-content/uploads/2012/06/Power_ePAPR_APPROVED_v1.1.pdf
@ -67,6 +68,22 @@ Optional properties:
disable if zero.
- arm,prefetch-offset : Override prefetch offset value. Valid values are
0-7, 15, 23, and 31.
- arm,shared-override : The default behavior of the L220 or PL310 cache
controllers with respect to the shareable attribute is to transform "normal
memory non-cacheable transactions" into "cacheable no allocate" (for reads)
or "write through no write allocate" (for writes).
On systems where this may cause DMA buffer corruption, this property must be
specified to indicate that such transforms are precluded.
- arm,parity-enable : enable parity checking on the L2 cache (L220 or PL310).
- arm,parity-disable : disable parity checking on the L2 cache (L220 or PL310).
- arm,outer-sync-disable : disable the outer sync operation on the L2 cache.
Some core tiles, especially ARM PB11MPCore have a faulty L220 cache that
will randomly hang unless outer sync operations are disabled.
- prefetch-data : Data prefetch. Value: <0> (forcibly disable), <1>
(forcibly enable), property absent (retain settings set by firmware)
- prefetch-instr : Instruction prefetch. Value: <0> (forcibly disable),
<1> (forcibly enable), property absent (retain settings set by
firmware)
Example:
@ -80,3 +97,9 @@ L2: cache-controller {
cache-level = <2>;
interrupts = <45>;
};
Note 1: The description in this document doesn't apply to integrated L2
cache controllers as found in e.g. Cortex-A15/A7/A57/A53. These
integrated L2 controllers are assumed to be all preconfigured by
early secure boot code. Thus no need to deal with their configuration
in the kernel at all.

View File

@ -1,6 +1,18 @@
Marvell Berlin SoC Family Device Tree Bindings
---------------------------------------------------------------
Work in progress statement:
Device tree files and bindings applying to Marvell Berlin SoCs and boards are
considered "unstable". Any Marvell Berlin device tree binding may change at any
time. Be sure to use a device tree binary and a kernel image generated from the
same source tree.
Please refer to Documentation/devicetree/bindings/ABI.txt for a definition of a
stable binding/ABI.
---------------------------------------------------------------
Boards with a SoC of the Marvell Berlin family, e.g. Armada 1500
shall have the following properties:
@ -49,10 +61,9 @@ chip control registers, so there should be a single DT node only providing the
different functions which are described below.
Required properties:
- compatible: shall be one of
"marvell,berlin2-chip-ctrl" for BG2
"marvell,berlin2cd-chip-ctrl" for BG2CD
"marvell,berlin2q-chip-ctrl" for BG2Q
- compatible:
* the first and second values must be:
"simple-mfd", "syscon"
- reg: address and length of following register sets for
BG2/BG2CD: chip control register set
BG2Q: chip control register set and cpu pll registers
@ -63,90 +74,23 @@ Marvell Berlin SoCs have a system control register set providing several
individual registers dealing with pinmux, padmux, and reset.
Required properties:
- compatible: should be one of
"marvell,berlin2-system-ctrl" for BG2
"marvell,berlin2cd-system-ctrl" for BG2CD
"marvell,berlin2q-system-ctrl" for BG2Q
- compatible:
* the first and second values must be:
"simple-mfd", "syscon"
- reg: address and length of the system control register set
* Clock provider binding
As clock related registers are spread among the chip control registers, the
chip control node also provides the clocks. Marvell Berlin2 (BG2, BG2CD, BG2Q)
SoCs share the same IP for PLLs and clocks, with some minor differences in
features and register layout.
Required properties:
- #clock-cells: shall be set to 1
- clocks: clock specifiers referencing the core clock input clocks
- clock-names: array of strings describing the input clock specifiers above.
Allowed clock-names for the reference clocks are
"refclk" for the SoCs osciallator input on all SoCs,
and SoC-specific input clocks for
BG2/BG2CD: "video_ext0" for the external video clock input
Clocks provided by core clocks shall be referenced by a clock specifier
indexing one of the provided clocks. Refer to dt-bindings/clock/berlin<soc>.h
for the corresponding index mapping.
* Pin controller binding
Pin control registers are part of both register sets, chip control and system
control. The pins controlled are organized in groups, so no actual pin
information is needed.
A pin-controller node should contain subnodes representing the pin group
configurations, one per function. Each subnode has the group name and the muxing
function used.
Be aware the Marvell Berlin datasheets use the keyword 'mode' for what is called
a 'function' in the pin-controller subsystem.
Required subnode-properties:
- groups: a list of strings describing the group names.
- function: a string describing the function used to mux the groups.
* Reset controller binding
A reset controller is part of the chip control registers set. The chip control
node also provides the reset. The register set is not at the same offset between
Berlin SoCs.
Required property:
- #reset-cells: must be set to 2
Example:
chip: chip-control@ea0000 {
compatible = "marvell,berlin2-chip-ctrl";
#clock-cells = <1>;
#reset-cells = <2>;
compatible = "simple-mfd", "syscon";
reg = <0xea0000 0x400>;
clocks = <&refclk>, <&externaldev 0>;
clock-names = "refclk", "video_ext0";
spi1_pmux: spi1-pmux {
groups = "G0";
function = "spi1";
};
/* sub-device nodes */
};
sysctrl: system-controller@d000 {
compatible = "marvell,berlin2-system-ctrl";
compatible = "simple-mfd", "syscon";
reg = <0xd000 0x100>;
uart0_pmux: uart0-pmux {
groups = "GSM4";
function = "uart0";
};
uart1_pmux: uart1-pmux {
groups = "GSM5";
function = "uart1";
};
uart2_pmux: uart2-pmux {
groups = "GSM3";
function = "uart2";
};
/* sub-device nodes */
};

View File

@ -20,8 +20,12 @@ And in addition, the compatible shall be extended with the specific
board. Currently known boards are:
"buffalo,lschlv2"
"buffalo,lswvl"
"buffalo,lswxl"
"buffalo,lsxhl"
"buffalo,lsxl"
"cloudengines,pogo02"
"cloudengines,pogoplugv4"
"dlink,dns-320"
"dlink,dns-320-a1"
"dlink,dns-325"
@ -42,6 +46,7 @@ board. Currently known boards are:
"lacie,cloudbox"
"lacie,inetspace_v2"
"lacie,laplug"
"lacie,nas2big"
"lacie,netspace_lite_v2"
"lacie,netspace_max_v2"
"lacie,netspace_mini_v2"

View File

@ -1,12 +1,16 @@
MediaTek mt65xx & mt81xx Platforms Device Tree Bindings
MediaTek mt65xx, mt67xx & mt81xx Platforms Device Tree Bindings
Boards with a MediaTek mt65xx/mt81xx SoC shall have the following property:
Boards with a MediaTek mt65xx/mt67xx/mt81xx SoC shall have the
following property:
Required root node property:
compatible: Must contain one of
"mediatek,mt2701"
"mediatek,mt6580"
"mediatek,mt6589"
"mediatek,mt6592"
"mediatek,mt6795"
"mediatek,mt8127"
"mediatek,mt8135"
"mediatek,mt8173"
@ -14,12 +18,21 @@ compatible: Must contain one of
Supported boards:
- Evaluation board for MT2701:
Required root node properties:
- compatible = "mediatek,mt2701-evb", "mediatek,mt2701";
- Evaluation board for MT6580:
Required root node properties:
- compatible = "mediatek,mt6580-evbp1", "mediatek,mt6580";
- bq Aquaris5 smart phone:
Required root node properties:
- compatible = "mundoreader,bq-aquaris5", "mediatek,mt6589";
- Evaluation board for MT6592:
Required root node properties:
- compatible = "mediatek,mt6592-evb", "mediatek,mt6592";
- Evaluation board for MT6795(Helio X10):
Required root node properties:
- compatible = "mediatek,mt6795-evb", "mediatek,mt6795";
- MTK mt8127 tablet moose EVB:
Required root node properties:
- compatible = "mediatek,mt8127-moose", "mediatek,mt8127";

View File

@ -0,0 +1,23 @@
Mediatek apmixedsys controller
==============================
The Mediatek apmixedsys controller provides the PLLs to the system.
Required Properties:
- compatible: Should be:
- "mediatek,mt8135-apmixedsys"
- "mediatek,mt8173-apmixedsys"
- #clock-cells: Must be 1
The apmixedsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
apmixedsys: clock-controller@10209000 {
compatible = "mediatek,mt8173-apmixedsys";
reg = <0 0x10209000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -0,0 +1,22 @@
Mediatek imgsys controller
============================
The Mediatek imgsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be:
- "mediatek,mt8173-imgsys", "syscon"
- #clock-cells: Must be 1
The imgsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
imgsys: clock-controller@15000000 {
compatible = "mediatek,mt8173-imgsys", "syscon";
reg = <0 0x15000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -0,0 +1,30 @@
Mediatek infracfg controller
============================
The Mediatek infracfg controller provides various clocks and reset
outputs to the system.
Required Properties:
- compatible: Should be:
- "mediatek,mt8135-infracfg", "syscon"
- "mediatek,mt8173-infracfg", "syscon"
- #clock-cells: Must be 1
- #reset-cells: Must be 1
The infracfg controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Also it uses the common reset controller binding from
Documentation/devicetree/bindings/reset/reset.txt.
The available reset outputs are defined in
dt-bindings/reset/mt*-resets.h
Example:
infracfg: power-controller@10001000 {
compatible = "mediatek,mt8173-infracfg", "syscon";
reg = <0 0x10001000 0 0x1000>;
#clock-cells = <1>;
#reset-cells = <1>;
};

View File

@ -0,0 +1,22 @@
Mediatek mmsys controller
============================
The Mediatek mmsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be:
- "mediatek,mt8173-mmsys", "syscon"
- #clock-cells: Must be 1
The mmsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
mmsys: clock-controller@14000000 {
compatible = "mediatek,mt8173-mmsys", "syscon";
reg = <0 0x14000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -0,0 +1,30 @@
Mediatek pericfg controller
===========================
The Mediatek pericfg controller provides various clocks and reset
outputs to the system.
Required Properties:
- compatible: Should be:
- "mediatek,mt8135-pericfg", "syscon"
- "mediatek,mt8173-pericfg", "syscon"
- #clock-cells: Must be 1
- #reset-cells: Must be 1
The pericfg controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Also it uses the common reset controller binding from
Documentation/devicetree/bindings/reset/reset.txt.
The available reset outputs are defined in
dt-bindings/reset/mt*-resets.h
Example:
pericfg: power-controller@10003000 {
compatible = "mediatek,mt8173-pericfg", "syscon";
reg = <0 0x10003000 0 0x1000>;
#clock-cells = <1>;
#reset-cells = <1>;
};

View File

@ -0,0 +1,23 @@
Mediatek topckgen controller
============================
The Mediatek topckgen controller provides various clocks to the system.
Required Properties:
- compatible: Should be:
- "mediatek,mt8135-topckgen"
- "mediatek,mt8173-topckgen"
- #clock-cells: Must be 1
The topckgen controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
topckgen: power-controller@10000000 {
compatible = "mediatek,mt8173-topckgen";
reg = <0 0x10000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -0,0 +1,22 @@
Mediatek vdecsys controller
============================
The Mediatek vdecsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be:
- "mediatek,mt8173-vdecsys", "syscon"
- #clock-cells: Must be 1
The vdecsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
vdecsys: clock-controller@16000000 {
compatible = "mediatek,mt8173-vdecsys", "syscon";
reg = <0 0x16000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -0,0 +1,22 @@
Mediatek vencltsys controller
============================
The Mediatek vencltsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be:
- "mediatek,mt8173-vencltsys", "syscon"
- #clock-cells: Must be 1
The vencltsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
vencltsys: clock-controller@19000000 {
compatible = "mediatek,mt8173-vencltsys", "syscon";
reg = <0 0x19000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -0,0 +1,22 @@
Mediatek vencsys controller
============================
The Mediatek vencsys controller provides various clocks to the system.
Required Properties:
- compatible: Should be:
- "mediatek,mt8173-vencsys", "syscon"
- #clock-cells: Must be 1
The vencsys controller uses the common clk binding from
Documentation/devicetree/bindings/clock/clock-bindings.txt
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
Example:
vencsys: clock-controller@18000000 {
compatible = "mediatek,mt8173-vencsys", "syscon";
reg = <0 0x18000000 0 0x1000>;
#clock-cells = <1>;
};

View File

@ -0,0 +1,84 @@
QCOM Idle States for cpuidle driver
ARM provides idle-state node to define the cpuidle states, as defined in [1].
cpuidle-qcom is the cpuidle driver for Qualcomm SoCs and uses these idle
states. Idle states have different enter/exit latency and residency values.
The idle states supported by the QCOM SoC are defined as -
* Standby
* Retention
* Standalone Power Collapse (Standalone PC or SPC)
* Power Collapse (PC)
Standby: Standby does a little more in addition to architectural clock gating.
When the WFI instruction is executed the ARM core would gate its internal
clocks. In addition to gating the clocks, QCOM cpus use this instruction as a
trigger to execute the SPM state machine. The SPM state machine waits for the
interrupt to trigger the core back in to active. This triggers the cache
hierarchy to enter standby states, when all cpus are idle. An interrupt brings
the SPM state machine out of its wait, the next step is to ensure that the
cache hierarchy is also out of standby, and then the cpu is allowed to resume
execution. This state is defined as a generic ARM WFI state by the ARM cpuidle
driver and is not defined in the DT. The SPM state machine should be
configured to execute this state by default and after executing every other
state below.
Retention: Retention is a low power state where the core is clock gated and
the memory and the registers associated with the core are retained. The
voltage may be reduced to the minimum value needed to keep the processor
registers active. The SPM should be configured to execute the retention
sequence and would wait for interrupt, before restoring the cpu to execution
state. Retention may have a slightly higher latency than Standby.
Standalone PC: A cpu can power down and warmboot if there is a sufficient time
between the time it enters idle and the next known wake up. SPC mode is used
to indicate a core entering a power down state without consulting any other
cpu or the system resources. This helps save power only on that core. The SPM
sequence for this idle state is programmed to power down the supply to the
core, wait for the interrupt, restore power to the core, and ensure the
system state including cache hierarchy is ready before allowing core to
resume. Applying power and resetting the core causes the core to warmboot
back into Elevation Level (EL) which trampolines the control back to the
kernel. Entering a power down state for the cpu, needs to be done by trapping
into a EL. Failing to do so, would result in a crash enforced by the warm boot
code in the EL for the SoC. On SoCs with write-back L1 cache, the cache has to
be flushed in s/w, before powering down the core.
Power Collapse: This state is similar to the SPC mode, but distinguishes
itself in that the cpu acknowledges and permits the SoC to enter deeper sleep
modes. In a hierarchical power domain SoC, this means L2 and other caches can
be flushed, system bus, clocks - lowered, and SoC main XO clock gated and
voltages reduced, provided all cpus enter this state. Since the span of low
power modes possible at this state is vast, the exit latency and the residency
of this low power mode would be considered high even though at a cpu level,
this essentially is cpu power down. The SPM in this state also may handshake
with the Resource power manager (RPM) processor in the SoC to indicate a
complete application processor subsystem shut down.
The idle-state for QCOM SoCs are distinguished by the compatible property of
the idle-states device node.
The devicetree representation of the idle state should be -
Required properties:
- compatible: Must be one of -
"qcom,idle-state-ret",
"qcom,idle-state-spc",
"qcom,idle-state-pc",
and "arm,idle-state".
Other required and optional properties are specified in [1].
Example:
idle-states {
CPU_SPC: spc {
compatible = "qcom,idle-state-spc", "arm,idle-state";
entry-latency-us = <150>;
exit-latency-us = <200>;
min-residency-us = <2000>;
};
};
[1]. Documentation/devicetree/bindings/arm/idle-states.txt

View File

@ -2,22 +2,31 @@ SPM AVS Wrapper 2 (SAW2)
The SAW2 is a wrapper around the Subsystem Power Manager (SPM) and the
Adaptive Voltage Scaling (AVS) hardware. The SPM is a programmable
micro-controller that transitions a piece of hardware (like a processor or
power-controller that transitions a piece of hardware (like a processor or
subsystem) into and out of low power modes via a direct connection to
the PMIC. It can also be wired up to interact with other processors in the
system, notifying them when a low power state is entered or exited.
Multiple revisions of the SAW hardware are supported using these Device Nodes.
SAW2 revisions differ in the register offset and configuration data. Also, the
same revision of the SAW in different SoCs may have different configuration
data due the the differences in hardware capabilities. Hence the SoC name, the
version of the SAW hardware in that SoC and the distinction between cpu (big
or Little) or cache, may be needed to uniquely identify the SAW register
configuration and initialization data. The compatible string is used to
indicate this parameter.
PROPERTIES
- compatible:
Usage: required
Value type: <string>
Definition: shall contain "qcom,saw2". A more specific value should be
one of:
"qcom,saw2-v1"
"qcom,saw2-v1.1"
"qcom,saw2-v2"
"qcom,saw2-v2.1"
Definition: Must have
"qcom,saw2"
A more specific value could be one of:
"qcom,apq8064-saw2-v1.1-cpu"
"qcom,msm8974-saw2-v2.1-cpu"
"qcom,apq8084-saw2-v2.1-cpu"
- reg:
Usage: required
@ -26,10 +35,23 @@ PROPERTIES
the register region. An optional second element specifies
the base address and size of the alias register region.
- regulator:
Usage: optional
Value type: boolean
Definition: Indicates that this SPM device acts as a regulator device
device for the core (CPU or Cache) the SPM is attached
to.
Example:
Example 1:
regulator@2099000 {
power-controller@2099000 {
compatible = "qcom,saw2";
reg = <0x02099000 0x1000>, <0x02009000 0x1000>;
regulator;
};
Example 2:
saw0: power-controller@f9089000 {
compatible = "qcom,apq8084-saw2-v2.1-cpu", "qcom,saw2";
reg = <0xf9089000 0x1000>, <0xf9009000 0x1000>;
};

View File

@ -9,11 +9,17 @@ Properties:
"qcom,scss-timer" - scorpion subsystem
- interrupts : Interrupts for the debug timer, the first general purpose
timer, and optionally a second general purpose timer in that
order.
timer, and optionally a second general purpose timer, and
optionally as well, 2 watchdog interrupts, in that order.
- reg : Specifies the base address of the timer registers.
- clocks: Reference to the parent clocks, one per output clock. The parents
must appear in the same order as the clock names.
- clock-names: The name of the clocks as free-form strings. They should be in
the same order as the clocks.
- clock-frequency : The frequency of the debug timer and the general purpose
timer(s) in Hz in that order.
@ -29,9 +35,13 @@ Example:
compatible = "qcom,scss-timer", "qcom,msm-timer";
interrupts = <1 1 0x301>,
<1 2 0x301>,
<1 3 0x301>;
<1 3 0x301>,
<1 4 0x301>,
<1 5 0x301>;
reg = <0x0200a000 0x100>;
clock-frequency = <19200000>,
<32768>;
clocks = <&sleep_clk>;
clock-names = "sleep";
cpu-offset = <0x40000>;
};

View File

@ -0,0 +1,20 @@
MVEBU CPU Config registers
--------------------------
MVEBU (Marvell SOCs: Armada 370/XP)
Required properties:
- compatible: one of:
- "marvell,armada-370-cpu-config"
- "marvell,armada-xp-cpu-config"
- reg: Should contain CPU config registers location and length, in
their per-CPU variant
Example:
cpu-config@21000 {
compatible = "marvell,armada-xp-cpu-config";
reg = <0x21000 0x8>;
};

View File

@ -9,7 +9,9 @@ inputs.
Required properties:
- compatible : Should be "ti,irq-crossbar"
- reg: Base address and the size of the crossbar registers.
- ti,max-irqs: Total number of irqs available at the interrupt controller.
- interrupt-controller: indicates that this block is an interrupt controller.
- interrupt-parent: the interrupt controller this block is connected to.
- ti,max-irqs: Total number of irqs available at the parent interrupt controller.
- ti,max-crossbar-sources: Maximum number of crossbar sources that can be routed.
- ti,reg-size: Size of a individual register in bytes. Every individual
register is assumed to be of same size. Valid sizes are 1, 2, 4.
@ -27,13 +29,13 @@ Optional properties:
when the interrupt controller irq is unused (when not provided, default is 0)
Examples:
crossbar_mpu: @4a020000 {
crossbar_mpu: crossbar@4a002a48 {
compatible = "ti,irq-crossbar";
reg = <0x4a002a48 0x130>;
ti,max-irqs = <160>;
ti,max-crossbar-sources = <400>;
ti,reg-size = <2>;
ti,irqs-reserved = <0 1 2 3 5 6 131 132 139 140>;
ti,irqs-reserved = <0 1 2 3 5 6 131 132>;
ti,irqs-skip = <10 133 139 140>;
};
@ -44,10 +46,6 @@ Documentation/devicetree/bindings/arm/gic.txt for further details.
An interrupt consumer on an SoC using crossbar will use:
interrupts = <GIC_SPI request_number interrupt_level>
When the request number is between 0 to that described by
"ti,max-crossbar-sources", it is assumed to be a crossbar mapping. If the
request_number is greater than "ti,max-crossbar-sources", then it is mapped as a
quirky hardware mapping direct to GIC.
Example:
device_x@0x4a023000 {
@ -55,9 +53,3 @@ Example:
interrupts = <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>;
...
};
device_y@0x4a033000 {
/* Direct mapped GIC SPI 1 used */
interrupts = <GIC_SPI DIRECT_IRQ(1) IRQ_TYPE_LEVEL_HIGH>;
...
};

View File

@ -0,0 +1,79 @@
OMAP Control Module bindings
Control Module contains miscellaneous features under it based on SoC type.
Pincontrol is one common feature, and it has a specialized support
described in [1]. Typically some clock nodes are also under control module.
Syscon is used to share register level access to drivers external to
control module driver itself.
See [2] for documentation about clock/clockdomain nodes.
[1] Documentation/devicetree/bindings/pinctrl/pinctrl-single.txt
[2] Documentation/devicetree/bindings/clock/ti/*
Required properties:
- compatible: Must be one of:
"ti,am3-scm"
"ti,am4-scm"
"ti,dm814-scrm"
"ti,dm816-scrm"
"ti,omap2-scm"
"ti,omap3-scm"
"ti,omap4-scm-core"
"ti,omap4-scm-padconf-core"
"ti,omap5-scm-core"
"ti,omap5-scm-padconf-core"
"ti,dra7-scm-core"
- reg: Contains Control Module register address range
(base address and length)
Optional properties:
- clocks: clocks for this module
- clockdomains: clockdomains for this module
Examples:
scm: scm@2000 {
compatible = "ti,omap3-scm", "simple-bus";
reg = <0x2000 0x2000>;
#address-cells = <1>;
#size-cells = <1>;
ranges = <0 0x2000 0x2000>;
omap3_pmx_core: pinmux@30 {
compatible = "ti,omap3-padconf",
"pinctrl-single";
reg = <0x30 0x230>;
#address-cells = <1>;
#size-cells = <0>;
#interrupt-cells = <1>;
interrupt-controller;
pinctrl-single,register-width = <16>;
pinctrl-single,function-mask = <0xff1f>;
};
scm_conf: scm_conf@270 {
compatible = "syscon";
reg = <0x270 0x330>;
#address-cells = <1>;
#size-cells = <1>;
scm_clocks: clocks {
#address-cells = <1>;
#size-cells = <0>;
};
};
scm_clockdomains: clockdomains {
};
}
&scm_clocks {
mcbsp5_mux_fck: mcbsp5_mux_fck {
#clock-cells = <0>;
compatible = "ti,composite-mux-clock";
clocks = <&core_96m_fck>, <&mcbsp_clks>;
ti,bit-shift = <4>;
reg = <0x02d8>;
};
};

View File

@ -6,6 +6,7 @@ provided by Arteris.
Required properties:
- compatible : Should be "ti,omap3-l3-smx" for OMAP3 family
Should be "ti,omap4-l3-noc" for OMAP4 family
Should be "ti,omap5-l3-noc" for OMAP5 family
Should be "ti,dra7-l3-noc" for DRA7 family
Should be "ti,am4372-l3-noc" for AM43 family
- reg: Contains L3 register address range for each noc domain.

26
Bindings/arm/omap/l4.txt Normal file
View File

@ -0,0 +1,26 @@
L4 interconnect bindings
These bindings describe the OMAP SoCs L4 interconnect bus.
Required properties:
- compatible : Should be "ti,omap2-l4" for OMAP2 family l4 core bus
Should be "ti,omap2-l4-wkup" for OMAP2 family l4 wkup bus
Should be "ti,omap3-l4-core" for OMAP3 family l4 core bus
Should be "ti,omap4-l4-cfg" for OMAP4 family l4 cfg bus
Should be "ti,omap4-l4-wkup" for OMAP4 family l4 wkup bus
Should be "ti,omap5-l4-cfg" for OMAP5 family l4 cfg bus
Should be "ti,omap5-l4-wkup" for OMAP5 family l4 wkup bus
Should be "ti,dra7-l4-cfg" for DRA7 family l4 cfg bus
Should be "ti,dra7-l4-wkup" for DRA7 family l4 wkup bus
Should be "ti,am3-l4-wkup" for AM33xx family l4 wkup bus
Should be "ti,am4-l4-wkup" for AM43xx family l4 wkup bus
- ranges : contains the IO map range for the bus
Examples:
l4: l4@48000000 {
compatible "ti,omap2-l4", "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges = <0 0x48000000 0x100000>;
};

View File

@ -135,9 +135,24 @@ Boards:
- AM335X OrionLXm : Substation Automation Platform
compatible = "novatech,am335x-lxm", "ti,am33xx"
- AM335X phyBOARD-WEGA: Single Board Computer dev kit
compatible = "phytec,am335x-wega", "phytec,am335x-phycore-som", "ti,am33xx"
- AM335X CM-T335 : System On Module, built around the Sitara AM3352/4
compatible = "compulab,cm-t335", "ti,am33xx"
- AM335X SBC-T335 : single board computer, built around the Sitara AM3352/4
compatible = "compulab,sbc-t335", "compulab,cm-t335", "ti,am33xx"
- OMAP5 EVM : Evaluation Module
compatible = "ti,omap5-evm", "ti,omap5"
- AM437x CM-T43
compatible = "compulab,am437x-cm-t43", "ti,am4372", "ti,am43"
- AM437x SBC-T43
compatible = "compulab,am437x-sbc-t43", "compulab,am437x-cm-t43", "ti,am4372", "ti,am43"
- AM43x EPOS EVM
compatible = "ti,am43x-epos-evm", "ti,am4372", "ti,am43"
@ -147,6 +162,12 @@ Boards:
- AM437x SK EVM: AM437x StarterKit Evaluation Module
compatible = "ti,am437x-sk-evm", "ti,am4372", "ti,am43"
- AM57XX CL-SOM-AM57x
compatible = "compulab,cl-som-am57x", "ti,am5728", "ti,dra742", "ti,dra74", "ti,dra7"
- AM57XX SBC-AM57x
compatible = "compulab,sbc-am57x", "compulab,cl-som-am57x", "ti,am5728", "ti,dra742", "ti,dra74", "ti,dra7"
- DRA742 EVM: Software Development Board for DRA742
compatible = "ti,dra7-evm", "ti,dra742", "ti,dra74", "ti,dra7"

View File

@ -10,14 +10,10 @@ documentation about the individual clock/clockdomain nodes.
Required properties:
- compatible: Must be one of:
"ti,am3-prcm"
"ti,am3-scrm"
"ti,am4-prcm"
"ti,am4-scrm"
"ti,omap2-prcm"
"ti,omap2-scrm"
"ti,omap3-prm"
"ti,omap3-cm"
"ti,omap3-scrm"
"ti,omap4-cm1"
"ti,omap4-prm"
"ti,omap4-cm2"
@ -29,6 +25,8 @@ Required properties:
"ti,dra7-prm"
"ti,dra7-cm-core-aon"
"ti,dra7-cm-core"
"ti,dm814-prcm"
"ti,dm816-prcm"
- reg: Contains PRCM module register address range
(base address and length)
- clocks: clocks for this module

View File

@ -7,7 +7,11 @@ representation in the device tree should be done as under:-
Required properties:
- compatible : should be one of
"apm,potenza-pmu"
"arm,armv8-pmuv3"
"arm,cortex-a72-pmu"
"arm,cortex-a57-pmu"
"arm,cortex-a53-pmu"
"arm,cortex-a17-pmu"
"arm,cortex-a15-pmu"
"arm,cortex-a12-pmu"
@ -18,12 +22,27 @@ Required properties:
"arm,arm11mpcore-pmu"
"arm,arm1176-pmu"
"arm,arm1136-pmu"
"qcom,scorpion-pmu"
"qcom,scorpion-mp-pmu"
"qcom,krait-pmu"
- interrupts : 1 combined interrupt or 1 per core. If the interrupt is a per-cpu
interrupt (PPI) then 1 interrupt should be specified.
Optional properties:
- interrupt-affinity : When using SPIs, specifies a list of phandles to CPU
nodes corresponding directly to the affinity of
the SPIs listed in the interrupts property.
When using a PPI, specifies a list of phandles to CPU
nodes corresponding to the set of CPUs which have
a PMU of this type signalling the PPI listed in the
interrupts property.
This property should be present when there is more than
a single SPI.
- qcom,no-pc-write : Indicates that this PMU doesn't support the 0xc and 0xd
events.

View File

@ -23,13 +23,20 @@ Main node required properties:
- compatible : should contain at least one of:
* "arm,psci" : for implementations complying to PSCI versions prior to
0.2. For these cases function IDs must be provided.
* "arm,psci" : For implementations complying to PSCI versions prior
to 0.2.
For these cases function IDs must be provided.
* "arm,psci-0.2" : for implementations complying to PSCI 0.2. Function
IDs are not required and should be ignored by an OS with PSCI 0.2
support, but are permitted to be present for compatibility with
existing software when "arm,psci" is later in the compatible list.
* "arm,psci-0.2" : For implementations complying to PSCI 0.2.
Function IDs are not required and should be ignored by
an OS with PSCI 0.2 support, but are permitted to be
present for compatibility with existing software when
"arm,psci" is later in the compatible list.
* "arm,psci-1.0" : For implementations complying to PSCI 1.0.
PSCI 1.0 is backward compatible with PSCI 0.2 with
minor specification updates, as defined in the PSCI
specification[2].
- method : The method of calling the PSCI firmware. Permitted
values are:
@ -100,3 +107,5 @@ Case 3: PSCI v0.2 and PSCI v0.1.
[1] Kernel documentation - ARM idle states bindings
Documentation/devicetree/bindings/arm/idle-states.txt
[2] Power State Coordination Interface (PSCI) specification
http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf

View File

@ -1,6 +1,10 @@
Rockchip platforms device tree bindings
---------------------------------------
- Kylin RK3036 board:
Required root node properties:
- compatible = "rockchip,kylin-rk3036", "rockchip,rk3036";
- MarsBoard RK3066 board:
Required root node properties:
- compatible = "haoyu,marsboard-rk3066", "rockchip,rk3066a";
@ -17,8 +21,80 @@ Rockchip platforms device tree bindings
Required root node properties:
- compatible = "radxa,rock", "rockchip,rk3188";
- Radxa Rock2 Square board:
Required root node properties:
- compatible = "radxa,rock2-square", "rockchip,rk3288";
- Firefly Firefly-RK3288 board:
Required root node properties:
- compatible = "firefly,firefly-rk3288", "rockchip,rk3288";
or
- compatible = "firefly,firefly-rk3288-beta", "rockchip,rk3288";
- ChipSPARK PopMetal-RK3288 board:
Required root node properties:
- compatible = "chipspark,popmetal-rk3288", "rockchip,rk3288";
- Netxeon R89 board:
Required root node properties:
- compatible = "netxeon,r89", "rockchip,rk3288";
- Google Brain (dev-board):
Required root node properties:
- compatible = "google,veyron-brain-rev0", "google,veyron-brain",
"google,veyron", "rockchip,rk3288";
- Google Jaq (Haier Chromebook 11 and more):
Required root node properties:
- compatible = "google,veyron-jaq-rev5", "google,veyron-jaq-rev4",
"google,veyron-jaq-rev3", "google,veyron-jaq-rev2",
"google,veyron-jaq-rev1", "google,veyron-jaq",
"google,veyron", "rockchip,rk3288";
- Google Jerry (Hisense Chromebook C11 and more):
Required root node properties:
- compatible = "google,veyron-jerry-rev7", "google,veyron-jerry-rev6",
"google,veyron-jerry-rev5", "google,veyron-jerry-rev4",
"google,veyron-jerry-rev3", "google,veyron-jerry",
"google,veyron", "rockchip,rk3288";
- Google Mickey (Asus Chromebit CS10):
Required root node properties:
- compatible = "google,veyron-mickey-rev8", "google,veyron-mickey-rev7",
"google,veyron-mickey-rev6", "google,veyron-mickey-rev5",
"google,veyron-mickey-rev4", "google,veyron-mickey-rev3",
"google,veyron-mickey-rev2", "google,veyron-mickey-rev1",
"google,veyron-mickey-rev0", "google,veyron-mickey",
"google,veyron", "rockchip,rk3288";
- Google Minnie (Asus Chromebook Flip C100P):
Required root node properties:
- compatible = "google,veyron-minnie-rev4", "google,veyron-minnie-rev3",
"google,veyron-minnie-rev2", "google,veyron-minnie-rev1",
"google,veyron-minnie-rev0", "google,veyron-minnie",
"google,veyron", "rockchip,rk3288";
- Google Pinky (dev-board):
Required root node properties:
- compatible = "google,veyron-pinky-rev2", "google,veyron-pinky",
"google,veyron", "rockchip,rk3288";
- Google Speedy (Asus C201 Chromebook):
Required root node properties:
- compatible = "google,veyron-speedy-rev9", "google,veyron-speedy-rev8",
"google,veyron-speedy-rev7", "google,veyron-speedy-rev6",
"google,veyron-speedy-rev5", "google,veyron-speedy-rev4",
"google,veyron-speedy-rev3", "google,veyron-speedy-rev2",
"google,veyron-speedy", "google,veyron", "rockchip,rk3288";
- Rockchip RK3368 evb:
Required root node properties:
- compatible = "rockchip,rk3368-evb-act8846", "rockchip,rk3368";
- Rockchip R88 board:
Required root node properties:
- compatible = "rockchip,r88", "rockchip,rk3368";
- Rockchip RK3228 Evaluation board:
Required root node properties:
- compatible = "rockchip,rk3228-evb", "rockchip,rk3228";

View File

@ -1,27 +0,0 @@
* Samsung's Exynos SoC based boards
Required root node properties:
- compatible = should be one or more of the following.
- "samsung,monk" - for Exynos3250-based Samsung Simband board.
- "samsung,rinato" - for Exynos3250-based Samsung Gear2 board.
- "samsung,smdkv310" - for Exynos4210-based Samsung SMDKV310 eval board.
- "samsung,trats" - for Exynos4210-based Tizen Reference board.
- "samsung,universal_c210" - for Exynos4210-based Samsung board.
- "samsung,smdk4412", - for Exynos4412-based Samsung SMDK4412 eval board.
- "samsung,trats2" - for Exynos4412-based Tizen Reference board.
- "samsung,smdk5250" - for Exynos5250-based Samsung SMDK5250 eval board.
- "samsung,xyref5260" - for Exynos5260-based Samsung board.
- "samsung,smdk5410" - for Exynos5410-based Samsung SMDK5410 eval board.
- "samsung,smdk5420" - for Exynos5420-based Samsung SMDK5420 eval board.
- "samsung,sd5v1" - for Exynos5440-based Samsung board.
- "samsung,ssdk5440" - for Exynos5440-based Samsung board.
Optional:
- firmware node, specifying presence and type of secure firmware:
- compatible: only "samsung,secure-firmware" is currently supported
- reg: address of non-secure SYSRAM used for communication with firmware
firmware@0203F000 {
compatible = "samsung,secure-firmware";
reg = <0x0203F000 0x1000>;
};

View File

@ -47,6 +47,9 @@ Required properties:
- samsung,syscon-phandle Contains the PMU system controller node
(To access the ADC_PHY register on Exynos5250/5420/5800/3250)
Optional properties:
- has-touchscreen: If present, indicates that a touchscreen is
connected an usable.
Note: child nodes can be added for auto probing from device tree.

View File

@ -29,10 +29,27 @@ Properties:
- clocks : list of phandles and specifiers to all input clocks listed in
clock-names property.
Optional properties:
Some PMUs are capable of behaving as an interrupt controller (mostly
to wake up a suspended PMU). In which case, they can have the
following properties:
- interrupt-controller: indicate that said PMU is an interrupt controller
- #interrupt-cells: must be identical to the that of the parent interrupt
controller.
- interrupt-parent: a phandle indicating which interrupt controller
this PMU signals interrupts to.
Example :
pmu_system_controller: system-controller@10040000 {
compatible = "samsung,exynos5250-pmu", "syscon";
reg = <0x10040000 0x5000>;
interrupt-controller;
#interrupt-cells = <3>;
interrupt-parent = <&gic>;
#clock-cells = <1>;
clock-names = "clkout0", "clkout1", "clkout2", "clkout3",
"clkout4", "clkout8", "clkout9";

View File

@ -0,0 +1,69 @@
* Samsung's Exynos SoC based boards
Required root node properties:
- compatible = should be one or more of the following.
- "samsung,monk" - for Exynos3250-based Samsung Simband board.
- "samsung,rinato" - for Exynos3250-based Samsung Gear2 board.
- "samsung,smdkv310" - for Exynos4210-based Samsung SMDKV310 eval board.
- "samsung,trats" - for Exynos4210-based Tizen Reference board.
- "samsung,universal_c210" - for Exynos4210-based Samsung board.
- "samsung,smdk4412", - for Exynos4412-based Samsung SMDK4412 eval board.
- "samsung,trats2" - for Exynos4412-based Tizen Reference board.
- "samsung,smdk5250" - for Exynos5250-based Samsung SMDK5250 eval board.
- "samsung,xyref5260" - for Exynos5260-based Samsung board.
- "samsung,smdk5410" - for Exynos5410-based Samsung SMDK5410 eval board.
- "samsung,smdk5420" - for Exynos5420-based Samsung SMDK5420 eval board.
- "samsung,sd5v1" - for Exynos5440-based Samsung board.
- "samsung,ssdk5440" - for Exynos5440-based Samsung board.
* Other companies Exynos SoC based
* FriendlyARM
- "friendlyarm,tiny4412" - for Exynos4412-based FriendlyARM
TINY4412 board.
* Google
- "google,pi" - for Exynos5800-based Google Peach Pi
Rev 10+ board,
also: "google,pi-rev16", "google,pi-rev15", "google,pi-rev14",
"google,pi-rev13", "google,pi-rev12", "google,pi-rev11",
"google,pi-rev10", "google,peach".
- "google,pit" - for Exynos5420-based Google Peach Pit
Rev 6+ (Exynos5420),
also: "google,pit-rev16", "google,pit-rev15", "google,pit-rev14",
"google,pit-rev13", "google,pit-rev12", "google,pit-rev11",
"google,pit-rev10", "google,pit-rev9", "google,pit-rev8",
"google,pit-rev7", "google,pit-rev6", "google,peach".
- "google,snow-rev4" - for Exynos5250-based Google Snow board,
also: "google,snow"
- "google,snow-rev5" - for Exynos5250-based Google Snow
Rev 5+ board.
- "google,spring" - for Exynos5250-based Google Spring board.
* Hardkernel
- "hardkernel,odroid-u3" - for Exynos4412-based Hardkernel Odroid U3.
- "hardkernel,odroid-x" - for Exynos4412-based Hardkernel Odroid X.
- "hardkernel,odroid-x2" - for Exynos4412-based Hardkernel Odroid X2.
- "hardkernel,odroid-xu3" - for Exynos5422-based Hardkernel Odroid XU3.
- "hardkernel,odroid-xu3-lite" - for Exynos5422-based Hardkernel
Odroid XU3 Lite board.
- "hardkernel,odroid-xu4" - for Exynos5422-based Hardkernel Odroid XU4.
* Insignal
- "insignal,arndale" - for Exynos5250-based Insignal Arndale board.
- "insignal,arndale-octa" - for Exynos5420-based Insignal Arndale
Octa board.
- "insignal,origen" - for Exynos4210-based Insignal Origen board.
- "insignal,origen4412 - for Exynos4412-based Insignal Origen board.
Optional nodes:
- firmware node, specifying presence and type of secure firmware:
- compatible: only "samsung,secure-firmware" is currently supported
- reg: address of non-secure SYSRAM used for communication with firmware
firmware@0203F000 {
compatible = "samsung,secure-firmware";
reg = <0x0203F000 0x1000>;
};

28
Bindings/arm/scu.txt Normal file
View File

@ -0,0 +1,28 @@
* ARM Snoop Control Unit (SCU)
As part of the MPCore complex, Cortex-A5 and Cortex-A9 are provided
with a Snoop Control Unit. The register range is usually 256 (0x100)
bytes.
References:
- Cortex-A9: see DDI0407E Cortex-A9 MPCore Technical Reference Manual
Revision r2p0
- Cortex-A5: see DDI0434B Cortex-A5 MPCore Technical Reference Manual
Revision r0p1
- ARM11 MPCore: see DDI0360F ARM 11 MPCore Processor Technical Reference
Manial Revision r2p0
- compatible : Should be:
"arm,cortex-a9-scu"
"arm,cortex-a5-scu"
"arm,arm11mp-scu"
- reg : Specify the base address and the size of the SCU register window.
Example:
scu@a04100000 {
compatible = "arm,cortex-a9-scu";
reg = <0xa0410000 0x100>;
};

53
Bindings/arm/secure.txt Normal file
View File

@ -0,0 +1,53 @@
* ARM Secure world bindings
ARM CPUs with TrustZone support have two distinct address spaces,
"Normal" and "Secure". Most devicetree consumers (including the Linux
kernel) are not TrustZone aware and run entirely in either the Normal
world or the Secure world. However some devicetree consumers are
TrustZone aware and need to be able to determine whether devices are
visible only in the Secure address space, only in the Normal address
space, or visible in both. (One example of that situation would be a
virtual machine which boots Secure firmware and wants to tell the
firmware about the layout of the machine via devicetree.)
The general principle of the naming scheme for Secure world bindings
is that any property that needs a different value in the Secure world
can be supported by prefixing the property name with "secure-". So for
instance "secure-foo" would override "foo". For property names with
a vendor prefix, the Secure variant of "vendor,foo" would be
"vendor,secure-foo". If there is no "secure-" property then the Secure
world value is the same as specified for the Normal world by the
non-prefixed property. However, only the properties listed below may
validly have "secure-" versions; this list will be enlarged on a
case-by-case basis.
Defining the bindings in this way means that a device tree which has
been annotated to indicate the presence of Secure-only devices can
still be processed unmodified by existing Non-secure software (and in
particular by the kernel).
Note that it is still valid for bindings intended for purely Secure
world consumers (like kernels that run entirely in Secure) to simply
describe the view of Secure world using the standard bindings. These
secure- bindings only need to be used where both the Secure and Normal
world views need to be described in a single device tree.
Valid Secure world properties:
- secure-status : specifies whether the device is present and usable
in the secure world. The combination of this with "status" allows
the various possible combinations of device visibility to be
specified. If "secure-status" is not specified it defaults to the
same value as "status"; if "status" is not specified either then
both default to "okay". This means the following combinations are
possible:
/* Neither specified: default to visible in both S and NS */
secure-status = "okay"; /* visible in both */
status = "okay"; /* visible in both */
status = "okay"; secure-status = "okay"; /* visible in both */
secure-status = "disabled"; /* NS-only */
status = "okay"; secure-status = "disabled"; /* NS-only */
status = "disabled"; secure-status = "okay"; /* S-only */
status = "disabled"; /* disabled in both */
status = "disabled"; secure-status = "disabled"; /* disabled in both */

View File

@ -7,8 +7,6 @@ SoCs:
compatible = "renesas,emev2"
- RZ/A1H (R7S72100)
compatible = "renesas,r7s72100"
- SH-Mobile AP4 (R8A73720/SH7372)
compatible = "renesas,sh7372"
- SH-Mobile AG5 (R8A73A00/SH73A0)
compatible = "renesas,sh73a0"
- R-Mobile APE6 (R8A73A40)
@ -29,6 +27,8 @@ SoCs:
compatible = "renesas,r8a7793"
- R-Car E2 (R8A77940)
compatible = "renesas,r8a7794"
- R-Car H3 (R8A77950)
compatible = "renesas,r8a7795"
Boards:
@ -37,14 +37,10 @@ Boards:
compatible = "renesas,alt", "renesas,r8a7794"
- APE6-EVM
compatible = "renesas,ape6evm", "renesas,r8a73a4"
- APE6-EVM - Reference Device Tree Implementation
compatible = "renesas,ape6evm-reference", "renesas,r8a73a4"
- Atmark Techno Armadillo-800 EVA
compatible = "renesas,armadillo800eva"
- BOCK-W
compatible = "renesas,bockw", "renesas,r8a7778"
- BOCK-W - Reference Device Tree Implementation
compatible = "renesas,bockw-reference", "renesas,r8a7778"
- Genmai (RTK772100BC00000BR)
compatible = "renesas,genmai", "renesas,r7s72100"
- Gose
@ -57,15 +53,13 @@ Boards:
compatible = "renesas,kzm9d", "renesas,emev2"
- Kyoto Microcomputer Co. KZM-A9-GT
compatible = "renesas,kzm9g", "renesas,sh73a0"
- Kyoto Microcomputer Co. KZM-A9-GT - Reference Device Tree Implementation
compatible = "renesas,kzm9g-reference", "renesas,sh73a0"
- Lager (RTP0RC7790SEB00010S)
compatible = "renesas,lager", "renesas,r8a7790"
- Mackerel (R0P7372LC0016RL, AP4 EVM 2nd)
compatible = "renesas,mackerel"
- Marzen
compatible = "renesas,marzen", "renesas,r8a7779"
Note: Reference Device Tree Implementations are temporary implementations
to ease the migration from platform devices to Device Tree, and are
intended to be removed in the future.
- Porter (M2-LCDP)
compatible = "renesas,porter", "renesas,r8a7791"
- Salvator-X (RTP0RC7795SIPB0010S)
compatible = "renesas,salvator-x", "renesas,r8a7795";
- SILK (RTP0RC7794LCB00011S)
compatible = "renesas,silk", "renesas,r8a7794"

46
Bindings/arm/sp810.txt Normal file
View File

@ -0,0 +1,46 @@
SP810 System Controller
-----------------------
Required properties:
- compatible: standard compatible string for a Primecell peripheral,
see Documentation/devicetree/bindings/arm/primecell.txt
for more details
should be: "arm,sp810", "arm,primecell"
- reg: standard registers property, physical address and size
of the control registers
- clock-names: from the common clock bindings, for more details see
Documentation/devicetree/bindings/clock/clock-bindings.txt;
should be: "refclk", "timclk", "apb_pclk"
- clocks: from the common clock bindings, phandle and clock
specifier pairs for the entries of clock-names property
- #clock-cells: from the common clock bindings;
should be: <1>
- clock-output-names: from the common clock bindings;
should be: "timerclken0", "timerclken1", "timerclken2", "timerclken3"
- assigned-clocks: from the common clock binding;
should be: clock specifier for each output clock of this
provider node
- assigned-clock-parents: from the common clock binding;
should be: phandle of input clock listed in clocks
property with the highest frequency
Example:
v2m_sysctl: sysctl@020000 {
compatible = "arm,sp810", "arm,primecell";
reg = <0x020000 0x1000>;
clocks = <&v2m_refclk32khz>, <&v2m_refclk1mhz>, <&smbclk>;
clock-names = "refclk", "timclk", "apb_pclk";
#clock-cells = <1>;
clock-output-names = "timerclken0", "timerclken1", "timerclken2", "timerclken3";
assigned-clocks = <&v2m_sysctl 0>, <&v2m_sysctl 1>, <&v2m_sysctl 3>, <&v2m_sysctl 3>;
assigned-clock-parents = <&v2m_refclk1mhz>, <&v2m_refclk1mhz>, <&v2m_refclk1mhz>, <&v2m_refclk1mhz>;
};

View File

@ -13,6 +13,10 @@ Boards with the ST STiH407 SoC shall have the following properties:
Required root node property:
compatible = "st,stih407";
Boards with the ST STiH410 SoC shall have the following properties:
Required root node property:
compatible = "st,stih410";
Boards with the ST STiH418 SoC shall have the following properties:
Required root node property:
compatible = "st,stih418";

View File

@ -6,7 +6,10 @@ using one of the following compatible strings:
allwinner,sun4i-a10
allwinner,sun5i-a10s
allwinner,sun5i-a13
allwinner,sun5i-r8
allwinner,sun6i-a31
allwinner,sun7i-a20
allwinner,sun8i-a23
allwinner,sun8i-a33
allwinner,sun8i-h3
allwinner,sun9i-a80

View File

@ -0,0 +1,6 @@
Technologic Systems Platforms Device Tree Bindings
--------------------------------------------------
TS-4800 board
Required root node properties:
- compatible = "technologic,imx51-ts4800", "fsl,imx51";

View File

@ -5,9 +5,12 @@ Required properties:
Tegra30, must contain "nvidia,tegra30-ahb". Otherwise, must contain
'"nvidia,<chip>-ahb", "nvidia,tegra30-ahb"' where <chip> is tegra124,
tegra132, or tegra210.
- reg : Should contain 1 register ranges(address and length)
- reg : Should contain 1 register ranges(address and length). For
Tegra20, Tegra30, and Tegra114 chips, the value must be <0x6000c004
0x10c>. For Tegra124, Tegra132 and Tegra210 chips, the value should
be be <0x6000c000 0x150>.
Example:
Example (for a Tegra20 chip):
ahb: ahb@6000c004 {
compatible = "nvidia,tegra20-ahb";
reg = <0x6000c004 0x10c>; /* AHB Arbitration + Gizmo Controller */

View File

@ -0,0 +1,32 @@
NVIDIA Tegra Activity Monitor
The activity monitor block collects statistics about the behaviour of other
components in the system. This information can be used to derive the rate at
which the external memory needs to be clocked in order to serve all requests
from the monitored clients.
Required properties:
- compatible: should be "nvidia,tegra<chip>-actmon"
- reg: offset and length of the register set for the device
- interrupts: standard interrupt property
- clocks: Must contain a phandle and clock specifier pair for each entry in
clock-names. See ../../clock/clock-bindings.txt for details.
- clock-names: Must include the following entries:
- actmon
- emc
- resets: Must contain an entry for each entry in reset-names. See
../../reset/reset.txt for details.
- reset-names: Must include the following entries:
- actmon
Example:
actmon@6000c800 {
compatible = "nvidia,tegra124-actmon";
reg = <0x0 0x6000c800 0x0 0x400>;
interrupts = <GIC_SPI 45 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&tegra_car TEGRA124_CLK_ACTMON>,
<&tegra_car TEGRA124_CLK_EMC>;
clock-names = "actmon", "emc";
resets = <&tegra_car 119>;
reset-names = "actmon";
};

View File

@ -19,6 +19,11 @@ interrupts.
- reg : Specify the base address and the size of the TWD timer
register window.
Optional
- always-on : a boolean property. If present, the timer is powered through
an always-on power domain, therefore it never loses context.
Example:
twd-timer@2c000600 {

View File

@ -0,0 +1,60 @@
UniPhier outer cache controller
UniPhier SoCs are integrated with a full-custom outer cache controller system.
All of them have a level 2 cache controller, and some have a level 3 cache
controller as well.
Required properties:
- compatible: should be "socionext,uniphier-system-cache"
- reg: offsets and lengths of the register sets for the device. It should
contain 3 regions: control register, revision register, operation register,
in this order.
- cache-unified: specifies the cache is a unified cache.
- cache-size: specifies the size in bytes of the cache
- cache-sets: specifies the number of associativity sets of the cache
- cache-line-size: specifies the line size in bytes
- cache-level: specifies the level in the cache hierarchy. The value should
be 2 for L2 cache, 3 for L3 cache, etc.
Optional properties:
- next-level-cache: phandle to the next level cache if present. The next level
cache should be also compatible with "socionext,uniphier-system-cache".
The L2 cache must exist to use the L3 cache; the cache hierarchy must be
indicated correctly with "next-level-cache" properties.
Example 1 (system with L2):
l2: l2-cache@500c0000 {
compatible = "socionext,uniphier-system-cache";
reg = <0x500c0000 0x2000>, <0x503c0100 0x4>,
<0x506c0000 0x400>;
cache-unified;
cache-size = <0x80000>;
cache-sets = <256>;
cache-line-size = <128>;
cache-level = <2>;
};
Example 2 (system with L2 and L3):
l2: l2-cache@500c0000 {
compatible = "socionext,uniphier-system-cache";
reg = <0x500c0000 0x2000>, <0x503c0100 0x8>,
<0x506c0000 0x400>;
cache-unified;
cache-size = <0x200000>;
cache-sets = <512>;
cache-line-size = <128>;
cache-level = <2>;
next-level-cache = <&l3>;
};
l3: l3-cache@500c8000 {
compatible = "socionext,uniphier-system-cache";
reg = <0x500c8000 0x2000>, <0x503c8100 0x8>,
<0x506c8000 0x400>;
cache-unified;
cache-size = <0x400000>;
cache-sets = <512>;
cache-line-size = <256>;
cache-level = <3>;
};

View File

@ -0,0 +1,83 @@
ST-Ericsson Ux500 boards
------------------------
Required properties (in root node) one of these:
compatible = "st-ericsson,mop500" (legacy)
compatible = "st-ericsson,u8500"
Required node (under root node):
soc: represents the system-on-chip and contains the chip
peripherals
Required property of soc node, one of these:
compatible = "stericsson,db8500"
Required subnodes under soc node:
backupram: (used for CPU spin tables and for storing data
during retention, system won't boot without this):
compatible = "ste,dbx500-backupram"
scu:
see binding for arm/scu.txt
interrupt-controller:
see binding for arm/gic.txt
timer:
see binding for arm/twd.txt
clocks:
see binding for clocks/ux500.txt
Example:
/dts-v1/;
/ {
model = "ST-Ericsson HREF (pre-v60) and ST UIB";
compatible = "st-ericsson,mop500", "st-ericsson,u8500";
soc {
#address-cells = <1>;
#size-cells = <1>;
compatible = "stericsson,db8500";
interrupt-parent = <&intc>;
ranges;
backupram@80150000 {
compatible = "ste,dbx500-backupram";
reg = <0x80150000 0x2000>;
};
intc: interrupt-controller@a0411000 {
compatible = "arm,cortex-a9-gic";
#interrupt-cells = <3>;
#address-cells = <1>;
interrupt-controller;
reg = <0xa0411000 0x1000>,
<0xa0410100 0x100>;
};
scu@a04100000 {
compatible = "arm,cortex-a9-scu";
reg = <0xa0410000 0x100>;
};
timer@a0410600 {
compatible = "arm,cortex-a9-twd-timer";
reg = <0xa0410600 0x20>;
interrupts = <1 13 0x304>; /* IRQ level high per-CPU */
clocks = <&smp_twd_clk>;
};
clocks {
compatible = "stericsson,u8500-clks";
smp_twd_clk: smp-twd-clock {
#clock-cells = <0>;
};
};
};
};

15
Bindings/arm/zte.txt Normal file
View File

@ -0,0 +1,15 @@
ZTE platforms device tree bindings
---------------------------------------
- ZX296702 board:
Required root node properties:
- compatible = "zte,zx296702-ad1", "zte,zx296702"
System management required properties:
- compatible = "zte,sysctrl"
Low power management required properties:
- compatible = "zte,zx296702-pcu"
Bus matrix required properties:
- compatible = "zte,zx-bus-matrix"

View File

@ -0,0 +1,20 @@
Binding for CEVA AHCI SATA Controller
Required properties:
- reg: Physical base address and size of the controller's register area.
- compatible: Compatibility string. Must be 'ceva,ahci-1v84'.
- clocks: Input clock specifier. Refer to common clock bindings.
- interrupts: Interrupt specifier. Refer to interrupt binding.
Optional properties:
- ceva,broken-gen2: limit to gen1 speed instead of gen2.
Examples:
ahci@fd0c0000 {
compatible = "ceva,ahci-1v84";
reg = <0xfd0c0000 0x200>;
interrupt-parent = <&gic>;
interrupts = <0 133 4>;
clocks = <&clkc SATA_CLK_ID>;
ceva,broken-gen2;
};

View File

@ -0,0 +1,21 @@
Binding for Freescale QorIQ AHCI SATA Controller
Required properties:
- reg: Physical base address and size of the controller's register area.
- compatible: Compatibility string. Must be 'fsl,<chip>-ahci', where
chip could be ls1021a, ls2080a, ls1043a etc.
- clocks: Input clock specifier. Refer to common clock bindings.
- interrupts: Interrupt specifier. Refer to interrupt binding.
Optional properties:
- dma-coherent: Enable AHCI coherent DMA operation.
- reg-names: register area names when there are more than 1 register area.
Examples:
sata@3200000 {
compatible = "fsl,ls1021a-ahci";
reg = <0x0 0x3200000 0x0 0x10000>;
interrupts = <GIC_SPI 101 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&platform_clk 1>;
dma-coherent;
};

View File

@ -3,29 +3,48 @@ STMicroelectronics STi SATA controller
This binding describes a SATA device.
Required properties:
- compatible : Must be "st,sti-ahci"
- compatible : Must be "st,ahci"
- reg : Physical base addresses and length of register sets
- interrupts : Interrupt associated with the SATA device
- interrupt-names : Associated name must be; "hostc"
- resets : The power-down and soft-reset lines of SATA IP
- reset-names : Associated names must be; "pwr-dwn" and "sw-rst"
- clocks : The phandle for the clock
- clock-names : Associated name must be; "ahci_clk"
- phys : The phandle for the PHY device
- phys : The phandle for the PHY port
- phy-names : Associated name must be; "ahci_phy"
Optional properties:
- resets : The power-down, soft-reset and power-reset lines of SATA IP
- reset-names : Associated names must be; "pwr-dwn", "sw-rst" and "pwr-rst"
Example:
/* Example for stih416 */
sata0: sata@fe380000 {
compatible = "st,sti-ahci";
reg = <0xfe380000 0x1000>;
interrupts = <GIC_SPI 157 IRQ_TYPE_NONE>;
interrupt-names = "hostc";
phys = <&miphy365x_phy MIPHY_PORT_0 MIPHY_TYPE_SATA>;
phy-names = "ahci_phy";
resets = <&powerdown STIH416_SATA0_POWERDOWN>,
compatible = "st,ahci";
reg = <0xfe380000 0x1000>;
interrupts = <GIC_SPI 157 IRQ_TYPE_NONE>;
interrupt-names = "hostc";
phys = <&phy_port0 PHY_TYPE_SATA>;
phy-names = "ahci_phy";
resets = <&powerdown STIH416_SATA0_POWERDOWN>,
<&softreset STIH416_SATA0_SOFTRESET>;
reset-names = "pwr-dwn", "sw-rst";
clocks = <&clk_s_a0_ls CLK_ICN_REG>;
clock-names = "ahci_clk";
reset-names = "pwr-dwn", "sw-rst";
clocks = <&clk_s_a0_ls CLK_ICN_REG>;
clock-names = "ahci_clk";
};
/* Example for stih407 family silicon */
sata0: sata@9b20000 {
compatible = "st,ahci";
reg = <0x9b20000 0x1000>;
interrupts = <GIC_SPI 159 IRQ_TYPE_NONE>;
interrupt-names = "hostc";
phys = <&phy_port0 PHY_TYPE_SATA>;
phy-names = "ahci_phy";
resets = <&powerdown STIH407_SATA0_POWERDOWN>,
<&softreset STIH407_SATA0_SOFTRESET>,
<&softreset STIH407_SATA0_PWR_SOFTRESET>;
reset-names = "pwr-dwn", "sw-rst", "pwr-rst";
clocks = <&clk_s_c0_flexgen CLK_ICN_REG>;
clock-names = "ahci_clk";
};

View File

@ -0,0 +1,36 @@
* Broadcom SATA3 AHCI Controller for STB
SATA nodes are defined to describe on-chip Serial ATA controllers.
Each SATA controller should have its own node.
Required properties:
- compatible : should be one or more of
"brcm,bcm7425-ahci"
"brcm,bcm7445-ahci"
"brcm,sata3-ahci"
- reg : register mappings for AHCI and SATA_TOP_CTRL
- reg-names : "ahci" and "top-ctrl"
- interrupts : interrupt mapping for SATA IRQ
Also see ahci-platform.txt.
Example:
sata@f045a000 {
compatible = "brcm,bcm7445-ahci", "brcm,sata3-ahci";
reg = <0xf045a000 0xa9c>, <0xf0458040 0x24>;
reg-names = "ahci", "top-ctrl";
interrupts = <0 30 0>;
#address-cells = <1>;
#size-cells = <0>;
sata0: sata-port@0 {
reg = <0>;
phys = <&sata_phy 0>;
};
sata1: sata-port@1 {
reg = <1>;
phys = <&sata_phy 1>;
};
};

View File

@ -1,14 +0,0 @@
* Samsung SATA PHY Controller
SATA PHY nodes are defined to describe on-chip SATA Physical layer controllers.
Each SATA PHY controller should have its own node.
Required properties:
- compatible : compatible list, contains "samsung,exynos5-sata-phy"
- reg : <registers mapping>
Example:
sata@ffe07000 {
compatible = "samsung,exynos5-sata-phy";
reg = <0xffe07000 0x1000>;
};

View File

@ -8,6 +8,7 @@ Required properties:
- "renesas,sata-r8a7790" for R-Car H2 other than ES1
- "renesas,sata-r8a7791" for R-Car M2-W
- "renesas,sata-r8a7793" for R-Car M2-N
- "renesas,sata-r8a7795" for R-Car H3
- reg : address and length of the SATA registers;
- interrupts : must consist of one interrupt specifier.
- clocks : must contain a reference to the functional clock.

View File

@ -21,11 +21,14 @@ Example:
This is the memory-mapped registers for on board FPGA.
Required properities:
Required properties:
- compatible: should be a board-specific string followed by a string
indicating the type of FPGA. Example:
"fsl,<board>-fpga", "fsl,fpga-pixis"
"fsl,<board>-fpga", "fsl,fpga-pixis", or
"fsl,<board>-fpga", "fsl,fpga-qixis"
- reg: should contain the address and the length of the FPGA register set.
Optional properties:
- interrupt-parent: should specify phandle for the interrupt controller.
- interrupts: should specify event (wakeup) IRQ.
@ -38,6 +41,13 @@ Example (P1022DS):
interrupts = <8 8 0 0>;
};
Example (LS2080A-RDB):
cpld@3,0 {
compatible = "fsl,ls2080ardb-fpga", "fsl,fpga-qixis";
reg = <0x3 0 0x10000>;
};
* Freescale BCSR GPIO banks
Some BCSR registers act as simple GPIO controllers, each such

Some files were not shown because too many files have changed in this diff Show More