MFV 247176, 247178, 247315:
Import metaslab_sync() speedup from vendor (illumos). Illumos ZFS issues: 3552 condensing one space map burns 3 seconds of CPU in spa_sync() thread 3564 spa_sync() spends 5-10% of its time in metaslab_sync() (when not condensing) 3578 transferring the freed map to the defer map should be constant time 3579 ztest trips assertion in metaslab_weight() References: https://www.illumos.org/issues/3552 https://www.illumos.org/issues/3564 https://www.illumos.org/issues/3578 https://www.illumos.org/issues/3579 MFC after: 2 weeks
This commit is contained in:
commit
24245e76ea
@ -545,7 +545,7 @@ static void
|
||||
dump_metaslab_stats(metaslab_t *msp)
|
||||
{
|
||||
char maxbuf[32];
|
||||
space_map_t *sm = &msp->ms_map;
|
||||
space_map_t *sm = msp->ms_map;
|
||||
avl_tree_t *t = sm->sm_pp_root;
|
||||
int free_pct = sm->sm_space * 100 / sm->sm_size;
|
||||
|
||||
@ -561,7 +561,7 @@ dump_metaslab(metaslab_t *msp)
|
||||
{
|
||||
vdev_t *vd = msp->ms_group->mg_vd;
|
||||
spa_t *spa = vd->vdev_spa;
|
||||
space_map_t *sm = &msp->ms_map;
|
||||
space_map_t *sm = msp->ms_map;
|
||||
space_map_obj_t *smo = &msp->ms_smo;
|
||||
char freebuf[32];
|
||||
|
||||
@ -2160,11 +2160,11 @@ zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
|
||||
for (int m = 0; m < vd->vdev_ms_count; m++) {
|
||||
metaslab_t *msp = vd->vdev_ms[m];
|
||||
mutex_enter(&msp->ms_lock);
|
||||
space_map_unload(&msp->ms_map);
|
||||
VERIFY(space_map_load(&msp->ms_map,
|
||||
space_map_unload(msp->ms_map);
|
||||
VERIFY(space_map_load(msp->ms_map,
|
||||
&zdb_space_map_ops, SM_ALLOC, &msp->ms_smo,
|
||||
spa->spa_meta_objset) == 0);
|
||||
msp->ms_map.sm_ppd = vd;
|
||||
msp->ms_map->sm_ppd = vd;
|
||||
mutex_exit(&msp->ms_lock);
|
||||
}
|
||||
}
|
||||
@ -2187,7 +2187,7 @@ zdb_leak_fini(spa_t *spa)
|
||||
for (int m = 0; m < vd->vdev_ms_count; m++) {
|
||||
metaslab_t *msp = vd->vdev_ms[m];
|
||||
mutex_enter(&msp->ms_lock);
|
||||
space_map_unload(&msp->ms_map);
|
||||
space_map_unload(msp->ms_map);
|
||||
mutex_exit(&msp->ms_lock);
|
||||
}
|
||||
}
|
||||
|
@ -47,6 +47,14 @@
|
||||
uint64_t metaslab_aliquot = 512ULL << 10;
|
||||
uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
|
||||
|
||||
/*
|
||||
* The in-core space map representation is more compact than its on-disk form.
|
||||
* The zfs_condense_pct determines how much more compact the in-core
|
||||
* space_map representation must be before we compact it on-disk.
|
||||
* Values should be greater than or equal to 100.
|
||||
*/
|
||||
int zfs_condense_pct = 200;
|
||||
|
||||
/*
|
||||
* This value defines the number of allowed allocation failures per vdev.
|
||||
* If a device reaches this threshold in a given txg then we consider skipping
|
||||
@ -215,9 +223,9 @@ metaslab_compare(const void *x1, const void *x2)
|
||||
/*
|
||||
* If the weights are identical, use the offset to force uniqueness.
|
||||
*/
|
||||
if (m1->ms_map.sm_start < m2->ms_map.sm_start)
|
||||
if (m1->ms_map->sm_start < m2->ms_map->sm_start)
|
||||
return (-1);
|
||||
if (m1->ms_map.sm_start > m2->ms_map.sm_start)
|
||||
if (m1->ms_map->sm_start > m2->ms_map->sm_start)
|
||||
return (1);
|
||||
|
||||
ASSERT3P(m1, ==, m2);
|
||||
@ -732,14 +740,15 @@ metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
|
||||
* addition of new space; and for debugging, it ensures that we'd
|
||||
* data fault on any attempt to use this metaslab before it's ready.
|
||||
*/
|
||||
space_map_create(&msp->ms_map, start, size,
|
||||
msp->ms_map = kmem_zalloc(sizeof (space_map_t), KM_SLEEP);
|
||||
space_map_create(msp->ms_map, start, size,
|
||||
vd->vdev_ashift, &msp->ms_lock);
|
||||
|
||||
metaslab_group_add(mg, msp);
|
||||
|
||||
if (metaslab_debug && smo->smo_object != 0) {
|
||||
mutex_enter(&msp->ms_lock);
|
||||
VERIFY(space_map_load(&msp->ms_map, mg->mg_class->mc_ops,
|
||||
VERIFY(space_map_load(msp->ms_map, mg->mg_class->mc_ops,
|
||||
SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0);
|
||||
mutex_exit(&msp->ms_lock);
|
||||
}
|
||||
@ -767,22 +776,27 @@ metaslab_fini(metaslab_t *msp)
|
||||
metaslab_group_t *mg = msp->ms_group;
|
||||
|
||||
vdev_space_update(mg->mg_vd,
|
||||
-msp->ms_smo.smo_alloc, 0, -msp->ms_map.sm_size);
|
||||
-msp->ms_smo.smo_alloc, 0, -msp->ms_map->sm_size);
|
||||
|
||||
metaslab_group_remove(mg, msp);
|
||||
|
||||
mutex_enter(&msp->ms_lock);
|
||||
|
||||
space_map_unload(&msp->ms_map);
|
||||
space_map_destroy(&msp->ms_map);
|
||||
space_map_unload(msp->ms_map);
|
||||
space_map_destroy(msp->ms_map);
|
||||
kmem_free(msp->ms_map, sizeof (*msp->ms_map));
|
||||
|
||||
for (int t = 0; t < TXG_SIZE; t++) {
|
||||
space_map_destroy(&msp->ms_allocmap[t]);
|
||||
space_map_destroy(&msp->ms_freemap[t]);
|
||||
space_map_destroy(msp->ms_allocmap[t]);
|
||||
space_map_destroy(msp->ms_freemap[t]);
|
||||
kmem_free(msp->ms_allocmap[t], sizeof (*msp->ms_allocmap[t]));
|
||||
kmem_free(msp->ms_freemap[t], sizeof (*msp->ms_freemap[t]));
|
||||
}
|
||||
|
||||
for (int t = 0; t < TXG_DEFER_SIZE; t++)
|
||||
space_map_destroy(&msp->ms_defermap[t]);
|
||||
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
||||
space_map_destroy(msp->ms_defermap[t]);
|
||||
kmem_free(msp->ms_defermap[t], sizeof (*msp->ms_defermap[t]));
|
||||
}
|
||||
|
||||
ASSERT0(msp->ms_deferspace);
|
||||
|
||||
@ -801,13 +815,23 @@ static uint64_t
|
||||
metaslab_weight(metaslab_t *msp)
|
||||
{
|
||||
metaslab_group_t *mg = msp->ms_group;
|
||||
space_map_t *sm = &msp->ms_map;
|
||||
space_map_t *sm = msp->ms_map;
|
||||
space_map_obj_t *smo = &msp->ms_smo;
|
||||
vdev_t *vd = mg->mg_vd;
|
||||
uint64_t weight, space;
|
||||
|
||||
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
||||
|
||||
/*
|
||||
* This vdev is in the process of being removed so there is nothing
|
||||
* for us to do here.
|
||||
*/
|
||||
if (vd->vdev_removing) {
|
||||
ASSERT0(smo->smo_alloc);
|
||||
ASSERT0(vd->vdev_ms_shift);
|
||||
return (0);
|
||||
}
|
||||
|
||||
/*
|
||||
* The baseline weight is the metaslab's free space.
|
||||
*/
|
||||
@ -861,7 +885,7 @@ metaslab_prefetch(metaslab_group_t *mg)
|
||||
* Prefetch the next potential metaslabs
|
||||
*/
|
||||
for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) {
|
||||
space_map_t *sm = &msp->ms_map;
|
||||
space_map_t *sm = msp->ms_map;
|
||||
space_map_obj_t *smo = &msp->ms_smo;
|
||||
|
||||
/* If we have reached our prefetch limit then we're done */
|
||||
@ -882,7 +906,7 @@ static int
|
||||
metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
|
||||
{
|
||||
metaslab_group_t *mg = msp->ms_group;
|
||||
space_map_t *sm = &msp->ms_map;
|
||||
space_map_t *sm = msp->ms_map;
|
||||
space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
|
||||
|
||||
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
||||
@ -899,7 +923,7 @@ metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
|
||||
return (error);
|
||||
}
|
||||
for (int t = 0; t < TXG_DEFER_SIZE; t++)
|
||||
space_map_walk(&msp->ms_defermap[t],
|
||||
space_map_walk(msp->ms_defermap[t],
|
||||
space_map_claim, sm);
|
||||
|
||||
}
|
||||
@ -930,11 +954,157 @@ metaslab_passivate(metaslab_t *msp, uint64_t size)
|
||||
* this metaslab again. In that case, it had better be empty,
|
||||
* or we would be leaving space on the table.
|
||||
*/
|
||||
ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
|
||||
ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map->sm_space == 0);
|
||||
metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
|
||||
ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Determine if the in-core space map representation can be condensed on-disk.
|
||||
* We would like to use the following criteria to make our decision:
|
||||
*
|
||||
* 1. The size of the space map object should not dramatically increase as a
|
||||
* result of writing out our in-core free map.
|
||||
*
|
||||
* 2. The minimal on-disk space map representation is zfs_condense_pct/100
|
||||
* times the size than the in-core representation (i.e. zfs_condense_pct = 110
|
||||
* and in-core = 1MB, minimal = 1.1.MB).
|
||||
*
|
||||
* Checking the first condition is tricky since we don't want to walk
|
||||
* the entire AVL tree calculating the estimated on-disk size. Instead we
|
||||
* use the size-ordered AVL tree in the space map and calculate the
|
||||
* size required for the largest segment in our in-core free map. If the
|
||||
* size required to represent that segment on disk is larger than the space
|
||||
* map object then we avoid condensing this map.
|
||||
*
|
||||
* To determine the second criterion we use a best-case estimate and assume
|
||||
* each segment can be represented on-disk as a single 64-bit entry. We refer
|
||||
* to this best-case estimate as the space map's minimal form.
|
||||
*/
|
||||
static boolean_t
|
||||
metaslab_should_condense(metaslab_t *msp)
|
||||
{
|
||||
space_map_t *sm = msp->ms_map;
|
||||
space_map_obj_t *smo = &msp->ms_smo_syncing;
|
||||
space_seg_t *ss;
|
||||
uint64_t size, entries, segsz;
|
||||
|
||||
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
||||
ASSERT(sm->sm_loaded);
|
||||
|
||||
/*
|
||||
* Use the sm_pp_root AVL tree, which is ordered by size, to obtain
|
||||
* the largest segment in the in-core free map. If the tree is
|
||||
* empty then we should condense the map.
|
||||
*/
|
||||
ss = avl_last(sm->sm_pp_root);
|
||||
if (ss == NULL)
|
||||
return (B_TRUE);
|
||||
|
||||
/*
|
||||
* Calculate the number of 64-bit entries this segment would
|
||||
* require when written to disk. If this single segment would be
|
||||
* larger on-disk than the entire current on-disk structure, then
|
||||
* clearly condensing will increase the on-disk structure size.
|
||||
*/
|
||||
size = (ss->ss_end - ss->ss_start) >> sm->sm_shift;
|
||||
entries = size / (MIN(size, SM_RUN_MAX));
|
||||
segsz = entries * sizeof (uint64_t);
|
||||
|
||||
return (segsz <= smo->smo_objsize &&
|
||||
smo->smo_objsize >= (zfs_condense_pct *
|
||||
sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) / 100);
|
||||
}
|
||||
|
||||
/*
|
||||
* Condense the on-disk space map representation to its minimized form.
|
||||
* The minimized form consists of a small number of allocations followed by
|
||||
* the in-core free map.
|
||||
*/
|
||||
static void
|
||||
metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
|
||||
{
|
||||
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
||||
space_map_t *freemap = msp->ms_freemap[txg & TXG_MASK];
|
||||
space_map_t condense_map;
|
||||
space_map_t *sm = msp->ms_map;
|
||||
objset_t *mos = spa_meta_objset(spa);
|
||||
space_map_obj_t *smo = &msp->ms_smo_syncing;
|
||||
|
||||
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
||||
ASSERT3U(spa_sync_pass(spa), ==, 1);
|
||||
ASSERT(sm->sm_loaded);
|
||||
|
||||
spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
|
||||
"smo size %llu, segments %lu", txg,
|
||||
(msp->ms_map->sm_start / msp->ms_map->sm_size), msp,
|
||||
smo->smo_objsize, avl_numnodes(&sm->sm_root));
|
||||
|
||||
/*
|
||||
* Create an map that is a 100% allocated map. We remove segments
|
||||
* that have been freed in this txg, any deferred frees that exist,
|
||||
* and any allocation in the future. Removing segments should be
|
||||
* a relatively inexpensive operation since we expect these maps to
|
||||
* a small number of nodes.
|
||||
*/
|
||||
space_map_create(&condense_map, sm->sm_start, sm->sm_size,
|
||||
sm->sm_shift, sm->sm_lock);
|
||||
space_map_add(&condense_map, condense_map.sm_start,
|
||||
condense_map.sm_size);
|
||||
|
||||
/*
|
||||
* Remove what's been freed in this txg from the condense_map.
|
||||
* Since we're in sync_pass 1, we know that all the frees from
|
||||
* this txg are in the freemap.
|
||||
*/
|
||||
space_map_walk(freemap, space_map_remove, &condense_map);
|
||||
|
||||
for (int t = 0; t < TXG_DEFER_SIZE; t++)
|
||||
space_map_walk(msp->ms_defermap[t],
|
||||
space_map_remove, &condense_map);
|
||||
|
||||
for (int t = 1; t < TXG_CONCURRENT_STATES; t++)
|
||||
space_map_walk(msp->ms_allocmap[(txg + t) & TXG_MASK],
|
||||
space_map_remove, &condense_map);
|
||||
|
||||
/*
|
||||
* We're about to drop the metaslab's lock thus allowing
|
||||
* other consumers to change it's content. Set the
|
||||
* space_map's sm_condensing flag to ensure that
|
||||
* allocations on this metaslab do not occur while we're
|
||||
* in the middle of committing it to disk. This is only critical
|
||||
* for the ms_map as all other space_maps use per txg
|
||||
* views of their content.
|
||||
*/
|
||||
sm->sm_condensing = B_TRUE;
|
||||
|
||||
mutex_exit(&msp->ms_lock);
|
||||
space_map_truncate(smo, mos, tx);
|
||||
mutex_enter(&msp->ms_lock);
|
||||
|
||||
/*
|
||||
* While we would ideally like to create a space_map representation
|
||||
* that consists only of allocation records, doing so can be
|
||||
* prohibitively expensive because the in-core free map can be
|
||||
* large, and therefore computationally expensive to subtract
|
||||
* from the condense_map. Instead we sync out two maps, a cheap
|
||||
* allocation only map followed by the in-core free map. While not
|
||||
* optimal, this is typically close to optimal, and much cheaper to
|
||||
* compute.
|
||||
*/
|
||||
space_map_sync(&condense_map, SM_ALLOC, smo, mos, tx);
|
||||
space_map_vacate(&condense_map, NULL, NULL);
|
||||
space_map_destroy(&condense_map);
|
||||
|
||||
space_map_sync(sm, SM_FREE, smo, mos, tx);
|
||||
sm->sm_condensing = B_FALSE;
|
||||
|
||||
spa_dbgmsg(spa, "condensed: txg %llu, msp[%llu] %p, "
|
||||
"smo size %llu", txg,
|
||||
(msp->ms_map->sm_start / msp->ms_map->sm_size), msp,
|
||||
smo->smo_objsize);
|
||||
}
|
||||
|
||||
/*
|
||||
* Write a metaslab to disk in the context of the specified transaction group.
|
||||
*/
|
||||
@ -944,17 +1114,29 @@ metaslab_sync(metaslab_t *msp, uint64_t txg)
|
||||
vdev_t *vd = msp->ms_group->mg_vd;
|
||||
spa_t *spa = vd->vdev_spa;
|
||||
objset_t *mos = spa_meta_objset(spa);
|
||||
space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
|
||||
space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
|
||||
space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
|
||||
space_map_t *sm = &msp->ms_map;
|
||||
space_map_t *allocmap = msp->ms_allocmap[txg & TXG_MASK];
|
||||
space_map_t **freemap = &msp->ms_freemap[txg & TXG_MASK];
|
||||
space_map_t **freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
|
||||
space_map_t *sm = msp->ms_map;
|
||||
space_map_obj_t *smo = &msp->ms_smo_syncing;
|
||||
dmu_buf_t *db;
|
||||
dmu_tx_t *tx;
|
||||
|
||||
ASSERT(!vd->vdev_ishole);
|
||||
|
||||
if (allocmap->sm_space == 0 && freemap->sm_space == 0)
|
||||
/*
|
||||
* This metaslab has just been added so there's no work to do now.
|
||||
*/
|
||||
if (*freemap == NULL) {
|
||||
ASSERT3P(allocmap, ==, NULL);
|
||||
return;
|
||||
}
|
||||
|
||||
ASSERT3P(allocmap, !=, NULL);
|
||||
ASSERT3P(*freemap, !=, NULL);
|
||||
ASSERT3P(*freed_map, !=, NULL);
|
||||
|
||||
if (allocmap->sm_space == 0 && (*freemap)->sm_space == 0)
|
||||
return;
|
||||
|
||||
/*
|
||||
@ -982,49 +1164,36 @@ metaslab_sync(metaslab_t *msp, uint64_t txg)
|
||||
|
||||
mutex_enter(&msp->ms_lock);
|
||||
|
||||
space_map_walk(freemap, space_map_add, freed_map);
|
||||
|
||||
if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
|
||||
2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
|
||||
/*
|
||||
* The in-core space map representation is twice as compact
|
||||
* as the on-disk one, so it's time to condense the latter
|
||||
* by generating a pure allocmap from first principles.
|
||||
*
|
||||
* This metaslab is 100% allocated,
|
||||
* minus the content of the in-core map (sm),
|
||||
* minus what's been freed this txg (freed_map),
|
||||
* minus deferred frees (ms_defermap[]),
|
||||
* minus allocations from txgs in the future
|
||||
* (because they haven't been committed yet).
|
||||
*/
|
||||
space_map_vacate(allocmap, NULL, NULL);
|
||||
space_map_vacate(freemap, NULL, NULL);
|
||||
|
||||
space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);
|
||||
|
||||
space_map_walk(sm, space_map_remove, allocmap);
|
||||
space_map_walk(freed_map, space_map_remove, allocmap);
|
||||
|
||||
for (int t = 0; t < TXG_DEFER_SIZE; t++)
|
||||
space_map_walk(&msp->ms_defermap[t],
|
||||
space_map_remove, allocmap);
|
||||
|
||||
for (int t = 1; t < TXG_CONCURRENT_STATES; t++)
|
||||
space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
|
||||
space_map_remove, allocmap);
|
||||
|
||||
mutex_exit(&msp->ms_lock);
|
||||
space_map_truncate(smo, mos, tx);
|
||||
mutex_enter(&msp->ms_lock);
|
||||
if (sm->sm_loaded && spa_sync_pass(spa) == 1 &&
|
||||
metaslab_should_condense(msp)) {
|
||||
metaslab_condense(msp, txg, tx);
|
||||
} else {
|
||||
space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
|
||||
space_map_sync(*freemap, SM_FREE, smo, mos, tx);
|
||||
}
|
||||
|
||||
space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
|
||||
space_map_sync(freemap, SM_FREE, smo, mos, tx);
|
||||
space_map_vacate(allocmap, NULL, NULL);
|
||||
|
||||
/*
|
||||
* For sync pass 1, we avoid walking the entire space map and
|
||||
* instead will just swap the pointers for freemap and
|
||||
* freed_map. We can safely do this since the freed_map is
|
||||
* guaranteed to be empty on the initial pass.
|
||||
*/
|
||||
if (spa_sync_pass(spa) == 1) {
|
||||
ASSERT0((*freed_map)->sm_space);
|
||||
ASSERT0(avl_numnodes(&(*freed_map)->sm_root));
|
||||
space_map_swap(freemap, freed_map);
|
||||
} else {
|
||||
space_map_vacate(*freemap, space_map_add, *freed_map);
|
||||
}
|
||||
|
||||
ASSERT0(msp->ms_allocmap[txg & TXG_MASK]->sm_space);
|
||||
ASSERT0(msp->ms_freemap[txg & TXG_MASK]->sm_space);
|
||||
|
||||
mutex_exit(&msp->ms_lock);
|
||||
|
||||
VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
|
||||
VERIFY0(dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
|
||||
dmu_buf_will_dirty(db, tx);
|
||||
ASSERT3U(db->db_size, >=, sizeof (*smo));
|
||||
bcopy(smo, db->db_data, sizeof (*smo));
|
||||
@ -1042,9 +1211,9 @@ metaslab_sync_done(metaslab_t *msp, uint64_t txg)
|
||||
{
|
||||
space_map_obj_t *smo = &msp->ms_smo;
|
||||
space_map_obj_t *smosync = &msp->ms_smo_syncing;
|
||||
space_map_t *sm = &msp->ms_map;
|
||||
space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
|
||||
space_map_t *defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
|
||||
space_map_t *sm = msp->ms_map;
|
||||
space_map_t **freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
|
||||
space_map_t **defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
|
||||
metaslab_group_t *mg = msp->ms_group;
|
||||
vdev_t *vd = mg->mg_vd;
|
||||
int64_t alloc_delta, defer_delta;
|
||||
@ -1055,40 +1224,57 @@ metaslab_sync_done(metaslab_t *msp, uint64_t txg)
|
||||
|
||||
/*
|
||||
* If this metaslab is just becoming available, initialize its
|
||||
* allocmaps and freemaps and add its capacity to the vdev.
|
||||
* allocmaps, freemaps, and defermap and add its capacity to the vdev.
|
||||
*/
|
||||
if (freed_map->sm_size == 0) {
|
||||
if (*freed_map == NULL) {
|
||||
ASSERT(*defer_map == NULL);
|
||||
for (int t = 0; t < TXG_SIZE; t++) {
|
||||
space_map_create(&msp->ms_allocmap[t], sm->sm_start,
|
||||
msp->ms_allocmap[t] = kmem_zalloc(sizeof (space_map_t),
|
||||
KM_SLEEP);
|
||||
space_map_create(msp->ms_allocmap[t], sm->sm_start,
|
||||
sm->sm_size, sm->sm_shift, sm->sm_lock);
|
||||
space_map_create(&msp->ms_freemap[t], sm->sm_start,
|
||||
msp->ms_freemap[t] = kmem_zalloc(sizeof (space_map_t),
|
||||
KM_SLEEP);
|
||||
space_map_create(msp->ms_freemap[t], sm->sm_start,
|
||||
sm->sm_size, sm->sm_shift, sm->sm_lock);
|
||||
}
|
||||
|
||||
for (int t = 0; t < TXG_DEFER_SIZE; t++)
|
||||
space_map_create(&msp->ms_defermap[t], sm->sm_start,
|
||||
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
||||
msp->ms_defermap[t] = kmem_zalloc(sizeof (space_map_t),
|
||||
KM_SLEEP);
|
||||
space_map_create(msp->ms_defermap[t], sm->sm_start,
|
||||
sm->sm_size, sm->sm_shift, sm->sm_lock);
|
||||
}
|
||||
|
||||
freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
|
||||
defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
|
||||
|
||||
vdev_space_update(vd, 0, 0, sm->sm_size);
|
||||
}
|
||||
|
||||
alloc_delta = smosync->smo_alloc - smo->smo_alloc;
|
||||
defer_delta = freed_map->sm_space - defer_map->sm_space;
|
||||
defer_delta = (*freed_map)->sm_space - (*defer_map)->sm_space;
|
||||
|
||||
vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
|
||||
|
||||
ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
|
||||
ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);
|
||||
ASSERT(msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0);
|
||||
ASSERT(msp->ms_freemap[txg & TXG_MASK]->sm_space == 0);
|
||||
|
||||
/*
|
||||
* If there's a space_map_load() in progress, wait for it to complete
|
||||
* so that we have a consistent view of the in-core space map.
|
||||
* Then, add defer_map (oldest deferred frees) to this map and
|
||||
* transfer freed_map (this txg's frees) to defer_map.
|
||||
*/
|
||||
space_map_load_wait(sm);
|
||||
space_map_vacate(defer_map, sm->sm_loaded ? space_map_free : NULL, sm);
|
||||
space_map_vacate(freed_map, space_map_add, defer_map);
|
||||
|
||||
/*
|
||||
* Move the frees from the defer_map to this map (if it's loaded).
|
||||
* Swap the freed_map and the defer_map -- this is safe to do
|
||||
* because we've just emptied out the defer_map.
|
||||
*/
|
||||
space_map_vacate(*defer_map, sm->sm_loaded ? space_map_free : NULL, sm);
|
||||
ASSERT0((*defer_map)->sm_space);
|
||||
ASSERT0(avl_numnodes(&(*defer_map)->sm_root));
|
||||
space_map_swap(freed_map, defer_map);
|
||||
|
||||
*smo = *smosync;
|
||||
|
||||
@ -1112,7 +1298,7 @@ metaslab_sync_done(metaslab_t *msp, uint64_t txg)
|
||||
int evictable = 1;
|
||||
|
||||
for (int t = 1; t < TXG_CONCURRENT_STATES; t++)
|
||||
if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
|
||||
if (msp->ms_allocmap[(txg + t) & TXG_MASK]->sm_space)
|
||||
evictable = 0;
|
||||
|
||||
if (evictable && !metaslab_debug)
|
||||
@ -1137,7 +1323,7 @@ metaslab_sync_reassess(metaslab_group_t *mg)
|
||||
for (int m = 0; m < vd->vdev_ms_count; m++) {
|
||||
metaslab_t *msp = vd->vdev_ms[m];
|
||||
|
||||
if (msp->ms_map.sm_start > mg->mg_bonus_area)
|
||||
if (msp->ms_map->sm_start > mg->mg_bonus_area)
|
||||
break;
|
||||
|
||||
mutex_enter(&msp->ms_lock);
|
||||
@ -1158,7 +1344,7 @@ metaslab_distance(metaslab_t *msp, dva_t *dva)
|
||||
{
|
||||
uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
|
||||
uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
|
||||
uint64_t start = msp->ms_map.sm_start >> ms_shift;
|
||||
uint64_t start = msp->ms_map->sm_start >> ms_shift;
|
||||
|
||||
if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
|
||||
return (1ULL << 63);
|
||||
@ -1206,6 +1392,13 @@ metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
|
||||
mutex_exit(&mg->mg_lock);
|
||||
return (-1ULL);
|
||||
}
|
||||
|
||||
/*
|
||||
* If the selected metaslab is condensing, skip it.
|
||||
*/
|
||||
if (msp->ms_map->sm_condensing)
|
||||
continue;
|
||||
|
||||
was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
|
||||
if (activation_weight == METASLAB_WEIGHT_PRIMARY)
|
||||
break;
|
||||
@ -1271,20 +1464,30 @@ metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((offset = space_map_alloc(&msp->ms_map, asize)) != -1ULL)
|
||||
/*
|
||||
* If this metaslab is currently condensing then pick again as
|
||||
* we can't manipulate this metaslab until it's committed
|
||||
* to disk.
|
||||
*/
|
||||
if (msp->ms_map->sm_condensing) {
|
||||
mutex_exit(&msp->ms_lock);
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((offset = space_map_alloc(msp->ms_map, asize)) != -1ULL)
|
||||
break;
|
||||
|
||||
atomic_inc_64(&mg->mg_alloc_failures);
|
||||
|
||||
metaslab_passivate(msp, space_map_maxsize(&msp->ms_map));
|
||||
metaslab_passivate(msp, space_map_maxsize(msp->ms_map));
|
||||
|
||||
mutex_exit(&msp->ms_lock);
|
||||
}
|
||||
|
||||
if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
|
||||
if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0)
|
||||
vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
|
||||
|
||||
space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, asize);
|
||||
space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, asize);
|
||||
|
||||
mutex_exit(&msp->ms_lock);
|
||||
|
||||
@ -1516,13 +1719,13 @@ metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
|
||||
mutex_enter(&msp->ms_lock);
|
||||
|
||||
if (now) {
|
||||
space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
|
||||
space_map_remove(msp->ms_allocmap[txg & TXG_MASK],
|
||||
offset, size);
|
||||
space_map_free(&msp->ms_map, offset, size);
|
||||
space_map_free(msp->ms_map, offset, size);
|
||||
} else {
|
||||
if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
|
||||
if (msp->ms_freemap[txg & TXG_MASK]->sm_space == 0)
|
||||
vdev_dirty(vd, VDD_METASLAB, msp, txg);
|
||||
space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);
|
||||
space_map_add(msp->ms_freemap[txg & TXG_MASK], offset, size);
|
||||
}
|
||||
|
||||
mutex_exit(&msp->ms_lock);
|
||||
@ -1557,10 +1760,10 @@ metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
|
||||
|
||||
mutex_enter(&msp->ms_lock);
|
||||
|
||||
if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map.sm_loaded)
|
||||
if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map->sm_loaded)
|
||||
error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
|
||||
|
||||
if (error == 0 && !space_map_contains(&msp->ms_map, offset, size))
|
||||
if (error == 0 && !space_map_contains(msp->ms_map, offset, size))
|
||||
error = ENOENT;
|
||||
|
||||
if (error || txg == 0) { /* txg == 0 indicates dry run */
|
||||
@ -1568,12 +1771,12 @@ metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
|
||||
return (error);
|
||||
}
|
||||
|
||||
space_map_claim(&msp->ms_map, offset, size);
|
||||
space_map_claim(msp->ms_map, offset, size);
|
||||
|
||||
if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
|
||||
if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
|
||||
if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0)
|
||||
vdev_dirty(vd, VDD_METASLAB, msp, txg);
|
||||
space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
|
||||
space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, size);
|
||||
}
|
||||
|
||||
mutex_exit(&msp->ms_lock);
|
||||
|
@ -114,6 +114,7 @@ space_map_add(space_map_t *sm, uint64_t start, uint64_t size)
|
||||
int merge_before, merge_after;
|
||||
|
||||
ASSERT(MUTEX_HELD(sm->sm_lock));
|
||||
VERIFY(!sm->sm_condensing);
|
||||
VERIFY(size != 0);
|
||||
VERIFY3U(start, >=, sm->sm_start);
|
||||
VERIFY3U(end, <=, sm->sm_start + sm->sm_size);
|
||||
@ -198,6 +199,7 @@ space_map_remove(space_map_t *sm, uint64_t start, uint64_t size)
|
||||
int left_over, right_over;
|
||||
|
||||
ASSERT(MUTEX_HELD(sm->sm_lock));
|
||||
VERIFY(!sm->sm_condensing);
|
||||
VERIFY(size != 0);
|
||||
VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0);
|
||||
VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0);
|
||||
@ -266,6 +268,20 @@ space_map_contains(space_map_t *sm, uint64_t start, uint64_t size)
|
||||
return (ss != NULL && ss->ss_start <= start && ss->ss_end >= end);
|
||||
}
|
||||
|
||||
void
|
||||
space_map_swap(space_map_t **msrc, space_map_t **mdst)
|
||||
{
|
||||
space_map_t *sm;
|
||||
|
||||
ASSERT(MUTEX_HELD((*msrc)->sm_lock));
|
||||
ASSERT0((*mdst)->sm_space);
|
||||
ASSERT0(avl_numnodes(&(*mdst)->sm_root));
|
||||
|
||||
sm = *msrc;
|
||||
*msrc = *mdst;
|
||||
*mdst = sm;
|
||||
}
|
||||
|
||||
void
|
||||
space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest)
|
||||
{
|
||||
@ -447,9 +463,9 @@ space_map_sync(space_map_t *sm, uint8_t maptype,
|
||||
space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
|
||||
{
|
||||
spa_t *spa = dmu_objset_spa(os);
|
||||
void *cookie = NULL;
|
||||
avl_tree_t *t = &sm->sm_root;
|
||||
space_seg_t *ss;
|
||||
uint64_t bufsize, start, size, run_len, delta, sm_space;
|
||||
uint64_t bufsize, start, size, run_len, total, sm_space, nodes;
|
||||
uint64_t *entry, *entry_map, *entry_map_end;
|
||||
|
||||
ASSERT(MUTEX_HELD(sm->sm_lock));
|
||||
@ -478,13 +494,14 @@ space_map_sync(space_map_t *sm, uint8_t maptype,
|
||||
SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
|
||||
SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
|
||||
|
||||
delta = 0;
|
||||
total = 0;
|
||||
nodes = avl_numnodes(&sm->sm_root);
|
||||
sm_space = sm->sm_space;
|
||||
while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
|
||||
for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss)) {
|
||||
size = ss->ss_end - ss->ss_start;
|
||||
start = (ss->ss_start - sm->sm_start) >> sm->sm_shift;
|
||||
|
||||
delta += size;
|
||||
total += size;
|
||||
size >>= sm->sm_shift;
|
||||
|
||||
while (size) {
|
||||
@ -506,7 +523,6 @@ space_map_sync(space_map_t *sm, uint8_t maptype,
|
||||
start += run_len;
|
||||
size -= run_len;
|
||||
}
|
||||
kmem_cache_free(space_seg_cache, ss);
|
||||
}
|
||||
|
||||
if (entry != entry_map) {
|
||||
@ -522,12 +538,11 @@ space_map_sync(space_map_t *sm, uint8_t maptype,
|
||||
* Ensure that the space_map's accounting wasn't changed
|
||||
* while we were in the middle of writing it out.
|
||||
*/
|
||||
VERIFY3U(nodes, ==, avl_numnodes(&sm->sm_root));
|
||||
VERIFY3U(sm->sm_space, ==, sm_space);
|
||||
VERIFY3U(sm->sm_space, ==, total);
|
||||
|
||||
zio_buf_free(entry_map, bufsize);
|
||||
|
||||
sm->sm_space -= delta;
|
||||
VERIFY0(sm->sm_space);
|
||||
}
|
||||
|
||||
void
|
||||
|
@ -66,20 +66,38 @@ struct metaslab_group {
|
||||
};
|
||||
|
||||
/*
|
||||
* Each metaslab's free space is tracked in space map object in the MOS,
|
||||
* which is only updated in syncing context. Each time we sync a txg,
|
||||
* Each metaslab maintains an in-core free map (ms_map) that contains the
|
||||
* current list of free segments. As blocks are allocated, the allocated
|
||||
* segment is removed from the ms_map and added to a per txg allocation map.
|
||||
* As blocks are freed, they are added to the per txg free map. These per
|
||||
* txg maps allow us to process all allocations and frees in syncing context
|
||||
* where it is safe to update the on-disk space maps.
|
||||
*
|
||||
* Each metaslab's free space is tracked in a space map object in the MOS,
|
||||
* which is only updated in syncing context. Each time we sync a txg,
|
||||
* we append the allocs and frees from that txg to the space map object.
|
||||
* When the txg is done syncing, metaslab_sync_done() updates ms_smo
|
||||
* to ms_smo_syncing. Everything in ms_smo is always safe to allocate.
|
||||
* to ms_smo_syncing. Everything in ms_smo is always safe to allocate.
|
||||
*
|
||||
* To load the in-core free map we read the space map object from disk.
|
||||
* This object contains a series of alloc and free records that are
|
||||
* combined to make up the list of all free segments in this metaslab. These
|
||||
* segments are represented in-core by the ms_map and are stored in an
|
||||
* AVL tree.
|
||||
*
|
||||
* As the space map objects grows (as a result of the appends) it will
|
||||
* eventually become space-inefficient. When the space map object is
|
||||
* zfs_condense_pct/100 times the size of the minimal on-disk representation,
|
||||
* we rewrite it in its minimized form.
|
||||
*/
|
||||
struct metaslab {
|
||||
kmutex_t ms_lock; /* metaslab lock */
|
||||
space_map_obj_t ms_smo; /* synced space map object */
|
||||
space_map_obj_t ms_smo_syncing; /* syncing space map object */
|
||||
space_map_t ms_allocmap[TXG_SIZE]; /* allocated this txg */
|
||||
space_map_t ms_freemap[TXG_SIZE]; /* freed this txg */
|
||||
space_map_t ms_defermap[TXG_DEFER_SIZE]; /* deferred frees */
|
||||
space_map_t ms_map; /* in-core free space map */
|
||||
space_map_t *ms_allocmap[TXG_SIZE]; /* allocated this txg */
|
||||
space_map_t *ms_freemap[TXG_SIZE]; /* freed this txg */
|
||||
space_map_t *ms_defermap[TXG_DEFER_SIZE]; /* deferred frees */
|
||||
space_map_t *ms_map; /* in-core free space map */
|
||||
int64_t ms_deferspace; /* sum of ms_defermap[] space */
|
||||
uint64_t ms_weight; /* weight vs. others in group */
|
||||
metaslab_group_t *ms_group; /* metaslab group */
|
||||
|
@ -40,17 +40,17 @@ extern "C" {
|
||||
typedef struct space_map_ops space_map_ops_t;
|
||||
|
||||
typedef struct space_map {
|
||||
avl_tree_t sm_root; /* AVL tree of map segments */
|
||||
avl_tree_t sm_root; /* offset-ordered segment AVL tree */
|
||||
uint64_t sm_space; /* sum of all segments in the map */
|
||||
uint64_t sm_start; /* start of map */
|
||||
uint64_t sm_size; /* size of map */
|
||||
uint8_t sm_shift; /* unit shift */
|
||||
uint8_t sm_pad[3]; /* unused */
|
||||
uint8_t sm_loaded; /* map loaded? */
|
||||
uint8_t sm_loading; /* map loading? */
|
||||
uint8_t sm_condensing; /* map condensing? */
|
||||
kcondvar_t sm_load_cv; /* map load completion */
|
||||
space_map_ops_t *sm_ops; /* space map block picker ops vector */
|
||||
avl_tree_t *sm_pp_root; /* picker-private AVL tree */
|
||||
avl_tree_t *sm_pp_root; /* size-ordered, picker-private tree */
|
||||
void *sm_ppd; /* picker-private data */
|
||||
kmutex_t *sm_lock; /* pointer to lock that protects map */
|
||||
} space_map_t;
|
||||
@ -149,6 +149,7 @@ extern void space_map_add(space_map_t *sm, uint64_t start, uint64_t size);
|
||||
extern void space_map_remove(space_map_t *sm, uint64_t start, uint64_t size);
|
||||
extern boolean_t space_map_contains(space_map_t *sm,
|
||||
uint64_t start, uint64_t size);
|
||||
extern void space_map_swap(space_map_t **msrc, space_map_t **mdest);
|
||||
extern void space_map_vacate(space_map_t *sm,
|
||||
space_map_func_t *func, space_map_t *mdest);
|
||||
extern void space_map_walk(space_map_t *sm,
|
||||
|
@ -1847,6 +1847,7 @@ vdev_dtl_sync(vdev_t *vd, uint64_t txg)
|
||||
|
||||
space_map_truncate(smo, mos, tx);
|
||||
space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
|
||||
space_map_vacate(&smsync, NULL, NULL);
|
||||
|
||||
space_map_destroy(&smsync);
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user