libc: use standard LF line endings, not CRLF

This commit is contained in:
Ed Maste 2021-03-31 13:04:36 -04:00
parent 7f6157f7fd
commit 29e54af43e
3 changed files with 805 additions and 805 deletions

View File

@ -1,49 +1,49 @@
/* $FreeBSD$ */ /* $FreeBSD$ */
/* /*
=============================================================================== ===============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point This C header file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a. Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley, processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'. arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they (1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of include prominent notice akin to these four paragraphs for those parts of
this code that are retained. this code that are retained.
=============================================================================== ===============================================================================
*/ */
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Include common integer types and flags. Include common integer types and flags.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
#include "../../../processors/!!!processor.h" #include "../../../processors/!!!processor.h"
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Symbolic Boolean literals. Symbolic Boolean literals.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
enum { enum {
FALSE = 0, FALSE = 0,
TRUE = 1 TRUE = 1
}; };

View File

@ -1,465 +1,465 @@
/* $FreeBSD$ */ /* $FreeBSD$ */
/* /*
=============================================================================== ===============================================================================
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a. Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley, processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'. arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they (1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of include prominent notice akin to these four paragraphs for those parts of
this code that are retained. this code that are retained.
=============================================================================== ===============================================================================
*/ */
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Underflow tininess-detection mode, statically initialized to default value. Underflow tininess-detection mode, statically initialized to default value.
(The declaration in `softfloat.h' must match the `int8' type here.) (The declaration in `softfloat.h' must match the `int8' type here.)
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
int8 float_detect_tininess = float_tininess_after_rounding; int8 float_detect_tininess = float_tininess_after_rounding;
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Raises the exceptions specified by `flags'. Floating-point traps can be Raises the exceptions specified by `flags'. Floating-point traps can be
defined here if desired. It is currently not possible for such a trap to defined here if desired. It is currently not possible for such a trap to
substitute a result value. If traps are not implemented, this routine substitute a result value. If traps are not implemented, this routine
should be simply `float_exception_flags |= flags;'. should be simply `float_exception_flags |= flags;'.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
void float_raise( int8 flags ) void float_raise( int8 flags )
{ {
float_exception_flags |= flags; float_exception_flags |= flags;
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Internal canonical NaN format. Internal canonical NaN format.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
typedef struct { typedef struct {
flag sign; flag sign;
bits64 high, low; bits64 high, low;
} commonNaNT; } commonNaNT;
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
The pattern for a default generated single-precision NaN. The pattern for a default generated single-precision NaN.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
#define float32_default_nan 0xFFFFFFFF #define float32_default_nan 0xFFFFFFFF
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is a NaN; Returns 1 if the single-precision floating-point value `a' is a NaN;
otherwise returns 0. otherwise returns 0.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
flag float32_is_nan( float32 a ) flag float32_is_nan( float32 a )
{ {
return ( 0xFF000000 < (bits32) ( a<<1 ) ); return ( 0xFF000000 < (bits32) ( a<<1 ) );
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is a signaling Returns 1 if the single-precision floating-point value `a' is a signaling
NaN; otherwise returns 0. NaN; otherwise returns 0.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
flag float32_is_signaling_nan( float32 a ) flag float32_is_signaling_nan( float32 a )
{ {
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point NaN Returns the result of converting the single-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised. exception is raised.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
static commonNaNT float32ToCommonNaN( float32 a ) static commonNaNT float32ToCommonNaN( float32 a )
{ {
commonNaNT z; commonNaNT z;
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a>>31; z.sign = a>>31;
z.low = 0; z.low = 0;
z.high = ( (bits64) a )<<41; z.high = ( (bits64) a )<<41;
return z; return z;
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the single- Returns the result of converting the canonical NaN `a' to the single-
precision floating-point format. precision floating-point format.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
static float32 commonNaNToFloat32( commonNaNT a ) static float32 commonNaNToFloat32( commonNaNT a )
{ {
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Takes two single-precision floating-point values `a' and `b', one of which Takes two single-precision floating-point values `a' and `b', one of which
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
signaling NaN, the invalid exception is raised. signaling NaN, the invalid exception is raised.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
static float32 propagateFloat32NaN( float32 a, float32 b ) static float32 propagateFloat32NaN( float32 a, float32 b )
{ {
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float32_is_nan( a ); aIsNaN = float32_is_nan( a );
aIsSignalingNaN = float32_is_signaling_nan( a ); aIsSignalingNaN = float32_is_signaling_nan( a );
bIsNaN = float32_is_nan( b ); bIsNaN = float32_is_nan( b );
bIsSignalingNaN = float32_is_signaling_nan( b ); bIsSignalingNaN = float32_is_signaling_nan( b );
a |= 0x00400000; a |= 0x00400000;
b |= 0x00400000; b |= 0x00400000;
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) { if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a; return ( aIsSignalingNaN & bIsNaN ) ? b : a;
} }
else { else {
return b; return b;
} }
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
The pattern for a default generated double-precision NaN. The pattern for a default generated double-precision NaN.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF ) #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is a NaN; Returns 1 if the double-precision floating-point value `a' is a NaN;
otherwise returns 0. otherwise returns 0.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
flag float64_is_nan( float64 a ) flag float64_is_nan( float64 a )
{ {
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) ); return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is a signaling Returns 1 if the double-precision floating-point value `a' is a signaling
NaN; otherwise returns 0. NaN; otherwise returns 0.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
flag float64_is_signaling_nan( float64 a ) flag float64_is_signaling_nan( float64 a )
{ {
return return
( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point NaN Returns the result of converting the double-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised. exception is raised.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
static commonNaNT float64ToCommonNaN( float64 a ) static commonNaNT float64ToCommonNaN( float64 a )
{ {
commonNaNT z; commonNaNT z;
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a>>63; z.sign = a>>63;
z.low = 0; z.low = 0;
z.high = a<<12; z.high = a<<12;
return z; return z;
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the double- Returns the result of converting the canonical NaN `a' to the double-
precision floating-point format. precision floating-point format.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
static float64 commonNaNToFloat64( commonNaNT a ) static float64 commonNaNToFloat64( commonNaNT a )
{ {
return return
( ( (bits64) a.sign )<<63 ) ( ( (bits64) a.sign )<<63 )
| LIT64( 0x7FF8000000000000 ) | LIT64( 0x7FF8000000000000 )
| ( a.high>>12 ); | ( a.high>>12 );
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Takes two double-precision floating-point values `a' and `b', one of which Takes two double-precision floating-point values `a' and `b', one of which
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
signaling NaN, the invalid exception is raised. signaling NaN, the invalid exception is raised.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
static float64 propagateFloat64NaN( float64 a, float64 b ) static float64 propagateFloat64NaN( float64 a, float64 b )
{ {
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float64_is_nan( a ); aIsNaN = float64_is_nan( a );
aIsSignalingNaN = float64_is_signaling_nan( a ); aIsSignalingNaN = float64_is_signaling_nan( a );
bIsNaN = float64_is_nan( b ); bIsNaN = float64_is_nan( b );
bIsSignalingNaN = float64_is_signaling_nan( b ); bIsSignalingNaN = float64_is_signaling_nan( b );
a |= LIT64( 0x0008000000000000 ); a |= LIT64( 0x0008000000000000 );
b |= LIT64( 0x0008000000000000 ); b |= LIT64( 0x0008000000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) { if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a; return ( aIsSignalingNaN & bIsNaN ) ? b : a;
} }
else { else {
return b; return b;
} }
} }
#ifdef FLOATX80 #ifdef FLOATX80
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
The pattern for a default generated extended double-precision NaN. The The pattern for a default generated extended double-precision NaN. The
`high' and `low' values hold the most- and least-significant bits, `high' and `low' values hold the most- and least-significant bits,
respectively. respectively.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
#define floatx80_default_nan_high 0xFFFF #define floatx80_default_nan_high 0xFFFF
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) #define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is a Returns 1 if the extended double-precision floating-point value `a' is a
NaN; otherwise returns 0. NaN; otherwise returns 0.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
flag floatx80_is_nan( floatx80 a ) flag floatx80_is_nan( floatx80 a )
{ {
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is a Returns 1 if the extended double-precision floating-point value `a' is a
signaling NaN; otherwise returns 0. signaling NaN; otherwise returns 0.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
flag floatx80_is_signaling_nan( floatx80 a ) flag floatx80_is_signaling_nan( floatx80 a )
{ {
bits64 aLow; bits64 aLow;
aLow = a.low & ~ LIT64( 0x4000000000000000 ); aLow = a.low & ~ LIT64( 0x4000000000000000 );
return return
( ( a.high & 0x7FFF ) == 0x7FFF ) ( ( a.high & 0x7FFF ) == 0x7FFF )
&& (bits64) ( aLow<<1 ) && (bits64) ( aLow<<1 )
&& ( a.low == aLow ); && ( a.low == aLow );
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating- Returns the result of converting the extended double-precision floating-
point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
invalid exception is raised. invalid exception is raised.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
static commonNaNT floatx80ToCommonNaN( floatx80 a ) static commonNaNT floatx80ToCommonNaN( floatx80 a )
{ {
commonNaNT z; commonNaNT z;
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a.high>>15; z.sign = a.high>>15;
z.low = 0; z.low = 0;
z.high = a.low<<1; z.high = a.low<<1;
return z; return z;
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the extended Returns the result of converting the canonical NaN `a' to the extended
double-precision floating-point format. double-precision floating-point format.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
static floatx80 commonNaNToFloatx80( commonNaNT a ) static floatx80 commonNaNToFloatx80( commonNaNT a )
{ {
floatx80 z; floatx80 z;
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
return z; return z;
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Takes two extended double-precision floating-point values `a' and `b', one Takes two extended double-precision floating-point values `a' and `b', one
of which is a NaN, and returns the appropriate NaN result. If either `a' or of which is a NaN, and returns the appropriate NaN result. If either `a' or
`b' is a signaling NaN, the invalid exception is raised. `b' is a signaling NaN, the invalid exception is raised.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
{ {
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = floatx80_is_nan( a ); aIsNaN = floatx80_is_nan( a );
aIsSignalingNaN = floatx80_is_signaling_nan( a ); aIsSignalingNaN = floatx80_is_signaling_nan( a );
bIsNaN = floatx80_is_nan( b ); bIsNaN = floatx80_is_nan( b );
bIsSignalingNaN = floatx80_is_signaling_nan( b ); bIsSignalingNaN = floatx80_is_signaling_nan( b );
a.low |= LIT64( 0xC000000000000000 ); a.low |= LIT64( 0xC000000000000000 );
b.low |= LIT64( 0xC000000000000000 ); b.low |= LIT64( 0xC000000000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) { if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a; return ( aIsSignalingNaN & bIsNaN ) ? b : a;
} }
else { else {
return b; return b;
} }
} }
#endif #endif
#ifdef FLOAT128 #ifdef FLOAT128
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
The pattern for a default generated quadruple-precision NaN. The `high' and The pattern for a default generated quadruple-precision NaN. The `high' and
`low' values hold the most- and least-significant bits, respectively. `low' values hold the most- and least-significant bits, respectively.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF ) #define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is a NaN; Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
otherwise returns 0. otherwise returns 0.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
flag float128_is_nan( float128 a ) flag float128_is_nan( float128 a )
{ {
return return
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is a Returns 1 if the quadruple-precision floating-point value `a' is a
signaling NaN; otherwise returns 0. signaling NaN; otherwise returns 0.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
flag float128_is_signaling_nan( float128 a ) flag float128_is_signaling_nan( float128 a )
{ {
return return
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns the result of converting the quadruple-precision floating-point NaN Returns the result of converting the quadruple-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised. exception is raised.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
static commonNaNT float128ToCommonNaN( float128 a ) static commonNaNT float128ToCommonNaN( float128 a )
{ {
commonNaNT z; commonNaNT z;
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a.high>>63; z.sign = a.high>>63;
shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
return z; return z;
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the quadruple- Returns the result of converting the canonical NaN `a' to the quadruple-
precision floating-point format. precision floating-point format.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
static float128 commonNaNToFloat128( commonNaNT a ) static float128 commonNaNToFloat128( commonNaNT a )
{ {
float128 z; float128 z;
shift128Right( a.high, a.low, 16, &z.high, &z.low ); shift128Right( a.high, a.low, 16, &z.high, &z.low );
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 ); z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
return z; return z;
} }
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Takes two quadruple-precision floating-point values `a' and `b', one of Takes two quadruple-precision floating-point values `a' and `b', one of
which is a NaN, and returns the appropriate NaN result. If either `a' or which is a NaN, and returns the appropriate NaN result. If either `a' or
`b' is a signaling NaN, the invalid exception is raised. `b' is a signaling NaN, the invalid exception is raised.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
static float128 propagateFloat128NaN( float128 a, float128 b ) static float128 propagateFloat128NaN( float128 a, float128 b )
{ {
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float128_is_nan( a ); aIsNaN = float128_is_nan( a );
aIsSignalingNaN = float128_is_signaling_nan( a ); aIsSignalingNaN = float128_is_signaling_nan( a );
bIsNaN = float128_is_nan( b ); bIsNaN = float128_is_nan( b );
bIsSignalingNaN = float128_is_signaling_nan( b ); bIsSignalingNaN = float128_is_signaling_nan( b );
a.high |= LIT64( 0x0000800000000000 ); a.high |= LIT64( 0x0000800000000000 );
b.high |= LIT64( 0x0000800000000000 ); b.high |= LIT64( 0x0000800000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) { if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a; return ( aIsSignalingNaN & bIsNaN ) ? b : a;
} }
else { else {
return b; return b;
} }
} }
#endif #endif

View File

@ -1,291 +1,291 @@
/* $FreeBSD$ */ /* $FreeBSD$ */
/* /*
=============================================================================== ===============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point This C header file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a. Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley, processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'. arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they (1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of include prominent notice akin to these four paragraphs for those parts of
this code that are retained. this code that are retained.
=============================================================================== ===============================================================================
*/ */
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
The macro `FLOATX80' must be defined to enable the extended double-precision The macro `FLOATX80' must be defined to enable the extended double-precision
floating-point format `floatx80'. If this macro is not defined, the floating-point format `floatx80'. If this macro is not defined, the
`floatx80' type will not be defined, and none of the functions that either `floatx80' type will not be defined, and none of the functions that either
input or output the `floatx80' type will be defined. The same applies to input or output the `floatx80' type will be defined. The same applies to
the `FLOAT128' macro and the quadruple-precision format `float128'. the `FLOAT128' macro and the quadruple-precision format `float128'.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
#define FLOATX80 #define FLOATX80
#define FLOAT128 #define FLOAT128
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE floating-point types. Software IEC/IEEE floating-point types.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
typedef !!!bits32 float32; typedef !!!bits32 float32;
typedef !!!bits64 float64; typedef !!!bits64 float64;
#ifdef FLOATX80 #ifdef FLOATX80
typedef struct { typedef struct {
!!!bits16 high; !!!bits16 high;
!!!bits64 low; !!!bits64 low;
} floatx80; } floatx80;
#endif #endif
#ifdef FLOAT128 #ifdef FLOAT128
typedef struct { typedef struct {
!!!bits64 high, low; !!!bits64 high, low;
} float128; } float128;
#endif #endif
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE floating-point underflow tininess-detection mode. Software IEC/IEEE floating-point underflow tininess-detection mode.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
extern !!!int8 float_detect_tininess; extern !!!int8 float_detect_tininess;
enum { enum {
float_tininess_after_rounding = 0, float_tininess_after_rounding = 0,
float_tininess_before_rounding = 1 float_tininess_before_rounding = 1
}; };
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE floating-point rounding mode. Software IEC/IEEE floating-point rounding mode.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
extern !!!int8 float_rounding_mode; extern !!!int8 float_rounding_mode;
enum { enum {
float_round_nearest_even = 0, float_round_nearest_even = 0,
float_round_to_zero = 1, float_round_to_zero = 1,
float_round_down = 2, float_round_down = 2,
float_round_up = 3 float_round_up = 3
}; };
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE floating-point exception flags. Software IEC/IEEE floating-point exception flags.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
extern !!!int8 float_exception_flags; extern !!!int8 float_exception_flags;
enum { enum {
float_flag_inexact = 1, float_flag_inexact = 1,
float_flag_underflow = 2, float_flag_underflow = 2,
float_flag_overflow = 4, float_flag_overflow = 4,
float_flag_divbyzero = 8, float_flag_divbyzero = 8,
float_flag_invalid = 16 float_flag_invalid = 16
}; };
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Routine to raise any or all of the software IEC/IEEE floating-point Routine to raise any or all of the software IEC/IEEE floating-point
exception flags. exception flags.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
void float_raise( !!!int8 ); void float_raise( !!!int8 );
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE integer-to-floating-point conversion routines. Software IEC/IEEE integer-to-floating-point conversion routines.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
float32 int32_to_float32( !!!int32 ); float32 int32_to_float32( !!!int32 );
float64 int32_to_float64( !!!int32 ); float64 int32_to_float64( !!!int32 );
#ifdef FLOATX80 #ifdef FLOATX80
floatx80 int32_to_floatx80( !!!int32 ); floatx80 int32_to_floatx80( !!!int32 );
#endif #endif
#ifdef FLOAT128 #ifdef FLOAT128
float128 int32_to_float128( !!!int32 ); float128 int32_to_float128( !!!int32 );
#endif #endif
float32 int64_to_float32( !!!int64 ); float32 int64_to_float32( !!!int64 );
float64 int64_to_float64( !!!int64 ); float64 int64_to_float64( !!!int64 );
#ifdef FLOATX80 #ifdef FLOATX80
floatx80 int64_to_floatx80( !!!int64 ); floatx80 int64_to_floatx80( !!!int64 );
#endif #endif
#ifdef FLOAT128 #ifdef FLOAT128
float128 int64_to_float128( !!!int64 ); float128 int64_to_float128( !!!int64 );
#endif #endif
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE single-precision conversion routines. Software IEC/IEEE single-precision conversion routines.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
!!!int32 float32_to_int32( float32 ); !!!int32 float32_to_int32( float32 );
!!!int32 float32_to_int32_round_to_zero( float32 ); !!!int32 float32_to_int32_round_to_zero( float32 );
!!!int64 float32_to_int64( float32 ); !!!int64 float32_to_int64( float32 );
!!!int64 float32_to_int64_round_to_zero( float32 ); !!!int64 float32_to_int64_round_to_zero( float32 );
float64 float32_to_float64( float32 ); float64 float32_to_float64( float32 );
#ifdef FLOATX80 #ifdef FLOATX80
floatx80 float32_to_floatx80( float32 ); floatx80 float32_to_floatx80( float32 );
#endif #endif
#ifdef FLOAT128 #ifdef FLOAT128
float128 float32_to_float128( float32 ); float128 float32_to_float128( float32 );
#endif #endif
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE single-precision operations. Software IEC/IEEE single-precision operations.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
float32 float32_round_to_int( float32 ); float32 float32_round_to_int( float32 );
float32 float32_add( float32, float32 ); float32 float32_add( float32, float32 );
float32 float32_sub( float32, float32 ); float32 float32_sub( float32, float32 );
float32 float32_mul( float32, float32 ); float32 float32_mul( float32, float32 );
float32 float32_div( float32, float32 ); float32 float32_div( float32, float32 );
float32 float32_rem( float32, float32 ); float32 float32_rem( float32, float32 );
float32 float32_sqrt( float32 ); float32 float32_sqrt( float32 );
!!!flag float32_eq( float32, float32 ); !!!flag float32_eq( float32, float32 );
!!!flag float32_le( float32, float32 ); !!!flag float32_le( float32, float32 );
!!!flag float32_lt( float32, float32 ); !!!flag float32_lt( float32, float32 );
!!!flag float32_eq_signaling( float32, float32 ); !!!flag float32_eq_signaling( float32, float32 );
!!!flag float32_le_quiet( float32, float32 ); !!!flag float32_le_quiet( float32, float32 );
!!!flag float32_lt_quiet( float32, float32 ); !!!flag float32_lt_quiet( float32, float32 );
!!!flag float32_is_signaling_nan( float32 ); !!!flag float32_is_signaling_nan( float32 );
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE double-precision conversion routines. Software IEC/IEEE double-precision conversion routines.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
!!!int32 float64_to_int32( float64 ); !!!int32 float64_to_int32( float64 );
!!!int32 float64_to_int32_round_to_zero( float64 ); !!!int32 float64_to_int32_round_to_zero( float64 );
!!!int64 float64_to_int64( float64 ); !!!int64 float64_to_int64( float64 );
!!!int64 float64_to_int64_round_to_zero( float64 ); !!!int64 float64_to_int64_round_to_zero( float64 );
float32 float64_to_float32( float64 ); float32 float64_to_float32( float64 );
#ifdef FLOATX80 #ifdef FLOATX80
floatx80 float64_to_floatx80( float64 ); floatx80 float64_to_floatx80( float64 );
#endif #endif
#ifdef FLOAT128 #ifdef FLOAT128
float128 float64_to_float128( float64 ); float128 float64_to_float128( float64 );
#endif #endif
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE double-precision operations. Software IEC/IEEE double-precision operations.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
float64 float64_round_to_int( float64 ); float64 float64_round_to_int( float64 );
float64 float64_add( float64, float64 ); float64 float64_add( float64, float64 );
float64 float64_sub( float64, float64 ); float64 float64_sub( float64, float64 );
float64 float64_mul( float64, float64 ); float64 float64_mul( float64, float64 );
float64 float64_div( float64, float64 ); float64 float64_div( float64, float64 );
float64 float64_rem( float64, float64 ); float64 float64_rem( float64, float64 );
float64 float64_sqrt( float64 ); float64 float64_sqrt( float64 );
!!!flag float64_eq( float64, float64 ); !!!flag float64_eq( float64, float64 );
!!!flag float64_le( float64, float64 ); !!!flag float64_le( float64, float64 );
!!!flag float64_lt( float64, float64 ); !!!flag float64_lt( float64, float64 );
!!!flag float64_eq_signaling( float64, float64 ); !!!flag float64_eq_signaling( float64, float64 );
!!!flag float64_le_quiet( float64, float64 ); !!!flag float64_le_quiet( float64, float64 );
!!!flag float64_lt_quiet( float64, float64 ); !!!flag float64_lt_quiet( float64, float64 );
!!!flag float64_is_signaling_nan( float64 ); !!!flag float64_is_signaling_nan( float64 );
#ifdef FLOATX80 #ifdef FLOATX80
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision conversion routines. Software IEC/IEEE extended double-precision conversion routines.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
!!!int32 floatx80_to_int32( floatx80 ); !!!int32 floatx80_to_int32( floatx80 );
!!!int32 floatx80_to_int32_round_to_zero( floatx80 ); !!!int32 floatx80_to_int32_round_to_zero( floatx80 );
!!!int64 floatx80_to_int64( floatx80 ); !!!int64 floatx80_to_int64( floatx80 );
!!!int64 floatx80_to_int64_round_to_zero( floatx80 ); !!!int64 floatx80_to_int64_round_to_zero( floatx80 );
float32 floatx80_to_float32( floatx80 ); float32 floatx80_to_float32( floatx80 );
float64 floatx80_to_float64( floatx80 ); float64 floatx80_to_float64( floatx80 );
#ifdef FLOAT128 #ifdef FLOAT128
float128 floatx80_to_float128( floatx80 ); float128 floatx80_to_float128( floatx80 );
#endif #endif
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision rounding precision. Valid Software IEC/IEEE extended double-precision rounding precision. Valid
values are 32, 64, and 80. values are 32, 64, and 80.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
extern !!!int8 floatx80_rounding_precision; extern !!!int8 floatx80_rounding_precision;
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision operations. Software IEC/IEEE extended double-precision operations.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
floatx80 floatx80_round_to_int( floatx80 ); floatx80 floatx80_round_to_int( floatx80 );
floatx80 floatx80_add( floatx80, floatx80 ); floatx80 floatx80_add( floatx80, floatx80 );
floatx80 floatx80_sub( floatx80, floatx80 ); floatx80 floatx80_sub( floatx80, floatx80 );
floatx80 floatx80_mul( floatx80, floatx80 ); floatx80 floatx80_mul( floatx80, floatx80 );
floatx80 floatx80_div( floatx80, floatx80 ); floatx80 floatx80_div( floatx80, floatx80 );
floatx80 floatx80_rem( floatx80, floatx80 ); floatx80 floatx80_rem( floatx80, floatx80 );
floatx80 floatx80_sqrt( floatx80 ); floatx80 floatx80_sqrt( floatx80 );
!!!flag floatx80_eq( floatx80, floatx80 ); !!!flag floatx80_eq( floatx80, floatx80 );
!!!flag floatx80_le( floatx80, floatx80 ); !!!flag floatx80_le( floatx80, floatx80 );
!!!flag floatx80_lt( floatx80, floatx80 ); !!!flag floatx80_lt( floatx80, floatx80 );
!!!flag floatx80_eq_signaling( floatx80, floatx80 ); !!!flag floatx80_eq_signaling( floatx80, floatx80 );
!!!flag floatx80_le_quiet( floatx80, floatx80 ); !!!flag floatx80_le_quiet( floatx80, floatx80 );
!!!flag floatx80_lt_quiet( floatx80, floatx80 ); !!!flag floatx80_lt_quiet( floatx80, floatx80 );
!!!flag floatx80_is_signaling_nan( floatx80 ); !!!flag floatx80_is_signaling_nan( floatx80 );
#endif #endif
#ifdef FLOAT128 #ifdef FLOAT128
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE quadruple-precision conversion routines. Software IEC/IEEE quadruple-precision conversion routines.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
!!!int32 float128_to_int32( float128 ); !!!int32 float128_to_int32( float128 );
!!!int32 float128_to_int32_round_to_zero( float128 ); !!!int32 float128_to_int32_round_to_zero( float128 );
!!!int64 float128_to_int64( float128 ); !!!int64 float128_to_int64( float128 );
!!!int64 float128_to_int64_round_to_zero( float128 ); !!!int64 float128_to_int64_round_to_zero( float128 );
float32 float128_to_float32( float128 ); float32 float128_to_float32( float128 );
float64 float128_to_float64( float128 ); float64 float128_to_float64( float128 );
#ifdef FLOATX80 #ifdef FLOATX80
floatx80 float128_to_floatx80( float128 ); floatx80 float128_to_floatx80( float128 );
#endif #endif
/* /*
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
Software IEC/IEEE quadruple-precision operations. Software IEC/IEEE quadruple-precision operations.
------------------------------------------------------------------------------- -------------------------------------------------------------------------------
*/ */
float128 float128_round_to_int( float128 ); float128 float128_round_to_int( float128 );
float128 float128_add( float128, float128 ); float128 float128_add( float128, float128 );
float128 float128_sub( float128, float128 ); float128 float128_sub( float128, float128 );
float128 float128_mul( float128, float128 ); float128 float128_mul( float128, float128 );
float128 float128_div( float128, float128 ); float128 float128_div( float128, float128 );
float128 float128_rem( float128, float128 ); float128 float128_rem( float128, float128 );
float128 float128_sqrt( float128 ); float128 float128_sqrt( float128 );
!!!flag float128_eq( float128, float128 ); !!!flag float128_eq( float128, float128 );
!!!flag float128_le( float128, float128 ); !!!flag float128_le( float128, float128 );
!!!flag float128_lt( float128, float128 ); !!!flag float128_lt( float128, float128 );
!!!flag float128_eq_signaling( float128, float128 ); !!!flag float128_eq_signaling( float128, float128 );
!!!flag float128_le_quiet( float128, float128 ); !!!flag float128_le_quiet( float128, float128 );
!!!flag float128_lt_quiet( float128, float128 ); !!!flag float128_lt_quiet( float128, float128 );
!!!flag float128_is_signaling_nan( float128 ); !!!flag float128_is_signaling_nan( float128 );
#endif #endif