* s_erf.c:
. Use integer literal constants instead of double literal constants. * s_erff.c: . Use integer literal constants instead of casting double literal constants to float. . Update the threshold values from those carried over from erf() to values appropriate for float. . New sets of polynomial coefficients for the rational approximations. These coefficients have little, but positive, effect on the maximum error in ULP in the four intervals, but do improve the overall speed of execution. . Remove redundant GET_FLOAT_WORD(ix,x) as hx already contained the contents that is packed into ix. . Update the mask that is used to zero-out lower-order bits in x in the intervals [1.25, 2.857143] and [2.857143, 12]. In tests on amd64, this change improves the maximum error in ULP from 6.27739 and 63.8095 to 3.16774 and 2.92095 on these intervals for erffc(). Reviewed by: bde
This commit is contained in:
parent
d1688fc3f1
commit
2a3910b931
@ -201,7 +201,7 @@ erf(double x)
|
||||
if(ix < 0x3feb0000) { /* |x|<0.84375 */
|
||||
if(ix < 0x3e300000) { /* |x|<2**-28 */
|
||||
if (ix < 0x00800000)
|
||||
return 0.125*(8.0*x+efx8*x); /*avoid underflow */
|
||||
return (8*x+efx8*x)/8; /* avoid spurious underflow */
|
||||
return x + efx*x;
|
||||
}
|
||||
z = x*x;
|
||||
|
@ -24,75 +24,59 @@ tiny = 1e-30,
|
||||
half= 5.0000000000e-01, /* 0x3F000000 */
|
||||
one = 1.0000000000e+00, /* 0x3F800000 */
|
||||
two = 2.0000000000e+00, /* 0x40000000 */
|
||||
/* c = (subfloat)0.84506291151 */
|
||||
erx = 8.4506291151e-01, /* 0x3f58560b */
|
||||
/*
|
||||
* Coefficients for approximation to erf on [0,0.84375]
|
||||
* Coefficients for approximation to erf on [0,0.84375]
|
||||
*/
|
||||
efx = 1.2837916613e-01, /* 0x3e0375d4 */
|
||||
efx8= 1.0270333290e+00, /* 0x3f8375d4 */
|
||||
pp0 = 1.2837916613e-01, /* 0x3e0375d4 */
|
||||
pp1 = -3.2504209876e-01, /* 0xbea66beb */
|
||||
pp2 = -2.8481749818e-02, /* 0xbce9528f */
|
||||
pp3 = -5.7702702470e-03, /* 0xbbbd1489 */
|
||||
pp4 = -2.3763017452e-05, /* 0xb7c756b1 */
|
||||
qq1 = 3.9791721106e-01, /* 0x3ecbbbce */
|
||||
qq2 = 6.5022252500e-02, /* 0x3d852a63 */
|
||||
qq3 = 5.0813062117e-03, /* 0x3ba68116 */
|
||||
qq4 = 1.3249473704e-04, /* 0x390aee49 */
|
||||
qq5 = -3.9602282413e-06, /* 0xb684e21a */
|
||||
/*
|
||||
* Coefficients for approximation to erf in [0.84375,1.25]
|
||||
* Domain [0, 0.84375], range ~[-5.4446e-10,5.5197e-10]:
|
||||
* |(erf(x) - x)/x - p(x)/q(x)| < 2**-31.
|
||||
*/
|
||||
pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */
|
||||
pa1 = 4.1485610604e-01, /* 0x3ed46805 */
|
||||
pa2 = -3.7220788002e-01, /* 0xbebe9208 */
|
||||
pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */
|
||||
pa4 = -1.1089469492e-01, /* 0xbde31cc2 */
|
||||
pa5 = 3.5478305072e-02, /* 0x3d1151b3 */
|
||||
pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */
|
||||
qa1 = 1.0642088205e-01, /* 0x3dd9f331 */
|
||||
qa2 = 5.4039794207e-01, /* 0x3f0a5785 */
|
||||
qa3 = 7.1828655899e-02, /* 0x3d931ae7 */
|
||||
qa4 = 1.2617121637e-01, /* 0x3e013307 */
|
||||
qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */
|
||||
qa6 = 1.1984500103e-02, /* 0x3c445aa3 */
|
||||
pp0 = 1.28379166e-01F, /* 0x1.06eba8p-3 */
|
||||
pp1 = -3.36030394e-01F, /* -0x1.58185ap-2 */
|
||||
pp2 = -1.86260219e-03F, /* -0x1.e8451ep-10 */
|
||||
qq1 = 3.12324286e-01F, /* 0x1.3fd1f0p-2 */
|
||||
qq2 = 2.16070302e-02F, /* 0x1.620274p-6 */
|
||||
qq3 = -1.98859419e-03F, /* -0x1.04a626p-9 */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1.25,1/0.35]
|
||||
* Domain [0.84375, 1.25], range ~[-1.953e-11,1.940e-11]:
|
||||
* |(erf(x) - erx) - p(x)/q(x)| < 2**-36.
|
||||
*/
|
||||
ra0 = -9.8649440333e-03, /* 0xbc21a093 */
|
||||
ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */
|
||||
ra2 = -1.0558626175e+01, /* 0xc128f022 */
|
||||
ra3 = -6.2375331879e+01, /* 0xc2798057 */
|
||||
ra4 = -1.6239666748e+02, /* 0xc322658c */
|
||||
ra5 = -1.8460508728e+02, /* 0xc3389ae7 */
|
||||
ra6 = -8.1287437439e+01, /* 0xc2a2932b */
|
||||
ra7 = -9.8143291473e+00, /* 0xc11d077e */
|
||||
sa1 = 1.9651271820e+01, /* 0x419d35ce */
|
||||
sa2 = 1.3765776062e+02, /* 0x4309a863 */
|
||||
sa3 = 4.3456588745e+02, /* 0x43d9486f */
|
||||
sa4 = 6.4538726807e+02, /* 0x442158c9 */
|
||||
sa5 = 4.2900814819e+02, /* 0x43d6810b */
|
||||
sa6 = 1.0863500214e+02, /* 0x42d9451f */
|
||||
sa7 = 6.5702495575e+00, /* 0x40d23f7c */
|
||||
sa8 = -6.0424413532e-02, /* 0xbd777f97 */
|
||||
erx = 8.42697144e-01F, /* 0x1.af7600p-1. erf(1) rounded to 16 bits. */
|
||||
pa0 = 3.64939137e-06F, /* 0x1.e9d022p-19 */
|
||||
pa1 = 4.15109694e-01F, /* 0x1.a91284p-2 */
|
||||
pa2 = -1.65179938e-01F, /* -0x1.5249dcp-3 */
|
||||
pa3 = 1.10914491e-01F, /* 0x1.c64e46p-4 */
|
||||
qa1 = 6.02074385e-01F, /* 0x1.344318p-1 */
|
||||
qa2 = 5.35934687e-01F, /* 0x1.126608p-1 */
|
||||
qa3 = 1.68576106e-01F, /* 0x1.593e6ep-3 */
|
||||
qa4 = 5.62181212e-02F, /* 0x1.cc89f2p-5 */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1/.35,28]
|
||||
* Domain [1.25,1/0.35], range ~[-7.043e-10,7.457e-10]:
|
||||
* |log(x*erfc(x)) + x**2 + 0.5625 - r(x)/s(x)| < 2**-30
|
||||
*/
|
||||
rb0 = -9.8649431020e-03, /* 0xbc21a092 */
|
||||
rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */
|
||||
rb2 = -1.7757955551e+01, /* 0xc18e104b */
|
||||
rb3 = -1.6063638306e+02, /* 0xc320a2ea */
|
||||
rb4 = -6.3756646729e+02, /* 0xc41f6441 */
|
||||
rb5 = -1.0250950928e+03, /* 0xc480230b */
|
||||
rb6 = -4.8351919556e+02, /* 0xc3f1c275 */
|
||||
sb1 = 3.0338060379e+01, /* 0x41f2b459 */
|
||||
sb2 = 3.2579251099e+02, /* 0x43a2e571 */
|
||||
sb3 = 1.5367296143e+03, /* 0x44c01759 */
|
||||
sb4 = 3.1998581543e+03, /* 0x4547fdbb */
|
||||
sb5 = 2.5530502930e+03, /* 0x451f90ce */
|
||||
sb6 = 4.7452853394e+02, /* 0x43ed43a7 */
|
||||
sb7 = -2.2440952301e+01; /* 0xc1b38712 */
|
||||
ra0 = -9.87132732e-03F, /* -0x1.4376b2p-7 */
|
||||
ra1 = -5.53605914e-01F, /* -0x1.1b723cp-1 */
|
||||
ra2 = -2.17589188e+00F, /* -0x1.1683a0p+1 */
|
||||
ra3 = -1.43268085e+00F, /* -0x1.6ec42cp+0 */
|
||||
sa1 = 5.45995426e+00F, /* 0x1.5d6fe4p+2 */
|
||||
sa2 = 6.69798088e+00F, /* 0x1.acabb8p+2 */
|
||||
sa3 = 1.43113089e+00F, /* 0x1.6e5e98p+0 */
|
||||
sa4 = -5.77397496e-02F, /* -0x1.d90108p-5 */
|
||||
/*
|
||||
* Domain [1/0.35, 11], range ~[-2.264e-13,2.336e-13]:
|
||||
* |log(x*erfc(x)) + x**2 + 0.5625 - r(x)/s(x)| < 2**-42
|
||||
*/
|
||||
rb0 = -9.86494310e-03F, /* -0x1.434124p-7 */
|
||||
rb1 = -6.25171244e-01F, /* -0x1.401672p-1 */
|
||||
rb2 = -6.16498327e+00F, /* -0x1.8a8f16p+2 */
|
||||
rb3 = -1.66696873e+01F, /* -0x1.0ab70ap+4 */
|
||||
rb4 = -9.53764343e+00F, /* -0x1.313460p+3 */
|
||||
sb1 = 1.26884899e+01F, /* 0x1.96081cp+3 */
|
||||
sb2 = 4.51839523e+01F, /* 0x1.6978bcp+5 */
|
||||
sb3 = 4.72810211e+01F, /* 0x1.7a3f88p+5 */
|
||||
sb4 = 8.93033314e+00F; /* 0x1.1dc54ap+3 */
|
||||
|
||||
float
|
||||
erff(float x)
|
||||
@ -107,43 +91,37 @@ erff(float x)
|
||||
}
|
||||
|
||||
if(ix < 0x3f580000) { /* |x|<0.84375 */
|
||||
if(ix < 0x31800000) { /* |x|<2**-28 */
|
||||
if (ix < 0x04000000)
|
||||
/*avoid underflow */
|
||||
return (float)0.125*((float)8.0*x+efx8*x);
|
||||
if(ix < 0x38800000) { /* |x|<2**-14 */
|
||||
if (ix < 0x04000000) /* |x|<0x1p-119 */
|
||||
return (8*x+efx8*x)/8; /* avoid spurious underflow */
|
||||
return x + efx*x;
|
||||
}
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
||||
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
||||
r = pp0+z*(pp1+z*pp2);
|
||||
s = one+z*(qq1+z*(qq2+z*qq3));
|
||||
y = r/s;
|
||||
return x + x*y;
|
||||
}
|
||||
if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
|
||||
s = fabsf(x)-one;
|
||||
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
||||
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
||||
P = pa0+s*(pa1+s*(pa2+s*pa3));
|
||||
Q = one+s*(qa1+s*(qa2+s*(qa3+s*qa4)));
|
||||
if(hx>=0) return erx + P/Q; else return -erx - P/Q;
|
||||
}
|
||||
if (ix >= 0x40c00000) { /* inf>|x|>=6 */
|
||||
if (ix >= 0x40800000) { /* inf>|x|>=4 */
|
||||
if(hx>=0) return one-tiny; else return tiny-one;
|
||||
}
|
||||
x = fabsf(x);
|
||||
s = one/(x*x);
|
||||
if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */
|
||||
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
|
||||
ra5+s*(ra6+s*ra7))))));
|
||||
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
|
||||
sa5+s*(sa6+s*(sa7+s*sa8)))))));
|
||||
R=ra0+s*(ra1+s*(ra2+s*ra3));
|
||||
S=one+s*(sa1+s*(sa2+s*(sa3+s*sa4)));
|
||||
} else { /* |x| >= 1/0.35 */
|
||||
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
|
||||
rb5+s*rb6)))));
|
||||
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
|
||||
sb5+s*(sb6+s*sb7))))));
|
||||
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*rb4)));
|
||||
S=one+s*(sb1+s*(sb2+s*(sb3+s*sb4)));
|
||||
}
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
SET_FLOAT_WORD(z,ix&0xfffff000);
|
||||
r = __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S);
|
||||
SET_FLOAT_WORD(z,hx&0xffffe000);
|
||||
r = expf(-z*z-0.5625F)*expf((z-x)*(z+x)+R/S);
|
||||
if(hx>=0) return one-r/x; else return r/x-one;
|
||||
}
|
||||
|
||||
@ -160,11 +138,11 @@ erfcf(float x)
|
||||
}
|
||||
|
||||
if(ix < 0x3f580000) { /* |x|<0.84375 */
|
||||
if(ix < 0x23800000) /* |x|<2**-56 */
|
||||
if(ix < 0x33800000) /* |x|<2**-24 */
|
||||
return one-x;
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
||||
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
||||
r = pp0+z*(pp1+z*pp2);
|
||||
s = one+z*(qq1+z*(qq2+z*qq3));
|
||||
y = r/s;
|
||||
if(hx < 0x3e800000) { /* x<1/4 */
|
||||
return one-(x+x*y);
|
||||
@ -176,33 +154,27 @@ erfcf(float x)
|
||||
}
|
||||
if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
|
||||
s = fabsf(x)-one;
|
||||
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
||||
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
||||
P = pa0+s*(pa1+s*(pa2+s*pa3));
|
||||
Q = one+s*(qa1+s*(qa2+s*(qa3+s*qa4)));
|
||||
if(hx>=0) {
|
||||
z = one-erx; return z - P/Q;
|
||||
} else {
|
||||
z = erx+P/Q; return one+z;
|
||||
}
|
||||
}
|
||||
if (ix < 0x41e00000) { /* |x|<28 */
|
||||
if (ix < 0x41300000) { /* |x|<11 */
|
||||
x = fabsf(x);
|
||||
s = one/(x*x);
|
||||
if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/
|
||||
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
|
||||
ra5+s*(ra6+s*ra7))))));
|
||||
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
|
||||
sa5+s*(sa6+s*(sa7+s*sa8)))))));
|
||||
R=ra0+s*(ra1+s*(ra2+s*ra3));
|
||||
S=one+s*(sa1+s*(sa2+s*(sa3+s*sa4)));
|
||||
} else { /* |x| >= 1/.35 ~ 2.857143 */
|
||||
if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */
|
||||
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
|
||||
rb5+s*rb6)))));
|
||||
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
|
||||
sb5+s*(sb6+s*sb7))))));
|
||||
if(hx<0&&ix>=0x40a00000) return two-tiny;/* x < -5 */
|
||||
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*rb4)));
|
||||
S=one+s*(sb1+s*(sb2+s*(sb3+s*sb4)));
|
||||
}
|
||||
GET_FLOAT_WORD(ix,x);
|
||||
SET_FLOAT_WORD(z,ix&0xfffff000);
|
||||
r = __ieee754_expf(-z*z-(float)0.5625)*
|
||||
__ieee754_expf((z-x)*(z+x)+R/S);
|
||||
SET_FLOAT_WORD(z,hx&0xffffe000);
|
||||
r = expf(-z*z-0.5625F)*expf((z-x)*(z+x)+R/S);
|
||||
if(hx>0) return r/x; else return two-r/x;
|
||||
} else {
|
||||
if(hx>0) return tiny*tiny; else return two-tiny;
|
||||
|
Loading…
Reference in New Issue
Block a user