Vendor import of llvm release_50 branch r310316:

https://llvm.org/svn/llvm-project/llvm/branches/release_50@310316
This commit is contained in:
Dimitry Andric 2017-08-08 16:52:53 +00:00
parent 3ad6a4b447
commit 4e20bb0468
45 changed files with 872 additions and 247 deletions

View File

@ -20,6 +20,10 @@ type llattribute
type llmemorybuffer
type llmdkind
exception FeatureDisabled of string
let () = Callback.register_exception "Llvm.FeatureDisabled" (FeatureDisabled "")
module TypeKind = struct
type t =
| Void

View File

@ -371,6 +371,8 @@ type ('a, 'b) llrev_pos =
(** {6 Exceptions} *)
exception FeatureDisabled of string
exception IoError of string

View File

@ -336,7 +336,12 @@ CAMLprim LLVMContextRef llvm_type_context(LLVMTypeRef Ty) {
/* lltype -> unit */
CAMLprim value llvm_dump_type(LLVMTypeRef Val) {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVMDumpType(Val);
#else
caml_raise_with_arg(*caml_named_value("Llvm.FeatureDisabled"),
caml_copy_string("dump"));
#endif
return Val_unit;
}

View File

@ -87,6 +87,11 @@ function(add_ocaml_library name)
foreach( include_dir ${LLVM_INCLUDE_DIR} ${LLVM_MAIN_INCLUDE_DIR} )
set(c_flags "${c_flags} -I${include_dir}")
endforeach()
# include -D/-UNDEBUG to match dump function visibility
# regex from HandleLLVMOptions.cmake
string(REGEX MATCH "(^| )[/-][UD] *NDEBUG($| )" flag_matches
"${CMAKE_C_FLAGS_${uppercase_CMAKE_BUILD_TYPE}} ${CMAKE_C_FLAGS}")
set(c_flags "${c_flags} ${flag_matches}")
foreach( ocaml_file ${ARG_OCAML} )
list(APPEND sources "${ocaml_file}.mli" "${ocaml_file}.ml")
@ -199,7 +204,7 @@ function(add_ocaml_library name)
PERMISSIONS OWNER_READ OWNER_WRITE OWNER_EXECUTE
GROUP_READ GROUP_EXECUTE
WORLD_READ WORLD_EXECUTE
DESTINATION "${LLVM_OCAML_INSTALL_PATH}/llvm")
DESTINATION "${LLVM_OCAML_INSTALL_PATH}/stublibs")
foreach( install_file ${install_files} ${install_shlibs} )
get_filename_component(filename "${install_file}" NAME)

View File

@ -125,7 +125,22 @@ Changes to the AMDGPU Target
Changes to the AVR Target
-----------------------------
During this release ...
This release consists mainly of bugfixes and implementations of features
required for compiling basic Rust programs.
* Enable the branch relaxation pass so that we don't crash on large
stack load/stores
* Add support for lowering bit-rotations to the native `ror` and `rol`
instructions
* Fix bug where function pointers were treated as pointers to RAM and not
pointers to program memory
* Fix broken code generaton for shift-by-variable expressions
* Support zero-sized types in argument lists; this is impossible in C,
but possible in Rust
Changes to the OCaml bindings
-----------------------------

View File

@ -312,6 +312,12 @@ template <typename T> class ArrayRef;
const DataLayout &DL, LoopInfo *LI = nullptr,
unsigned MaxLookup = 6);
/// This is a wrapper around GetUnderlyingObjects and adds support for basic
/// ptrtoint+arithmetic+inttoptr sequences.
void getUnderlyingObjectsForCodeGen(const Value *V,
SmallVectorImpl<Value *> &Objects,
const DataLayout &DL);
/// Return true if the only users of this pointer are lifetime markers.
bool onlyUsedByLifetimeMarkers(const Value *V);

View File

@ -661,6 +661,12 @@ class MachineFunction {
MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
int64_t Offset, uint64_t Size);
/// Allocate a new MachineMemOperand by copying an existing one,
/// replacing only AliasAnalysis information. MachineMemOperands are owned
/// by the MachineFunction and need not be explicitly deallocated.
MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
const AAMDNodes &AAInfo);
using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
/// Allocate an array of MachineOperands. This is only intended for use by

View File

@ -379,6 +379,9 @@ class MachineInstr
return NumMemRefs == 1;
}
/// Return the number of memory operands.
unsigned getNumMemOperands() const { return NumMemRefs; }
/// API for querying MachineInstr properties. They are the same as MCInstrDesc
/// queries but they are bundle aware.

View File

@ -3277,6 +3277,69 @@ void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
} while (!Worklist.empty());
}
/// This is the function that does the work of looking through basic
/// ptrtoint+arithmetic+inttoptr sequences.
static const Value *getUnderlyingObjectFromInt(const Value *V) {
do {
if (const Operator *U = dyn_cast<Operator>(V)) {
// If we find a ptrtoint, we can transfer control back to the
// regular getUnderlyingObjectFromInt.
if (U->getOpcode() == Instruction::PtrToInt)
return U->getOperand(0);
// If we find an add of a constant, a multiplied value, or a phi, it's
// likely that the other operand will lead us to the base
// object. We don't have to worry about the case where the
// object address is somehow being computed by the multiply,
// because our callers only care when the result is an
// identifiable object.
if (U->getOpcode() != Instruction::Add ||
(!isa<ConstantInt>(U->getOperand(1)) &&
Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
!isa<PHINode>(U->getOperand(1))))
return V;
V = U->getOperand(0);
} else {
return V;
}
assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
} while (true);
}
/// This is a wrapper around GetUnderlyingObjects and adds support for basic
/// ptrtoint+arithmetic+inttoptr sequences.
void llvm::getUnderlyingObjectsForCodeGen(const Value *V,
SmallVectorImpl<Value *> &Objects,
const DataLayout &DL) {
SmallPtrSet<const Value *, 16> Visited;
SmallVector<const Value *, 4> Working(1, V);
do {
V = Working.pop_back_val();
SmallVector<Value *, 4> Objs;
GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
for (Value *V : Objs) {
if (!Visited.insert(V).second)
continue;
if (Operator::getOpcode(V) == Instruction::IntToPtr) {
const Value *O =
getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
if (O->getType()->isPointerTy()) {
Working.push_back(O);
continue;
}
}
// If GetUnderlyingObjects fails to find an identifiable object,
// getUnderlyingObjectsForCodeGen also fails for safety.
if (!isIdentifiedObject(V)) {
Objects.clear();
return;
}
Objects.push_back(const_cast<Value *>(V));
}
} while (!Working.empty());
}
/// Return true if the only users of this pointer are lifetime markers.
bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
for (const User *U : V->users()) {

View File

@ -1475,13 +1475,14 @@ bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
bool PredAnalyzable =
!TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB) {
if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
PredTBB != PredFBB) {
// The predecessor has a conditional branch to this block which consists
// of only a tail call. Try to fold the tail call into the conditional
// branch.
if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
// TODO: It would be nice if analyzeBranch() could provide a pointer
// to the branch insturction so replaceBranchWithTailCall() doesn't
// to the branch instruction so replaceBranchWithTailCall() doesn't
// have to search for it.
TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
++NumTailCalls;

View File

@ -330,6 +330,20 @@ MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
MMO->getOrdering(), MMO->getFailureOrdering());
}
MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
const AAMDNodes &AAInfo) {
MachinePointerInfo MPI = MMO->getValue() ?
MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
return new (Allocator)
MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
MMO->getBaseAlignment(), AAInfo,
MMO->getRanges(), MMO->getSyncScopeID(),
MMO->getOrdering(), MMO->getFailureOrdering());
}
MachineInstr::mmo_iterator
MachineFunction::allocateMemRefsArray(unsigned long Num) {
return Allocator.Allocate<MachineMemOperand *>(Num);

View File

@ -578,10 +578,8 @@ bool MachinePointerInfo::isDereferenceable(unsigned Size, LLVMContext &C,
if (BasePtr == nullptr)
return false;
return isDereferenceableAndAlignedPointer(BasePtr, 1,
APInt(DL.getPointerSize(),
Offset + Size),
DL);
return isDereferenceableAndAlignedPointer(
BasePtr, 1, APInt(DL.getPointerSizeInBits(), Offset + Size), DL);
}
/// getConstantPool - Return a MachinePointerInfo record that refers to the

View File

@ -121,63 +121,6 @@ ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
SchedModel.init(ST.getSchedModel(), &ST, TII);
}
/// This is the function that does the work of looking through basic
/// ptrtoint+arithmetic+inttoptr sequences.
static const Value *getUnderlyingObjectFromInt(const Value *V) {
do {
if (const Operator *U = dyn_cast<Operator>(V)) {
// If we find a ptrtoint, we can transfer control back to the
// regular getUnderlyingObjectFromInt.
if (U->getOpcode() == Instruction::PtrToInt)
return U->getOperand(0);
// If we find an add of a constant, a multiplied value, or a phi, it's
// likely that the other operand will lead us to the base
// object. We don't have to worry about the case where the
// object address is somehow being computed by the multiply,
// because our callers only care when the result is an
// identifiable object.
if (U->getOpcode() != Instruction::Add ||
(!isa<ConstantInt>(U->getOperand(1)) &&
Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
!isa<PHINode>(U->getOperand(1))))
return V;
V = U->getOperand(0);
} else {
return V;
}
assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
} while (true);
}
/// This is a wrapper around GetUnderlyingObjects and adds support for basic
/// ptrtoint+arithmetic+inttoptr sequences.
static void getUnderlyingObjects(const Value *V,
SmallVectorImpl<Value *> &Objects,
const DataLayout &DL) {
SmallPtrSet<const Value *, 16> Visited;
SmallVector<const Value *, 4> Working(1, V);
do {
V = Working.pop_back_val();
SmallVector<Value *, 4> Objs;
GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
for (Value *V : Objs) {
if (!Visited.insert(V).second)
continue;
if (Operator::getOpcode(V) == Instruction::IntToPtr) {
const Value *O =
getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
if (O->getType()->isPointerTy()) {
Working.push_back(O);
continue;
}
}
Objects.push_back(const_cast<Value *>(V));
}
} while (!Working.empty());
}
/// If this machine instr has memory reference information and it can be tracked
/// to a normal reference to a known object, return the Value for that object.
static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
@ -208,12 +151,10 @@ static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
} else if (const Value *V = MMO->getValue()) {
SmallVector<Value *, 4> Objs;
getUnderlyingObjects(V, Objs, DL);
getUnderlyingObjectsForCodeGen(V, Objs, DL);
for (Value *V : Objs) {
if (!isIdentifiedObject(V))
return false;
assert(isIdentifiedObject(V));
Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
}
} else

View File

@ -99,6 +99,27 @@ LimitFPPrecision("limit-float-precision",
// store [4096 x i8] %data, [4096 x i8]* %buffer
static const unsigned MaxParallelChains = 64;
// True if the Value passed requires ABI mangling as it is a parameter to a
// function or a return value from a function which is not an intrinsic.
static bool isABIRegCopy(const Value * V) {
const bool IsRetInst = V && isa<ReturnInst>(V);
const bool IsCallInst = V && isa<CallInst>(V);
const bool IsInLineAsm =
IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm();
const bool IsIndirectFunctionCall =
IsCallInst && !IsInLineAsm &&
!static_cast<const CallInst *>(V)->getCalledFunction();
// It is possible that the call instruction is an inline asm statement or an
// indirect function call in which case the return value of
// getCalledFunction() would be nullptr.
const bool IsInstrinsicCall =
IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall &&
static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() !=
Intrinsic::not_intrinsic;
return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall));
}
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
const SDValue *Parts, unsigned NumParts,
MVT PartVT, EVT ValueVT, const Value *V,
@ -1026,13 +1047,9 @@ SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
if (It != FuncInfo.ValueMap.end()) {
unsigned InReg = It->second;
bool IsABIRegCopy =
V && ((isa<CallInst>(V) &&
!(static_cast<const CallInst *>(V))->isInlineAsm()) ||
isa<ReturnInst>(V));
RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
DAG.getDataLayout(), InReg, Ty, IsABIRegCopy);
DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V));
SDValue Chain = DAG.getEntryNode();
Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
V);
@ -1221,13 +1238,9 @@ SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
// If this is an instruction which fast-isel has deferred, select it now.
if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
bool IsABIRegCopy =
V && ((isa<CallInst>(V) &&
!(static_cast<const CallInst *>(V))->isInlineAsm()) ||
isa<ReturnInst>(V));
RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
Inst->getType(), IsABIRegCopy);
Inst->getType(), isABIRegCopy(V));
SDValue Chain = DAG.getEntryNode();
return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
}
@ -8281,13 +8294,9 @@ SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// If this is an InlineAsm we have to match the registers required, not the
// notional registers required by the type.
bool IsABIRegCopy =
V && ((isa<CallInst>(V) &&
!(static_cast<const CallInst *>(V))->isInlineAsm()) ||
isa<ReturnInst>(V));
RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
V->getType(), IsABIRegCopy);
V->getType(), isABIRegCopy(V));
SDValue Chain = DAG.getEntryNode();
ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==

View File

@ -37,6 +37,7 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
@ -889,6 +890,10 @@ void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
// Keep a list of *allocas* which need to be remapped.
DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
// Keep a list of allocas which has been affected by the remap.
SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
for (const std::pair<int, int> &SI : SlotRemap) {
const AllocaInst *From = MFI->getObjectAllocation(SI.first);
const AllocaInst *To = MFI->getObjectAllocation(SI.second);
@ -908,6 +913,10 @@ void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
Inst = Cast;
}
// We keep both slots to maintain AliasAnalysis metadata later.
MergedAllocas.insert(From);
MergedAllocas.insert(To);
// Allow the stack protector to adjust its value map to account for the
// upcoming replacement.
SP->adjustForColoring(From, To);
@ -939,13 +948,6 @@ void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
// Update the MachineMemOperand to use the new alloca.
for (MachineMemOperand *MMO : I.memoperands()) {
// FIXME: In order to enable the use of TBAA when using AA in CodeGen,
// we'll also need to update the TBAA nodes in MMOs with values
// derived from the merged allocas. When doing this, we'll need to use
// the same variant of GetUnderlyingObjects that is used by the
// instruction scheduler (that can look through ptrtoint/inttoptr
// pairs).
// We've replaced IR-level uses of the remapped allocas, so we only
// need to replace direct uses here.
const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
@ -997,6 +999,48 @@ void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
MO.setIndex(ToSlot);
FixedInstr++;
}
// We adjust AliasAnalysis information for merged stack slots.
MachineSDNode::mmo_iterator NewMemOps =
MF->allocateMemRefsArray(I.getNumMemOperands());
unsigned MemOpIdx = 0;
bool ReplaceMemOps = false;
for (MachineMemOperand *MMO : I.memoperands()) {
// If this memory location can be a slot remapped here,
// we remove AA information.
bool MayHaveConflictingAAMD = false;
if (MMO->getAAInfo()) {
if (const Value *MMOV = MMO->getValue()) {
SmallVector<Value *, 4> Objs;
getUnderlyingObjectsForCodeGen(MMOV, Objs, MF->getDataLayout());
if (Objs.empty())
MayHaveConflictingAAMD = true;
else
for (Value *V : Objs) {
// If this memory location comes from a known stack slot
// that is not remapped, we continue checking.
// Otherwise, we need to invalidate AA infomation.
const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
if (AI && MergedAllocas.count(AI)) {
MayHaveConflictingAAMD = true;
break;
}
}
}
}
if (MayHaveConflictingAAMD) {
NewMemOps[MemOpIdx++] = MF->getMachineMemOperand(MMO, AAMDNodes());
ReplaceMemOps = true;
}
else
NewMemOps[MemOpIdx++] = MMO;
}
// If any memory operand is updated, set memory references of
// this instruction.
if (ReplaceMemOps)
I.setMemRefs(std::make_pair(NewMemOps, I.getNumMemOperands()));
}
// Update the location of C++ catch objects for the MSVC personality routine.

View File

@ -2097,15 +2097,19 @@ Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
// Subsequent evaluation would get confused and produce erroneous results.
//
// The following prohibits such a GEP from being formed by checking to see
// if the index is in-range with respect to an array or vector.
// if the index is in-range with respect to an array.
// TODO: This code may be extended to handle vectors as well.
bool PerformFold = false;
if (Idx0->isNullValue())
PerformFold = true;
else if (LastI.isSequential())
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
PerformFold =
!LastI.isBoundedSequential() ||
isIndexInRangeOfArrayType(LastI.getSequentialNumElements(), CI);
PerformFold = (!LastI.isBoundedSequential() ||
isIndexInRangeOfArrayType(
LastI.getSequentialNumElements(), CI)) &&
!CE->getOperand(CE->getNumOperands() - 1)
->getType()
->isVectorTy();
if (PerformFold) {
SmallVector<Value*, 16> NewIndices;

View File

@ -542,15 +542,12 @@ NewArchiveMember ObjectFactory::createWeakExternal(StringRef Sym,
SymbolTable[2].Name.Offset.Offset = sizeof(uint32_t);
//__imp_ String Table
if (Imp) {
SymbolTable[3].Name.Offset.Offset = sizeof(uint32_t) + Sym.size() + 7;
writeStringTable(Buffer, {std::string("__imp_").append(Sym),
std::string("__imp_").append(Weak)});
} else {
SymbolTable[3].Name.Offset.Offset = sizeof(uint32_t) + Sym.size() + 1;
writeStringTable(Buffer, {Sym, Weak});
}
StringRef Prefix = Imp ? "__imp_" : "";
SymbolTable[3].Name.Offset.Offset =
sizeof(uint32_t) + Sym.size() + Prefix.size() + 1;
append(Buffer, SymbolTable);
writeStringTable(Buffer, {(Prefix + Sym).str(),
(Prefix + Weak).str()});
// Copied here so we can still use writeStringTable
char *Buf = Alloc.Allocate<char>(Buffer.size());

View File

@ -946,6 +946,18 @@ bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
case AArch64::CMP_SWAP_128:
return expandCMP_SWAP_128(MBB, MBBI, NextMBBI);
case AArch64::AESMCrrTied:
case AArch64::AESIMCrrTied: {
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(Opcode == AArch64::AESMCrrTied ? AArch64::AESMCrr :
AArch64::AESIMCrr))
.add(MI.getOperand(0))
.add(MI.getOperand(1));
transferImpOps(MI, MIB, MIB);
MI.eraseFromParent();
return true;
}
}
return false;
}

View File

@ -506,19 +506,23 @@ void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
return;
}
auto CSStackSize = AFI->getCalleeSavedStackSize();
bool IsWin64 =
Subtarget.isCallingConvWin64(MF.getFunction()->getCallingConv());
unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
// All of the remaining stack allocations are for locals.
AFI->setLocalStackSize(NumBytes - CSStackSize);
AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
if (CombineSPBump) {
emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII,
MachineInstr::FrameSetup);
NumBytes = 0;
} else if (CSStackSize != 0) {
} else if (PrologueSaveSize != 0) {
MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(MBB, MBBI, DL, TII,
-CSStackSize);
NumBytes -= CSStackSize;
-PrologueSaveSize);
NumBytes -= PrologueSaveSize;
}
assert(NumBytes >= 0 && "Negative stack allocation size!?");
@ -532,8 +536,9 @@ void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
++MBBI;
}
if (HasFP) {
// Only set up FP if we actually need to. Frame pointer is fp = sp - 16.
int FPOffset = CSStackSize - 16;
// Only set up FP if we actually need to. Frame pointer is fp =
// sp - fixedobject - 16.
int FPOffset = AFI->getCalleeSavedStackSize() - 16;
if (CombineSPBump)
FPOffset += AFI->getLocalStackSize();
@ -672,8 +677,8 @@ void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
if (HasFP) {
// Define the current CFA rule to use the provided FP.
unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::createDefCfa(nullptr, Reg, 2 * StackGrowth));
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
nullptr, Reg, 2 * StackGrowth - FixedObject));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
@ -759,12 +764,16 @@ void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
// AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
// it as the 2nd argument of AArch64ISD::TC_RETURN.
auto CSStackSize = AFI->getCalleeSavedStackSize();
bool IsWin64 =
Subtarget.isCallingConvWin64(MF.getFunction()->getCallingConv());
unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
if (!CombineSPBump && CSStackSize != 0)
if (!CombineSPBump && PrologueSaveSize != 0)
convertCalleeSaveRestoreToSPPrePostIncDec(
MBB, std::prev(MBB.getFirstTerminator()), DL, TII, CSStackSize);
MBB, std::prev(MBB.getFirstTerminator()), DL, TII, PrologueSaveSize);
// Move past the restores of the callee-saved registers.
MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
@ -786,7 +795,7 @@ void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
return;
}
NumBytes -= CSStackSize;
NumBytes -= PrologueSaveSize;
assert(NumBytes >= 0 && "Negative stack allocation size!?");
if (!hasFP(MF)) {
@ -796,7 +805,7 @@ void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
if (RedZone && ArgumentPopSize == 0)
return;
bool NoCalleeSaveRestore = CSStackSize == 0;
bool NoCalleeSaveRestore = PrologueSaveSize == 0;
int StackRestoreBytes = RedZone ? 0 : NumBytes;
if (NoCalleeSaveRestore)
StackRestoreBytes += ArgumentPopSize;
@ -815,7 +824,8 @@ void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
// be able to save any instructions.
if (MFI.hasVarSizedObjects() || AFI->isStackRealigned())
emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
-CSStackSize + 16, TII, MachineInstr::FrameDestroy);
-AFI->getCalleeSavedStackSize() + 16, TII,
MachineInstr::FrameDestroy);
else if (NumBytes)
emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, NumBytes, TII,
MachineInstr::FrameDestroy);
@ -845,7 +855,11 @@ int AArch64FrameLowering::resolveFrameIndexReference(const MachineFunction &MF,
const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
int FPOffset = MFI.getObjectOffset(FI) + 16;
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
bool IsWin64 =
Subtarget.isCallingConvWin64(MF.getFunction()->getCallingConv());
unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0;
int FPOffset = MFI.getObjectOffset(FI) + FixedObject + 16;
int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
bool isFixed = MFI.isFixedObjectIndex(FI);
@ -956,12 +970,6 @@ static void computeCalleeSaveRegisterPairs(
"Odd number of callee-saved regs to spill!");
int Offset = AFI->getCalleeSavedStackSize();
unsigned GPRSaveSize = AFI->getVarArgsGPRSize();
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
bool IsWin64 = Subtarget.isCallingConvWin64(MF.getFunction()->getCallingConv());
if (IsWin64)
Offset -= alignTo(GPRSaveSize, 16);
for (unsigned i = 0; i < Count; ++i) {
RegPairInfo RPI;
RPI.Reg1 = CSI[i].getReg();

View File

@ -9586,8 +9586,8 @@ static bool performTBISimplification(SDValue Addr,
SelectionDAG &DAG) {
APInt DemandedMask = APInt::getLowBitsSet(64, 56);
KnownBits Known;
TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
DCI.isBeforeLegalizeOps());
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);

View File

@ -37,6 +37,9 @@ def HasFullFP16 : Predicate<"Subtarget->hasFullFP16()">,
AssemblerPredicate<"FeatureFullFP16", "fullfp16">;
def HasSPE : Predicate<"Subtarget->hasSPE()">,
AssemblerPredicate<"FeatureSPE", "spe">;
def HasFuseAES : Predicate<"Subtarget->hasFuseAES()">,
AssemblerPredicate<"FeatureFuseAES",
"fuse-aes">;
def HasSVE : Predicate<"Subtarget->hasSVE()">,
AssemblerPredicate<"FeatureSVE", "sve">;
@ -5304,6 +5307,31 @@ def AESDrr : AESTiedInst<0b0101, "aesd", int_aarch64_crypto_aesd>;
def AESMCrr : AESInst< 0b0110, "aesmc", int_aarch64_crypto_aesmc>;
def AESIMCrr : AESInst< 0b0111, "aesimc", int_aarch64_crypto_aesimc>;
// Pseudo instructions for AESMCrr/AESIMCrr with a register constraint required
// for AES fusion on some CPUs.
let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
def AESMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
Sched<[WriteV]>;
def AESIMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
Sched<[WriteV]>;
}
// Only use constrained versions of AES(I)MC instructions if they are paired with
// AESE/AESD.
def : Pat<(v16i8 (int_aarch64_crypto_aesmc
(v16i8 (int_aarch64_crypto_aese (v16i8 V128:$src1),
(v16i8 V128:$src2))))),
(v16i8 (AESMCrrTied (v16i8 (AESErr (v16i8 V128:$src1),
(v16i8 V128:$src2)))))>,
Requires<[HasFuseAES]>;
def : Pat<(v16i8 (int_aarch64_crypto_aesimc
(v16i8 (int_aarch64_crypto_aesd (v16i8 V128:$src1),
(v16i8 V128:$src2))))),
(v16i8 (AESIMCrrTied (v16i8 (AESDrr (v16i8 V128:$src1),
(v16i8 V128:$src2)))))>,
Requires<[HasFuseAES]>;
def SHA1Crrr : SHATiedInstQSV<0b000, "sha1c", int_aarch64_crypto_sha1c>;
def SHA1Prrr : SHATiedInstQSV<0b001, "sha1p", int_aarch64_crypto_sha1p>;
def SHA1Mrrr : SHATiedInstQSV<0b010, "sha1m", int_aarch64_crypto_sha1m>;

View File

@ -118,11 +118,13 @@ static bool shouldScheduleAdjacent(const TargetInstrInfo &TII,
// Fuse AES crypto operations.
switch(SecondOpcode) {
// AES encode.
case AArch64::AESMCrr :
case AArch64::AESMCrr:
case AArch64::AESMCrrTied:
return FirstOpcode == AArch64::AESErr ||
FirstOpcode == AArch64::INSTRUCTION_LIST_END;
// AES decode.
case AArch64::AESIMCrr:
case AArch64::AESIMCrrTied:
return FirstOpcode == AArch64::AESDrr ||
FirstOpcode == AArch64::INSTRUCTION_LIST_END;
}

View File

@ -3984,6 +3984,13 @@ bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
if (Offset != MFI.getObjectOffset(FI))
return false;
// If this is not byval, check that the argument stack object is immutable.
// inalloca and argument copy elision can create mutable argument stack
// objects. Byval objects can be mutated, but a byval call intends to pass the
// mutated memory.
if (!Flags.isByVal() && !MFI.isImmutableObjectIndex(FI))
return false;
if (VA.getLocVT().getSizeInBits() > Arg.getValueSizeInBits()) {
// If the argument location is wider than the argument type, check that any
// extension flags match.
@ -30605,8 +30612,8 @@ static SDValue combineSelect(SDNode *N, SelectionDAG &DAG,
assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
APInt DemandedMask(APInt::getSignMask(BitWidth));
KnownBits Known;
TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
DCI.isBeforeLegalizeOps());
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
if (TLI.ShrinkDemandedConstant(Cond, DemandedMask, TLO) ||
TLI.SimplifyDemandedBits(Cond, DemandedMask, Known, TLO)) {
// If we changed the computation somewhere in the DAG, this change will

View File

@ -3697,8 +3697,7 @@ let SchedRW = [WriteNop] in {
// Pause. This "instruction" is encoded as "rep; nop", so even though it
// was introduced with SSE2, it's backward compatible.
def PAUSE : I<0x90, RawFrm, (outs), (ins),
"pause", [(int_x86_sse2_pause)], IIC_SSE_PAUSE>,
OBXS, Requires<[HasSSE2]>;
"pause", [(int_x86_sse2_pause)], IIC_SSE_PAUSE>, OBXS;
}
let SchedRW = [WriteFence] in {

View File

@ -356,7 +356,7 @@ doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
// Just add all the struct element types.
Type *AgTy = cast<PointerType>(I->getType())->getElementType();
Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
"", InsertPt);
I->getParamAlignment(), "", InsertPt);
StructType *STy = cast<StructType>(AgTy);
Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
nullptr};

View File

@ -756,7 +756,8 @@ struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
bool runOnFunction() {
if (!ClStack) return false;
if (ClRedzoneByvalArgs) copyArgsPassedByValToAllocas();
if (ClRedzoneByvalArgs && Mapping.Offset != kDynamicShadowSentinel)
copyArgsPassedByValToAllocas();
// Collect alloca, ret, lifetime instructions etc.
for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);

View File

@ -1790,7 +1790,8 @@ static bool runIPSCCP(Module &M, const DataLayout &DL,
// variables that do not have their 'addresses taken'. If they don't have
// their addresses taken, we can propagate constants through them.
for (GlobalVariable &G : M.globals())
if (!G.isConstant() && G.hasLocalLinkage() && !AddressIsTaken(&G))
if (!G.isConstant() && G.hasLocalLinkage() &&
G.hasDefinitiveInitializer() && !AddressIsTaken(&G))
Solver.TrackValueOfGlobalVariable(&G);
// Solve for constants.

View File

@ -132,7 +132,8 @@ std::unique_ptr<Module> llvm::CloneModule(
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
I->getAllMetadata(MDs);
for (auto MD : MDs)
GV->addMetadata(MD.first, *MapMetadata(MD.second, VMap));
GV->addMetadata(MD.first,
*MapMetadata(MD.second, VMap, RF_MoveDistinctMDs));
copyComdat(GV, &*I);
}

View File

@ -2,14 +2,14 @@
define win64cc void @pass_va(i32 %count, ...) nounwind {
entry:
; CHECK: sub sp, sp, #80
; CHECK: str x30, [sp, #-80]!
; CHECK: add x8, sp, #24
; CHECK: add x0, sp, #24
; CHECK: stp x6, x7, [sp, #64]
; CHECK: stp x4, x5, [sp, #48]
; CHECK: stp x2, x3, [sp, #32]
; CHECK: str x1, [sp, #24]
; CHECK: stp x30, x8, [sp]
; CHECK: str x8, [sp, #8]
; CHECK: bl other_func
; CHECK: ldr x30, [sp], #80
; CHECK: ret

View File

@ -1,10 +1,10 @@
; RUN: llc %s -o - -mtriple=aarch64-unknown -mattr=+fuse-aes,+crypto | FileCheck %s --check-prefix=CHECK --check-prefix=CHECKFUSEALLPAIRS
; RUN: llc %s -o - -mtriple=aarch64-unknown -mcpu=generic -mattr=+crypto | FileCheck %s --check-prefix=CHECK --check-prefix=CHECKFUSEALLPAIRS
; RUN: llc %s -o - -mtriple=aarch64-unknown -mcpu=cortex-a53 | FileCheck %s --check-prefix=CHECK --check-prefix=CHECKFUSEALLPAIRS
; RUN: llc %s -o - -mtriple=aarch64-unknown -mcpu=cortex-a57 | FileCheck %s --check-prefix=CHECK --check-prefix=CHECKFUSEALLPAIRS
; RUN: llc %s -o - -mtriple=aarch64-unknown -mcpu=cortex-a72 | FileCheck %s --check-prefix=CHECK --check-prefix=CHECKFUSEALLPAIRS
; RUN: llc %s -o - -mtriple=aarch64-unknown -mcpu=cortex-a73 | FileCheck %s --check-prefix=CHECK --check-prefix=CHECKFUSEALLPAIRS
; RUN: llc %s -o - -mtriple=aarch64-unknown -mcpu=exynos-m1 | FileCheck %s --check-prefix=CHECK --check-prefix=CHECKM1
; RUN: llc %s -o - -mtriple=aarch64-unknown -mattr=+fuse-aes,+crypto | FileCheck %s
; RUN: llc %s -o - -mtriple=aarch64-unknown -mcpu=generic -mattr=+crypto | FileCheck %s
; RUN: llc %s -o - -mtriple=aarch64-unknown -mcpu=cortex-a53 | FileCheck %s
; RUN: llc %s -o - -mtriple=aarch64-unknown -mcpu=cortex-a57 | FileCheck %s
; RUN: llc %s -o - -mtriple=aarch64-unknown -mcpu=cortex-a72 | FileCheck %s
; RUN: llc %s -o - -mtriple=aarch64-unknown -mcpu=cortex-a73 | FileCheck %s
; RUN: llc %s -o - -mtriple=aarch64-unknown -mcpu=exynos-m1 | FileCheck %s
declare <16 x i8> @llvm.aarch64.crypto.aese(<16 x i8> %d, <16 x i8> %k)
declare <16 x i8> @llvm.aarch64.crypto.aesmc(<16 x i8> %d)
@ -76,41 +76,23 @@ define void @aesea(<16 x i8>* %a0, <16 x i8>* %b0, <16 x i8>* %c0, <16 x i8> %d,
ret void
; CHECK-LABEL: aesea:
; CHECKFUSEALLPAIRS: aese [[VA:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesmc {{v[0-7].16b}}, [[VA]]
; CHECKFUSEALLPAIRS: aese [[VB:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesmc {{v[0-7].16b}}, [[VB]]
; CHECKFUSEALLPAIRS: aese [[VC:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesmc {{v[0-7].16b}}, [[VC]]
; CHECKFUSEALLPAIRS: aese [[VD:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesmc {{v[0-7].16b}}, [[VD]]
; CHECKFUSEALLPAIRS: aese [[VE:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesmc {{v[0-7].16b}}, [[VE]]
; CHECKFUSEALLPAIRS: aese [[VF:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesmc {{v[0-7].16b}}, [[VF]]
; CHECKFUSEALLPAIRS: aese [[VG:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesmc {{v[0-7].16b}}, [[VG]]
; CHECKFUSEALLPAIRS: aese [[VH:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesmc {{v[0-7].16b}}, [[VH]]
; CHECKFUSEALLPAIRS-NOT: aesmc
; CHECKM1: aese [[VA:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesmc {{v[0-7].16b}}, [[VA]]
; CHECKM1: aese [[VH:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1: aese [[VB:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesmc {{v[0-7].16b}}, [[VB]]
; CHECKM1: aese {{v[0-7].16b}}, {{v[0-7].16b}}
; CHECKM1: aese [[VC:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesmc {{v[0-7].16b}}, [[VC]]
; CHECKM1: aese [[VD:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesmc {{v[0-7].16b}}, [[VD]]
; CHECKM1: aesmc {{v[0-7].16b}}, [[VH]]
; CHECKM1: aese [[VE:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesmc {{v[0-7].16b}}, [[VE]]
; CHECKM1: aese [[VF:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesmc {{v[0-7].16b}}, [[VF]]
; CHECKM1: aese [[VG:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesmc {{v[0-7].16b}}, [[VG]]
; CHECK: aese [[VA:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesmc [[VA]], [[VA]]
; CHECK: aese [[VB:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesmc [[VB]], [[VB]]
; CHECK: aese [[VC:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesmc [[VC]], [[VC]]
; CHECK: aese [[VD:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesmc [[VD]], [[VD]]
; CHECK: aese [[VE:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesmc [[VE]], [[VE]]
; CHECK: aese [[VF:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesmc [[VF]], [[VF]]
; CHECK: aese [[VG:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesmc [[VG]], [[VG]]
; CHECK: aese [[VH:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesmc [[VH]], [[VH]]
; CHECK-NOT: aesmc
}
define void @aesda(<16 x i8>* %a0, <16 x i8>* %b0, <16 x i8>* %c0, <16 x i8> %d, <16 x i8> %e) {
@ -178,41 +160,23 @@ define void @aesda(<16 x i8>* %a0, <16 x i8>* %b0, <16 x i8>* %c0, <16 x i8> %d,
ret void
; CHECK-LABEL: aesda:
; CHECKFUSEALLPAIRS: aesd [[VA:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesimc {{v[0-7].16b}}, [[VA]]
; CHECKFUSEALLPAIRS: aesd [[VB:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesimc {{v[0-7].16b}}, [[VB]]
; CHECKFUSEALLPAIRS: aesd [[VC:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesimc {{v[0-7].16b}}, [[VC]]
; CHECKFUSEALLPAIRS: aesd [[VD:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesimc {{v[0-7].16b}}, [[VD]]
; CHECKFUSEALLPAIRS: aesd [[VE:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesimc {{v[0-7].16b}}, [[VE]]
; CHECKFUSEALLPAIRS: aesd [[VF:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesimc {{v[0-7].16b}}, [[VF]]
; CHECKFUSEALLPAIRS: aesd [[VG:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesimc {{v[0-7].16b}}, [[VG]]
; CHECKFUSEALLPAIRS: aesd [[VH:v[0-7].16b]], {{v[0-7].16b}}
; CHECKFUSEALLPAIRS-NEXT: aesimc {{v[0-7].16b}}, [[VH]]
; CHECKFUSEALLPAIRS-NOT: aesimc
; CHECKM1: aesd [[VA:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesimc {{v[0-7].16b}}, [[VA]]
; CHECKM1: aesd [[VH:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1: aesd [[VB:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesimc {{v[0-7].16b}}, [[VB]]
; CHECKM1: aesd {{v[0-7].16b}}, {{v[0-7].16b}}
; CHECKM1: aesd [[VC:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesimc {{v[0-7].16b}}, [[VC]]
; CHECKM1: aesd [[VD:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesimc {{v[0-7].16b}}, [[VD]]
; CHECKM1: aesimc {{v[0-7].16b}}, [[VH]]
; CHECKM1: aesd [[VE:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesimc {{v[0-7].16b}}, [[VE]]
; CHECKM1: aesd [[VF:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesimc {{v[0-7].16b}}, [[VF]]
; CHECKM1: aesd [[VG:v[0-7].16b]], {{v[0-7].16b}}
; CHECKM1-NEXT: aesimc {{v[0-7].16b}}, [[VG]]
; CHECK: aesd [[VA:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesimc [[VA]], [[VA]]
; CHECK: aesd [[VB:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesimc [[VB]], [[VB]]
; CHECK: aesd [[VC:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesimc [[VC]], [[VC]]
; CHECK: aesd [[VD:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesimc [[VD]], [[VD]]
; CHECK: aesd [[VE:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesimc [[VE]], [[VE]]
; CHECK: aesd [[VF:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesimc [[VF]], [[VF]]
; CHECK: aesd [[VG:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesimc [[VG]], [[VG]]
; CHECK: aesd [[VH:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesimc [[VH]], [[VH]]
; CHECK-NOT: aesimc
}
define void @aes_load_store(<16 x i8> *%p1, <16 x i8> *%p2 , <16 x i8> *%p3) {
@ -225,20 +189,20 @@ entry:
%in1 = load <16 x i8>, <16 x i8>* %p1, align 16
store <16 x i8> %in1, <16 x i8>* %x1, align 16
%aese1 = call <16 x i8> @llvm.aarch64.crypto.aese(<16 x i8> %in1, <16 x i8> %in1) #2
store <16 x i8> %aese1, <16 x i8>* %x2, align 16
%in2 = load <16 x i8>, <16 x i8>* %p2, align 16
%aesmc1= call <16 x i8> @llvm.aarch64.crypto.aesmc(<16 x i8> %aese1) #2
store <16 x i8> %aesmc1, <16 x i8>* %x3, align 16
%aese2 = call <16 x i8> @llvm.aarch64.crypto.aese(<16 x i8> %in1, <16 x i8> %in2) #2
store <16 x i8> %aese2, <16 x i8>* %x4, align 16
store <16 x i8> %aesmc1, <16 x i8>* %x3, align 16
%in3 = load <16 x i8>, <16 x i8>* %p3, align 16
%aesmc2= call <16 x i8> @llvm.aarch64.crypto.aesmc(<16 x i8> %aese2) #2
store <16 x i8> %aesmc2, <16 x i8>* %x5, align 16
%aese3 = call <16 x i8> @llvm.aarch64.crypto.aese(<16 x i8> %aesmc2, <16 x i8> %in3) #2
store <16 x i8> %aese3, <16 x i8>* %x5, align 16
ret void
; CHECK-LABEL: aes_load_store:
; CHECK: aese [[VA:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesmc {{v[0-7].16b}}, [[VA]]
; CHECK-NEXT: aesmc [[VA]], [[VA]]
; CHECK: aese [[VB:v[0-7].16b]], {{v[0-7].16b}}
; CHECK-NEXT: aesmc {{v[0-7].16b}}, [[VB]]
; CHECK-NEXT: aesmc [[VB]], [[VB]]
; CHECK-NOT: aesmc
}

View File

@ -100,3 +100,14 @@ define i32 @ld_and32_narrower(i64 %p) {
%load = load i32, i32* %cast
ret i32 %load
}
; BOTH-LABEL:ld_and8:
; BOTH: and x
define i32 @ld_and8(i64 %base, i8 %off) {
%off_masked = and i8 %off, 63
%off_64 = zext i8 %off_masked to i64
%p = add i64 %base, %off_64
%cast = inttoptr i64 %p to i32*
%load = load i32, i32* %cast
ret i32 %load
}

View File

@ -2,14 +2,14 @@
define void @pass_va(i32 %count, ...) nounwind {
entry:
; CHECK: sub sp, sp, #80
; CHECK: str x30, [sp, #-80]!
; CHECK: add x8, sp, #24
; CHECK: add x0, sp, #24
; CHECK: stp x6, x7, [sp, #64]
; CHECK: stp x4, x5, [sp, #48]
; CHECK: stp x2, x3, [sp, #32]
; CHECK: str x1, [sp, #24]
; CHECK: stp x30, x8, [sp]
; CHECK: str x8, [sp, #8]
; CHECK: bl other_func
; CHECK: ldr x30, [sp], #80
; CHECK: ret
@ -102,6 +102,113 @@ declare void @llvm.lifetime.end.p0i8(i64, i8* nocapture) #1
declare i32 @__stdio_common_vsprintf(i64, i8*, i64, i8*, i8*, i8*) local_unnamed_addr #3
declare i64* @__local_stdio_printf_options() local_unnamed_addr #4
; CHECK-LABEL: fp
; CHECK: str x21, [sp, #-96]!
; CHECK: stp x20, x19, [sp, #16]
; CHECK: stp x29, x30, [sp, #32]
; CHECK: add x29, sp, #32
; CHECK: add x8, x29, #24
; CHECK: mov x19, x2
; CHECK: mov x20, x1
; CHECK: mov x21, x0
; CHECK: stp x6, x7, [x29, #48]
; CHECK: stp x4, x5, [x29, #32]
; CHECK: str x3, [x29, #24]
; CHECK: str x8, [sp, #8]
; CHECK: bl __local_stdio_printf_options
; CHECK: ldr x8, [x0]
; CHECK: add x5, x29, #24
; CHECK: mov x1, x21
; CHECK: mov x2, x20
; CHECK: orr x0, x8, #0x2
; CHECK: mov x3, x19
; CHECK: mov x4, xzr
; CHECK: bl __stdio_common_vsprintf
; CHECK: ldp x29, x30, [sp, #32]
; CHECK: ldp x20, x19, [sp, #16]
; CHECK: cmp w0, #0
; CHECK: csinv w0, w0, wzr, ge
; CHECK: ldr x21, [sp], #96
; CHECK: ret
define i32 @fp(i8*, i64, i8*, ...) local_unnamed_addr #6 {
%4 = alloca i8*, align 8
%5 = bitcast i8** %4 to i8*
call void @llvm.lifetime.start.p0i8(i64 8, i8* nonnull %5) #2
call void @llvm.va_start(i8* nonnull %5)
%6 = load i8*, i8** %4, align 8
%7 = call i64* @__local_stdio_printf_options() #2
%8 = load i64, i64* %7, align 8
%9 = or i64 %8, 2
%10 = call i32 @__stdio_common_vsprintf(i64 %9, i8* %0, i64 %1, i8* %2, i8* null, i8* %6) #2
%11 = icmp sgt i32 %10, -1
%12 = select i1 %11, i32 %10, i32 -1
call void @llvm.va_end(i8* nonnull %5)
call void @llvm.lifetime.end.p0i8(i64 8, i8* nonnull %5) #2
ret i32 %12
}
attributes #6 = { "no-frame-pointer-elim"="true" }
; CHECK-LABEL: vla
; CHECK: str x23, [sp, #-112]!
; CHECK: stp x22, x21, [sp, #16]
; CHECK: stp x20, x19, [sp, #32]
; CHECK: stp x29, x30, [sp, #48]
; CHECK: add x29, sp, #48
; CHECK: add x8, x29, #16
; CHECK: stur x8, [x29, #-40]
; CHECK: mov w8, w0
; CHECK: add x8, x8, #15
; CHECK: mov x9, sp
; CHECK: and x8, x8, #0x1fffffff0
; CHECK: sub x20, x9, x8
; CHECK: mov x19, x1
; CHECK: mov x23, sp
; CHECK: stp x6, x7, [x29, #48]
; CHECK: stp x4, x5, [x29, #32]
; CHECK: stp x2, x3, [x29, #16]
; CHECK: mov sp, x20
; CHECK: ldur x21, [x29, #-40]
; CHECK: sxtw x22, w0
; CHECK: bl __local_stdio_printf_options
; CHECK: ldr x8, [x0]
; CHECK: mov x1, x20
; CHECK: mov x2, x22
; CHECK: mov x3, x19
; CHECK: orr x0, x8, #0x2
; CHECK: mov x4, xzr
; CHECK: mov x5, x21
; CHECK: bl __stdio_common_vsprintf
; CHECK: mov sp, x23
; CHECK: sub sp, x29, #48
; CHECK: ldp x29, x30, [sp, #48]
; CHECK: ldp x20, x19, [sp, #32]
; CHECK: ldp x22, x21, [sp, #16]
; CHECK: ldr x23, [sp], #112
; CHECK: ret
define void @vla(i32, i8*, ...) local_unnamed_addr {
%3 = alloca i8*, align 8
%4 = bitcast i8** %3 to i8*
call void @llvm.lifetime.start.p0i8(i64 8, i8* nonnull %4) #5
call void @llvm.va_start(i8* nonnull %4)
%5 = zext i32 %0 to i64
%6 = call i8* @llvm.stacksave()
%7 = alloca i8, i64 %5, align 1
%8 = load i8*, i8** %3, align 8
%9 = sext i32 %0 to i64
%10 = call i64* @__local_stdio_printf_options()
%11 = load i64, i64* %10, align 8
%12 = or i64 %11, 2
%13 = call i32 @__stdio_common_vsprintf(i64 %12, i8* nonnull %7, i64 %9, i8* %1, i8* null, i8* %8)
call void @llvm.va_end(i8* nonnull %4)
call void @llvm.stackrestore(i8* %6)
call void @llvm.lifetime.end.p0i8(i64 8, i8* nonnull %4) #5
ret void
}
declare i8* @llvm.stacksave()
declare void @llvm.stackrestore(i8*)
; CHECK-LABEL: snprintf
; CHECK: sub sp, sp, #96
; CHECK: stp x21, x20, [sp, #16]

View File

@ -0,0 +1,12 @@
; RUN: llc -march=mips -mcpu=mips32 < %s -o /dev/null
; Test that calls to vector intrinsics do not crash SelectionDAGBuilder.
define <4 x float> @_ZN4simd3foo17hebb969c5fb39a194E(<4 x float>) {
start:
%1 = call <4 x float> @llvm.sqrt.v4f32(<4 x float> %0)
ret <4 x float> %1
}
declare <4 x float> @llvm.sqrt.v4f32(<4 x float>)

View File

@ -0,0 +1,20 @@
; RUN: llc -march=mips -mcpu=mips32r2 < %s -o /dev/null
; Test that SelectionDAG does not crash during DAGCombine when two pointers
; to the stack match with differing bases and offsets when expanding memcpy.
; This could result in one of the pointers being considered dereferenceable
; and other not.
define void @foo(i8*) {
start:
%a = alloca [22 x i8]
%b = alloca [22 x i8]
%c = bitcast [22 x i8]* %a to i8*
%d = getelementptr inbounds [22 x i8], [22 x i8]* %b, i32 0, i32 2
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %c, i8* %d, i32 20, i32 1, i1 false)
%e = getelementptr inbounds [22 x i8], [22 x i8]* %b, i32 0, i32 6
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %0, i8* %e, i32 12, i32 1, i1 false)
ret void
}
declare void @llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)

View File

@ -0,0 +1,139 @@
# RUN: llc -run-pass=branch-folder %s -o - | FileCheck %s
# PR33980
# Don't form conditional tail calls when the original conditional branch has
# the same true and false destination. Otherwise, when we remove the tail call
# successor we will also remove the fallthrough successor from the CFG.
# CHECK: body: |
# CHECK: bb.0.entry:
# CHECK: successors: %bb.1.sw.bb(0x40000000)
# CHECK: liveins: %edi
# CHECK: CMP32ri8 killed %edi, 2, implicit-def %eflags
# CHECK: TCRETURNdi64cc @mergeable_conditional_tailcall
# This was the unconditional branch to a dead MBB that we left behind before
# this bug was fixed.
# CHECK-NOT: JMP_1 %bb.-1
--- |
; ModuleID = 't.ll'
source_filename = "t.ll"
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64--linux"
@static_local_guard = external global i64, align 8
; Function Attrs: optsize
define void @f(i32 %arg) #0 {
entry:
switch i32 %arg, label %sw.epilog [
i32 0, label %sw.bb
i32 1, label %sw.bb
i32 2, label %sw.bb2
]
sw.bb: ; preds = %entry, %entry
%tmp = load atomic i8, i8* bitcast (i64* @static_local_guard to i8*) acquire, align 8
%guard.uninitialized.i = icmp eq i8 %tmp, 0
br i1 %guard.uninitialized.i, label %init.check.i, label %return, !prof !0
init.check.i: ; preds = %sw.bb
tail call void @initialize_static_local(i64* nonnull @static_local_guard)
ret void
sw.bb2: ; preds = %entry
tail call void @mergeable_conditional_tailcall()
ret void
sw.epilog: ; preds = %entry
tail call void @mergeable_conditional_tailcall()
ret void
return: ; preds = %sw.bb
ret void
}
declare void @mergeable_conditional_tailcall()
declare void @initialize_static_local(i64*)
; Function Attrs: nounwind
declare void @llvm.stackprotector(i8*, i8**) #1
attributes #0 = { optsize }
attributes #1 = { nounwind }
!0 = !{!"branch_weights", i32 1, i32 1048575}
...
---
name: f
alignment: 0
exposesReturnsTwice: false
legalized: false
regBankSelected: false
selected: false
tracksRegLiveness: true
registers:
liveins:
- { reg: '%edi', virtual-reg: '' }
frameInfo:
isFrameAddressTaken: false
isReturnAddressTaken: false
hasStackMap: false
hasPatchPoint: false
stackSize: 0
offsetAdjustment: 0
maxAlignment: 0
adjustsStack: false
hasCalls: false
stackProtector: ''
maxCallFrameSize: 0
hasOpaqueSPAdjustment: false
hasVAStart: false
hasMustTailInVarArgFunc: false
savePoint: ''
restorePoint: ''
fixedStack:
stack:
constants:
body: |
bb.0.entry:
successors: %bb.2.sw.bb(0x40000000), %bb.1.entry(0x40000000)
liveins: %edi
CMP32ri8 killed %edi, 2, implicit-def %eflags
JB_1 %bb.2.sw.bb, implicit %eflags
JMP_1 %bb.1.entry
bb.1.entry:
successors: %bb.4.sw.bb2(0x40000000), %bb.5.sw.epilog(0x40000000)
liveins: %eflags
JE_1 %bb.4.sw.bb2, implicit killed %eflags
JMP_1 %bb.5.sw.epilog
bb.2.sw.bb:
successors: %bb.3.init.check.i(0x00000800), %bb.6.return(0x7ffff800)
%al = ACQUIRE_MOV8rm %rip, 1, _, @static_local_guard, _ :: (volatile load acquire 1 from `i8* bitcast (i64* @static_local_guard to i8*)`, align 8)
TEST8rr killed %al, %al, implicit-def %eflags
JNE_1 %bb.6.return, implicit killed %eflags
JMP_1 %bb.3.init.check.i
bb.3.init.check.i:
dead %edi = MOV32ri64 @static_local_guard, implicit-def %rdi
TCRETURNdi64 @initialize_static_local, 0, csr_64, implicit %rsp, implicit %rdi
bb.4.sw.bb2:
TCRETURNdi64 @mergeable_conditional_tailcall, 0, csr_64, implicit %rsp
bb.5.sw.epilog:
TCRETURNdi64 @mergeable_conditional_tailcall, 0, csr_64, implicit %rsp
bb.6.return:
RET 0
...

15
test/CodeGen/X86/pause.ll Normal file
View File

@ -0,0 +1,15 @@
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -disable-peephole -mtriple=i386-apple-darwin -mattr=-sse -show-mc-encoding | FileCheck %s
; RUN: llc < %s -disable-peephole -mtriple=i386-apple-darwin -mattr=-avx,+sse2 -show-mc-encoding | FileCheck %s
; RUN: llc < %s -disable-peephole -mtriple=i386-apple-darwin -mattr=+avx2 -show-mc-encoding | FileCheck %s
; RUN: llc < %s -disable-peephole -mtriple=i386-apple-darwin -mcpu=skx -show-mc-encoding | FileCheck %s
define void @test_x86_sse2_pause() {
; CHECK-LABEL: test_x86_sse2_pause:
; CHECK: ## BB#0:
; CHECK-NEXT: pause ## encoding: [0xf3,0x90]
; CHECK-NEXT: retl ## encoding: [0xc3]
tail call void @llvm.x86.sse2.pause()
ret void
}
declare void @llvm.x86.sse2.pause() nounwind

View File

@ -0,0 +1,42 @@
; RUN: llc < %s | FileCheck %s
; Make sure we check that forwarded memory arguments are not modified when tail
; calling. inalloca and copy arg elimination make argument slots mutable.
target datalayout = "e-m:x-p:32:32-i64:64-f80:32-n8:16:32-a:0:32-S32"
target triple = "i386-pc-windows-msvc19.0.24215"
declare x86_stdcallcc void @tail_std(i32)
declare void @capture(i32*)
define x86_thiscallcc void @inalloca(i32* %this, i32* inalloca %args) {
entry:
%val = load i32, i32* %args
store i32 0, i32* %args
tail call x86_stdcallcc void @tail_std(i32 %val)
ret void
}
; CHECK-LABEL: _inalloca: # @inalloca
; CHECK: movl 4(%esp), %[[reg:[^ ]*]]
; CHECK: movl $0, 4(%esp)
; CHECK: pushl %[[reg]]
; CHECK: calll _tail_std@4
; CHECK: retl $4
define x86_stdcallcc void @copy_elide(i32 %arg) {
entry:
%arg.ptr = alloca i32
store i32 %arg, i32* %arg.ptr
call void @capture(i32* %arg.ptr)
tail call x86_stdcallcc void @tail_std(i32 %arg)
ret void
}
; CHECK-LABEL: _copy_elide@4: # @copy_elide
; CHECK: leal {{[0-9]+}}(%esp), %[[reg:[^ ]*]]
; CHECK: pushl %[[reg]]
; CHECK: calll _capture
; ...
; CHECK: calll _tail_std@4
; CHECK: retl $4

View File

@ -1,19 +1,11 @@
; RUN: llvm-dlltool -m i386:x86-64 --input-def %s --output-lib %t.a
; RUN: llvm-readobj -coff-exports %t.a | FileCheck %s
; RUN: llvm-nm %t.a | FileCheck %s
LIBRARY test.dll
EXPORTS
TestFunction==AltTestFunction
; CHECK: File: test.dll
; CHECK: Format: COFF-x86-64
; CHECK: Arch: x86_64
; CHECK: AddressSize: 64bit
; CHECK: File: test.dll
; CHECK: Format: COFF-x86-64
; CHECK: Arch: x86_64
; CHECK: AddressSize: 64bit
; CHECK: File: test.dll
; CHECK: Format: COFF-x86-64
; CHECK: Arch: x86_64
; CHECK: AddressSize: 64bit
; CHECK: U AltTestFunction
; CHECK-NEXT: w TestFunction
; CHECK: U __imp_AltTestFunction
; CHECK-NEXT: w __imp_TestFunction

View File

@ -0,0 +1,22 @@
; Test -asan-force-dynamic-shadow flag.
;
; RUN: opt -asan -asan-module -S -asan-force-dynamic-shadow=1 < %s | FileCheck %s --check-prefixes=CHECK,CHECK-FDS
; RUN: opt -asan -asan-module -S -asan-force-dynamic-shadow=0 < %s | FileCheck %s --check-prefixes=CHECK,CHECK-NDS
target triple = "x86_64-unknown-linux-gnu"
define i32 @test_load(i32* %a) sanitize_address {
; First instrumentation in the function must be to load the dynamic shadow
; address into a local variable.
; CHECK-LABEL: @test_load
; CHECK: entry:
; CHECK-FDS-NEXT: %[[SHADOW:[^ ]*]] = load i64, i64* @__asan_shadow_memory_dynamic_address
; CHECK-NDS-NOT: __asan_shadow_memory_dynamic_address
; Shadow address is loaded and added into the whole offset computation.
; CHECK-FDS add i64 %{{.*}}, %[[SHADOW] ]
entry:
%tmp1 = load i32, i32* %a, align 4
ret i32 %tmp1
}

View File

@ -1,5 +1,7 @@
; This check verifies that arguments passed by value get redzones.
; RUN: opt < %s -asan -asan-realign-stack=32 -S | FileCheck %s
; RUN: opt < %s -asan -asan-realign-stack=32 -asan-force-dynamic-shadow -S | FileCheck %s --check-prefixes=CHECK-FDS
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
target triple = "x86_64-unknown-linux-gnu"
@ -8,6 +10,8 @@ target triple = "x86_64-unknown-linux-gnu"
declare i32 @bar(%struct.A*)
; CHECK-FDS-NOT: {{\.byval}}
; Test behavior for named argument with explicit alignment. The memcpy and
; alloca alignments should match the explicit alignment of 64.
define void @foo(%struct.A* byval align 64 %a) sanitize_address {

View File

@ -1,4 +1,5 @@
; RUN: llvm-mc -triple arm64-apple-darwin -mattr=crypto -show-encoding -output-asm-variant=1 < %s | FileCheck %s
; RUN: llvm-mc -triple arm64-apple-darwin -mattr='+crypto,+fuse-aes' -show-encoding -output-asm-variant=1 < %s | FileCheck %s
foo:
aese.16b v0, v1

View File

@ -6,24 +6,45 @@ target datalayout = "E-p:64:64:64-a0:0:8-f32:32:32-f64:64:64-i1:8:8-i8:8:8-i16:1
%struct.ss = type { i32, i64 }
define internal void @f(%struct.ss* byval %b) nounwind {
; CHECK-LABEL: define internal void @f(i32 %b.0, i64 %b.1)
entry:
%tmp = getelementptr %struct.ss, %struct.ss* %b, i32 0, i32 0 ; <i32*> [#uses=2]
%tmp1 = load i32, i32* %tmp, align 4 ; <i32> [#uses=1]
%tmp2 = add i32 %tmp1, 1 ; <i32> [#uses=1]
%tmp = getelementptr %struct.ss, %struct.ss* %b, i32 0, i32 0
%tmp1 = load i32, i32* %tmp, align 4
%tmp2 = add i32 %tmp1, 1
store i32 %tmp2, i32* %tmp, align 4
ret void
}
define i32 @main() nounwind {
; CHECK-LABEL: define i32 @main
; CHECK-LABEL: define internal void @f(i32 %b.0, i64 %b.1)
; CHECK: alloca %struct.ss{{$}}
; CHECK: store i32 %b.0
; CHECK: store i64 %b.1
define internal void @g(%struct.ss* byval align 32 %b) nounwind {
entry:
%S = alloca %struct.ss ; <%struct.ss*> [#uses=4]
%tmp1 = getelementptr %struct.ss, %struct.ss* %S, i32 0, i32 0 ; <i32*> [#uses=1]
%tmp = getelementptr %struct.ss, %struct.ss* %b, i32 0, i32 0
%tmp1 = load i32, i32* %tmp, align 4
%tmp2 = add i32 %tmp1, 1
store i32 %tmp2, i32* %tmp, align 4
ret void
}
; CHECK-LABEL: define internal void @g(i32 %b.0, i64 %b.1)
; CHECK: alloca %struct.ss, align 32
; CHECK: store i32 %b.0
; CHECK: store i64 %b.1
define i32 @main() nounwind {
entry:
%S = alloca %struct.ss
%tmp1 = getelementptr %struct.ss, %struct.ss* %S, i32 0, i32 0
store i32 1, i32* %tmp1, align 8
%tmp4 = getelementptr %struct.ss, %struct.ss* %S, i32 0, i32 1 ; <i64*> [#uses=1]
%tmp4 = getelementptr %struct.ss, %struct.ss* %S, i32 0, i32 1
store i64 2, i64* %tmp4, align 4
call void @f( %struct.ss* byval %S ) nounwind
; CHECK: call void @f(i32 %{{.*}}, i64 %{{.*}})
call void @f(%struct.ss* byval %S) nounwind
call void @g(%struct.ss* byval %S) nounwind
ret i32 0
}
; CHECK-LABEL: define i32 @main
; CHECK: call void @f(i32 %{{.*}}, i64 %{{.*}})
; CHECK: call void @g(i32 %{{.*}}, i64 %{{.*}})

View File

@ -0,0 +1,29 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -loop-unroll -S %s | FileCheck %s
%struct.bar = type { i32 }
@global = external constant [78 x %struct.bar], align 4
define void @patatino(i32 %x) {
; CHECK-LABEL: @patatino(
; CHECK-NEXT: bb:
; CHECK-NEXT: br i1 true, label [[BB1_PREHEADER:%.*]], label [[BB3:%.*]]
; CHECK: bb1.preheader:
; CHECK-NEXT: br label [[BB1:%.*]]
; CHECK: bb1:
; CHECK-NEXT: br label [[BB3]]
; CHECK: bb3:
; CHECK-NEXT: ret void
;
bb:
br i1 true, label %bb1, label %bb3
bb1:
%tmp = getelementptr inbounds [78 x %struct.bar], [78 x %struct.bar]* @global, i32 0, <4 x i32> undef
%tmp2 = getelementptr inbounds %struct.bar, <4 x %struct.bar*> %tmp, i32 1
br i1 true, label %bb3, label %bb1
bb3:
ret void
}

View File

@ -0,0 +1,11 @@
; RUN: opt -S -ipsccp < %s | FileCheck %s
@d = internal externally_initialized global i32 0, section ".openbsd.randomdata", align 4
; CHECK-LABEL: @test1(
define i32 @test1() {
entry:
%load = load i32, i32* @d, align 4
ret i32 %load
; CHECK: %[[load:.*]] = load i32, i32* @d, align 4
; CHECK: ret i32 %[[load]]
}

View File

@ -507,6 +507,19 @@ class CloneModule : public ::testing::Test {
DINode::FlagZero, false);
F->setSubprogram(Subprogram);
// Create and assign DIGlobalVariableExpression to gv
auto GVExpression = DBuilder.createGlobalVariableExpression(
Subprogram, "gv", "gv", File, 1, DBuilder.createNullPtrType(), false);
GV->addDebugInfo(GVExpression);
// DIGlobalVariableExpression not attached to any global variable
auto Expr = DBuilder.createExpression(
ArrayRef<uint64_t>{dwarf::DW_OP_constu, 42U, dwarf::DW_OP_stack_value});
DBuilder.createGlobalVariableExpression(
Subprogram, "unattached", "unattached", File, 1,
DBuilder.createNullPtrType(), false, Expr);
auto *Entry = BasicBlock::Create(C, "", F);
IBuilder.SetInsertPoint(Entry);
IBuilder.CreateRetVoid();
@ -546,6 +559,52 @@ TEST_F(CloneModule, GlobalMetadata) {
EXPECT_NE(nullptr, NewGV->getMetadata(LLVMContext::MD_type));
}
TEST_F(CloneModule, GlobalDebugInfo) {
GlobalVariable *NewGV = NewM->getGlobalVariable("gv");
EXPECT_TRUE(NewGV != nullptr);
// Find debug info expression assigned to global
SmallVector<DIGlobalVariableExpression *, 1> GVs;
NewGV->getDebugInfo(GVs);
EXPECT_EQ(GVs.size(), 1U);
DIGlobalVariableExpression *GVExpr = GVs[0];
DIGlobalVariable *GV = GVExpr->getVariable();
EXPECT_TRUE(GV != nullptr);
EXPECT_EQ(GV->getName(), "gv");
EXPECT_EQ(GV->getLine(), 1U);
// Assert that the scope of the debug info attached to
// global variable matches the cloned function.
DISubprogram *SP = NewM->getFunction("f")->getSubprogram();
EXPECT_TRUE(SP != nullptr);
EXPECT_EQ(GV->getScope(), SP);
}
TEST_F(CloneModule, CompileUnit) {
// Find DICompileUnit listed in llvm.dbg.cu
auto *NMD = NewM->getNamedMetadata("llvm.dbg.cu");
EXPECT_TRUE(NMD != nullptr);
EXPECT_EQ(NMD->getNumOperands(), 1U);
DICompileUnit *CU = dyn_cast<llvm::DICompileUnit>(NMD->getOperand(0));
EXPECT_TRUE(CU != nullptr);
// Assert this CU is consistent with the cloned function debug info
DISubprogram *SP = NewM->getFunction("f")->getSubprogram();
EXPECT_TRUE(SP != nullptr);
EXPECT_EQ(SP->getUnit(), CU);
// Check globals listed in CU have the correct scope
DIGlobalVariableExpressionArray GlobalArray = CU->getGlobalVariables();
EXPECT_EQ(GlobalArray.size(), 2U);
for (DIGlobalVariableExpression *GVExpr : GlobalArray) {
DIGlobalVariable *GV = GVExpr->getVariable();
EXPECT_EQ(GV->getScope(), SP);
}
}
TEST_F(CloneModule, Comdat) {
GlobalVariable *NewGV = NewM->getGlobalVariable("gv");
auto *CD = NewGV->getComdat();