Document the method used to compute expf. Taken from exp, with
changes to reflect differences in computation between the two.
This commit is contained in:
parent
aa616aa22d
commit
527a7c56f7
@ -21,6 +21,68 @@ __FBSDID("$FreeBSD$");
|
|||||||
#include "math.h"
|
#include "math.h"
|
||||||
#include "math_private.h"
|
#include "math_private.h"
|
||||||
|
|
||||||
|
/* __ieee754_expf
|
||||||
|
* Returns the exponential of x.
|
||||||
|
*
|
||||||
|
* Method
|
||||||
|
* 1. Argument reduction:
|
||||||
|
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
||||||
|
* Given x, find r and integer k such that
|
||||||
|
*
|
||||||
|
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
||||||
|
*
|
||||||
|
* Here r will be represented as r = hi-lo for better
|
||||||
|
* accuracy.
|
||||||
|
*
|
||||||
|
* 2. Approximation of exp(r) by a special rational function on
|
||||||
|
* the interval [0,0.34658]:
|
||||||
|
* Write
|
||||||
|
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
||||||
|
* We use a special Remes algorithm on [0,0.34658] to generate
|
||||||
|
* a polynomial of degree 2 to approximate R. The maximum error
|
||||||
|
* of this polynomial approximation is bounded by 2**-27. In
|
||||||
|
* other words,
|
||||||
|
* R(z) ~ 2.0 + P1*z + P2*z*z
|
||||||
|
* (where z=r*r, and the values of P1 and P2 are listed below)
|
||||||
|
* and
|
||||||
|
* | 2 | -27
|
||||||
|
* | 2.0+P1*z+P2*z - R(z) | <= 2
|
||||||
|
* | |
|
||||||
|
* The computation of expf(r) thus becomes
|
||||||
|
* 2*r
|
||||||
|
* expf(r) = 1 + -------
|
||||||
|
* R - r
|
||||||
|
* r*R1(r)
|
||||||
|
* = 1 + r + ----------- (for better accuracy)
|
||||||
|
* 2 - R1(r)
|
||||||
|
* where
|
||||||
|
* 2 4
|
||||||
|
* R1(r) = r - (P1*r + P2*r)
|
||||||
|
*
|
||||||
|
* 3. Scale back to obtain expf(x):
|
||||||
|
* From step 1, we have
|
||||||
|
* expf(x) = 2^k * expf(r)
|
||||||
|
*
|
||||||
|
* Special cases:
|
||||||
|
* expf(INF) is INF, exp(NaN) is NaN;
|
||||||
|
* expf(-INF) is 0, and
|
||||||
|
* for finite argument, only exp(0)=1 is exact.
|
||||||
|
*
|
||||||
|
* Accuracy:
|
||||||
|
* according to an error analysis, the error is always less than
|
||||||
|
* 0.5013 ulp (unit in the last place).
|
||||||
|
*
|
||||||
|
* Misc. info.
|
||||||
|
* For IEEE float
|
||||||
|
* if x > 8.8721679688e+01 then exp(x) overflow
|
||||||
|
* if x < -1.0397208405e+02 then exp(x) underflow
|
||||||
|
*
|
||||||
|
* Constants:
|
||||||
|
* The hexadecimal values are the intended ones for the following
|
||||||
|
* constants. The decimal values may be used, provided that the
|
||||||
|
* compiler will convert from decimal to binary accurately enough
|
||||||
|
* to produce the hexadecimal values shown.
|
||||||
|
*/
|
||||||
static const float
|
static const float
|
||||||
one = 1.0,
|
one = 1.0,
|
||||||
halF[2] = {0.5,-0.5,},
|
halF[2] = {0.5,-0.5,},
|
||||||
|
Loading…
Reference in New Issue
Block a user