aw_sid: Add nvmem interface

Rework aw_sid so it can work with the nvmem interface.
Each SoC expose a set of fuses (for now rootkey/boardid and, if available,
the thermal calibration data). A fuse can be private or public, reading private
fuse needs to be done via some registers instead of reading directly.
Each fuse is exposed as a sysctl.
For now leave the possibility for a driver to read any fuse without using
the nvmem interface as the awg and emac driver use this to generate a mac
address.
This commit is contained in:
manu 2018-08-06 05:35:24 +00:00
parent beb0f2d23d
commit 5836e9a6b2
5 changed files with 262 additions and 120 deletions

View File

@ -50,7 +50,12 @@ __FBSDID("$FreeBSD$");
#include <arm/allwinner/aw_sid.h>
/* efuse registers */
#include "nvmem_if.h"
/*
* Starting at least from sun8iw6 (A83T) EFUSE starts at 0x200
* There is 3 registers in the low area to read/write protected EFUSE.
*/
#define SID_PRCTL 0x40
#define SID_PRCTL_OFFSET_MASK 0xff
#define SID_PRCTL_OFFSET(n) (((n) & SID_PRCTL_OFFSET_MASK) << 16)
@ -60,53 +65,148 @@ __FBSDID("$FreeBSD$");
#define SID_PRKEY 0x50
#define SID_RDKEY 0x60
#define SID_SRAM 0x200
/* Offsets into efuse space, for convenience */
#define SID_THERMAL_CALIB0_OFF (0x34)
#define SID_THERMAL_CALIB1_OFF (0x38)
#define SID_THERMAL_CALIB0 (SID_SRAM + SID_THERMAL_CALIB0_OFF)
#define SID_THERMAL_CALIB1 (SID_SRAM + SID_THERMAL_CALIB1_OFF)
#define EFUSE_OFFSET 0x200
#define EFUSE_NAME_SIZE 32
#define EFUSE_DESC_SIZE 64
#define ROOT_KEY_SIZE 4
struct aw_sid_efuse {
char name[EFUSE_NAME_SIZE];
char desc[EFUSE_DESC_SIZE];
bus_size_t base;
bus_size_t offset;
uint32_t size;
enum aw_sid_fuse_id id;
bool public;
};
static struct aw_sid_efuse a10_efuses[] = {
{
.name = "rootkey",
.desc = "Root Key or ChipID",
.offset = 0x0,
.size = 16,
.id = AW_SID_FUSE_ROOTKEY,
.public = true,
},
};
static struct aw_sid_efuse a64_efuses[] = {
{
.name = "rootkey",
.desc = "Root Key or ChipID",
.base = EFUSE_OFFSET,
.offset = 0x00,
.size = 16,
.id = AW_SID_FUSE_ROOTKEY,
.public = true,
},
{
.name = "ths-calib",
.desc = "Thermal Sensor Calibration Data",
.base = EFUSE_OFFSET,
.offset = 0x34,
.size = 6,
.id = AW_SID_FUSE_THSSENSOR,
.public = true,
},
};
static struct aw_sid_efuse a83t_efuses[] = {
{
.name = "rootkey",
.desc = "Root Key or ChipID",
.base = EFUSE_OFFSET,
.offset = 0x00,
.size = 16,
.id = AW_SID_FUSE_ROOTKEY,
.public = true,
},
{
.name = "ths-calib",
.desc = "Thermal Sensor Calibration Data",
.base = EFUSE_OFFSET,
.offset = 0x34,
.size = 8,
.id = AW_SID_FUSE_THSSENSOR,
.public = true,
},
};
static struct aw_sid_efuse h3_efuses[] = {
{
.name = "rootkey",
.desc = "Root Key or ChipID",
.base = EFUSE_OFFSET,
.offset = 0x00,
.size = 16,
.id = AW_SID_FUSE_ROOTKEY,
.public = true,
},
{
.name = "ths-calib",
.desc = "Thermal Sensor Calibration Data",
.base = EFUSE_OFFSET,
.offset = 0x34,
.size = 2,
.id = AW_SID_FUSE_THSSENSOR,
.public = false,
},
};
static struct aw_sid_efuse h5_efuses[] = {
{
.name = "rootkey",
.desc = "Root Key or ChipID",
.base = EFUSE_OFFSET,
.offset = 0x00,
.size = 16,
.id = AW_SID_FUSE_ROOTKEY,
.public = true,
},
{
.name = "ths-calib",
.desc = "Thermal Sensor Calibration Data",
.base = EFUSE_OFFSET,
.offset = 0x34,
.size = 4,
.id = AW_SID_FUSE_THSSENSOR,
.public = true,
},
};
struct aw_sid_conf {
bus_size_t efuse_size;
bus_size_t rootkey_offset;
bool has_prctl;
bool has_thermal;
bool requires_prctl_read;
struct aw_sid_efuse *efuses;
size_t nfuses;
};
static const struct aw_sid_conf a10_conf = {
.efuse_size = 0x10,
.rootkey_offset = 0,
.efuses = a10_efuses,
.nfuses = nitems(a10_efuses),
};
static const struct aw_sid_conf a20_conf = {
.efuse_size = 0x10,
.rootkey_offset = 0,
.efuses = a10_efuses,
.nfuses = nitems(a10_efuses),
};
static const struct aw_sid_conf a64_conf = {
.efuse_size = 0x100,
.rootkey_offset = SID_SRAM,
.has_prctl = true,
.has_thermal = true,
.efuses = a64_efuses,
.nfuses = nitems(a64_efuses),
};
static const struct aw_sid_conf a83t_conf = {
.efuse_size = 0x100,
.rootkey_offset = SID_SRAM,
.has_prctl = true,
.has_thermal = true,
.efuses = a83t_efuses,
.nfuses = nitems(a83t_efuses),
};
static const struct aw_sid_conf h3_conf = {
.efuse_size = 0x100,
.rootkey_offset = SID_SRAM,
.has_prctl = true,
.has_thermal = true,
.requires_prctl_read = true,
.efuses = h3_efuses,
.nfuses = nitems(h3_efuses),
};
static const struct aw_sid_conf h5_conf = {
.efuses = h5_efuses,
.nfuses = nitems(h5_efuses),
};
static struct ofw_compat_data compat_data[] = {
@ -115,6 +215,7 @@ static struct ofw_compat_data compat_data[] = {
{ "allwinner,sun50i-a64-sid", (uintptr_t)&a64_conf},
{ "allwinner,sun8i-a83t-sid", (uintptr_t)&a83t_conf},
{ "allwinner,sun8i-h3-sid", (uintptr_t)&h3_conf},
{ "allwinner,sun50i-h5-sid", (uintptr_t)&h5_conf},
{ NULL, 0 }
};
@ -132,45 +233,11 @@ static struct resource_spec aw_sid_spec[] = {
{ -1, 0 }
};
enum sid_keys {
AW_SID_ROOT_KEY,
};
#define RD1(sc, reg) bus_read_1((sc)->res, (reg))
#define RD4(sc, reg) bus_read_4((sc)->res, (reg))
#define WR4(sc, reg, val) bus_write_4((sc)->res, (reg), (val))
#define PRCTL_RD4(sc, reg, val) aw_sid_prctl_read((sc)->sid_dev, (reg), (val))
static int aw_sid_sysctl(SYSCTL_HANDLER_ARGS);
static int aw_sid_prctl_read(device_t dev, bus_size_t offset, uint32_t *val);
/*
* offset here is offset into efuse space, rather than offset into sid register
* space. This form of read is only an option for newer SoC: A83t, H3, A64
*/
static int
aw_sid_prctl_read(device_t dev, bus_size_t offset, uint32_t *val)
{
struct aw_sid_softc *sc;
uint32_t readval;
sc = device_get_softc(dev);
if (!sc->sid_conf->has_prctl)
return (1);
mtx_lock(&sc->prctl_mtx);
readval = SID_PRCTL_OFFSET(offset) | SID_PRCTL_LOCK | SID_PRCTL_READ;
WR4(sc, SID_PRCTL, readval);
/* Read bit will be cleared once read has concluded */
while (RD4(sc, SID_PRCTL) & SID_PRCTL_READ)
continue;
readval = RD4(sc, SID_RDKEY);
mtx_unlock(&sc->prctl_mtx);
*val = readval;
return (0);
}
static int
aw_sid_probe(device_t dev)
@ -189,7 +256,10 @@ static int
aw_sid_attach(device_t dev)
{
struct aw_sid_softc *sc;
phandle_t node;
int i;
node = ofw_bus_get_node(dev);
sc = device_get_softc(dev);
sc->sid_dev = dev;
@ -202,74 +272,123 @@ aw_sid_attach(device_t dev)
sc->sid_conf = (struct aw_sid_conf *)ofw_bus_search_compatible(dev, compat_data)->ocd_data;
aw_sid_sc = sc;
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "rootkey",
CTLTYPE_STRING | CTLFLAG_RD,
dev, AW_SID_ROOT_KEY, aw_sid_sysctl, "A", "Root Key");
/* Register ourself so device can resolve who we are */
OF_device_register_xref(OF_xref_from_node(node), dev);
for (i = 0; i < sc->sid_conf->nfuses ;i++) {\
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, sc->sid_conf->efuses[i].name,
CTLTYPE_STRING | CTLFLAG_RD,
dev, sc->sid_conf->efuses[i].id, aw_sid_sysctl,
"A", sc->sid_conf->efuses[i].desc);
}
return (0);
}
int
aw_sid_read_tscalib(uint32_t *calib0, uint32_t *calib1)
aw_sid_get_fuse(enum aw_sid_fuse_id id, uint8_t *out, uint32_t *size)
{
struct aw_sid_softc *sc;
uint32_t val;
int i, j;
sc = aw_sid_sc;
if (sc == NULL)
return (ENXIO);
if (!sc->sid_conf->has_thermal)
return (ENXIO);
if (sc->sid_conf->requires_prctl_read) {
PRCTL_RD4(sc, SID_THERMAL_CALIB0_OFF, calib0);
PRCTL_RD4(sc, SID_THERMAL_CALIB1_OFF, calib1);
} else {
*calib0 = RD4(sc, SID_THERMAL_CALIB0);
*calib1 = RD4(sc, SID_THERMAL_CALIB1);
for (i = 0; i < sc->sid_conf->nfuses; i++)
if (id == sc->sid_conf->efuses[i].id)
break;
if (i == sc->sid_conf->nfuses)
return (ENOENT);
if (*size != sc->sid_conf->efuses[i].size) {
*size = sc->sid_conf->efuses[i].size;
return (ENOMEM);
}
return (0);
}
if (out == NULL)
return (ENOMEM);
int
aw_sid_get_rootkey(u_char *out)
{
struct aw_sid_softc *sc;
int i;
bus_size_t root_key_off;
u_int tmp;
sc = aw_sid_sc;
if (sc == NULL)
return (ENXIO);
root_key_off = aw_sid_sc->sid_conf->rootkey_offset;
for (i = 0; i < ROOT_KEY_SIZE ; i++) {
if (sc->sid_conf->requires_prctl_read)
PRCTL_RD4(sc, (i * 4), &tmp);
else
tmp = RD4(aw_sid_sc, root_key_off + (i * 4));
be32enc(&out[i * 4], tmp);
if (sc->sid_conf->efuses[i].public == false)
mtx_lock(&sc->prctl_mtx);
for (j = 0; j < sc->sid_conf->efuses[i].size; j += 4) {
if (sc->sid_conf->efuses[i].public == false) {
val = SID_PRCTL_OFFSET(sc->sid_conf->efuses[i].offset + j) |
SID_PRCTL_LOCK |
SID_PRCTL_READ;
WR4(sc, SID_PRCTL, val);
/* Read bit will be cleared once read has concluded */
while (RD4(sc, SID_PRCTL) & SID_PRCTL_READ)
continue;
val = RD4(sc, SID_RDKEY);
} else
val = RD4(sc, sc->sid_conf->efuses[i].base +
sc->sid_conf->efuses[i].offset + j);
out[j] = val & 0xFF;
if (j + 1 < *size)
out[j + 1] = (val & 0xFF00) >> 8;
if (j + 2 < *size)
out[j + 2] = (val & 0xFF0000) >> 16;
if (j + 3 < *size)
out[j + 3] = (val & 0xFF000000) >> 24;
}
if (sc->sid_conf->efuses[i].public == false)
mtx_unlock(&sc->prctl_mtx);
return (0);
}
static int
aw_sid_read(device_t dev, uint32_t offset, uint32_t size, uint8_t *buffer)
{
struct aw_sid_softc *sc;
enum aw_sid_fuse_id fuse_id = 0;
int i;
sc = device_get_softc(dev);
for (i = 0; i < sc->sid_conf->nfuses; i++)
if (offset == (sc->sid_conf->efuses[i].base +
sc->sid_conf->efuses[i].offset)) {
fuse_id = sc->sid_conf->efuses[i].id;
break;
}
if (fuse_id == 0)
return (ENOENT);
return (aw_sid_get_fuse(fuse_id, buffer, &size));
}
static int
aw_sid_sysctl(SYSCTL_HANDLER_ARGS)
{
enum sid_keys key = arg2;
u_char rootkey[16];
char out[33];
struct aw_sid_softc *sc;
device_t dev = arg1;
enum aw_sid_fuse_id fuse = arg2;
uint8_t data[32];
char out[128];
uint32_t size;
int ret, i;
if (key != AW_SID_ROOT_KEY)
return (ENOENT);
sc = device_get_softc(dev);
if (aw_sid_get_rootkey(rootkey) != 0)
/* Get the size of the efuse data */
size = 0;
aw_sid_get_fuse(fuse, NULL, &size);
/* We now have the real size */
ret = aw_sid_get_fuse(fuse, data, &size);
if (ret != 0) {
device_printf(dev, "Cannot get fuse id %d: %d\n", fuse, ret);
return (ENOENT);
snprintf(out, sizeof(out),
"%16D", rootkey, "");
}
for (i = 0; i < size; i++)
snprintf(out + (i * 2), sizeof(out) - (i * 2),
"%.2x", data[i]);
return sysctl_handle_string(oidp, out, sizeof(out), req);
}
@ -279,6 +398,8 @@ static device_method_t aw_sid_methods[] = {
DEVMETHOD(device_probe, aw_sid_probe),
DEVMETHOD(device_attach, aw_sid_attach),
/* NVMEM interface */
DEVMETHOD(nvmem_read, aw_sid_read),
DEVMETHOD_END
};

View File

@ -29,7 +29,12 @@
#ifndef __AW_SID_H__
#define __AW_SID_H__
enum aw_sid_fuse_id {
AW_SID_FUSE_ROOTKEY = 1,
AW_SID_FUSE_THSSENSOR,
};
int aw_sid_read_tscalib(uint32_t *, uint32_t *);
int aw_sid_get_rootkey(u_char *out);
int aw_sid_get_fuse(enum aw_sid_fuse_id id, uint8_t *out, uint32_t *size);
#endif /* !__AW_SID_H__ */

View File

@ -50,10 +50,12 @@ __FBSDID("$FreeBSD$");
#include <dev/extres/clk/clk.h>
#include <dev/extres/hwreset/hwreset.h>
#include <dev/extres/nvmem/nvmem.h>
#include <arm/allwinner/aw_sid.h>
#include "cpufreq_if.h"
#include "nvmem_if.h"
#define THS_CTRL0 0x00
#define THS_CTRL1 0x04
@ -281,23 +283,31 @@ static struct resource_spec aw_thermal_spec[] = {
static int
aw_thermal_init(struct aw_thermal_softc *sc)
{
uint32_t calib0, calib1;
phandle_t node;
uint32_t calib[2];
int error;
node = ofw_bus_get_node(sc->dev);
if (sc->conf->calib0_mask != 0 || sc->conf->calib1_mask != 0) {
/* Read calibration settings from SRAM */
error = aw_sid_read_tscalib(&calib0, &calib1);
if (error != 0)
error = nvmem_read_cell_by_name(node, "ths_calibration",
(void *)calib, sizeof(calib));
/* Read calibration settings from EFUSE */
if (error != 0) {
device_printf(sc->dev, "Cannot read THS efuse\n");
return (error);
}
calib0 &= sc->conf->calib0_mask;
calib1 &= sc->conf->calib1_mask;
device_printf(sc->dev, "calib0: %x\n", calib[0]);
device_printf(sc->dev, "calib1: %x\n", calib[1]);
calib[0] &= sc->conf->calib0_mask;
calib[1] &= sc->conf->calib1_mask;
/* Write calibration settings to thermal controller */
if (calib0 != 0)
WR4(sc, THS_CALIB0, calib0);
if (calib1 != 0)
WR4(sc, THS_CALIB1, calib1);
if (calib[0] != 0)
WR4(sc, THS_CALIB0, calib[0]);
if (calib[1] != 0)
WR4(sc, THS_CALIB1, calib[1]);
}
/* Configure ADC acquire time (CLK_IN/(N+1)) and enable sensors */

View File

@ -1529,15 +1529,18 @@ awg_get_eaddr(device_t dev, uint8_t *eaddr)
struct awg_softc *sc;
uint32_t maclo, machi, rnd;
u_char rootkey[16];
uint32_t rootkey_size;
sc = device_get_softc(dev);
machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
maclo = RD4(sc, EMAC_ADDR_LOW(0));
rootkey_size = sizeof(rootkey);
if (maclo == 0xffffffff && machi == 0xffff) {
/* MAC address in hardware is invalid, create one */
if (aw_sid_get_rootkey(rootkey) == 0 &&
if (aw_sid_get_fuse(AW_SID_FUSE_ROOTKEY, rootkey,
&rootkey_size) == 0 &&
(rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
rootkey[15]) != 0) {
/* MAC address is derived from the root key in SID */

View File

@ -170,6 +170,7 @@ emac_get_hwaddr(struct emac_softc *sc, uint8_t *hwaddr)
{
uint32_t val0, val1, rnd;
u_char rootkey[16];
size_t rootkey_size;
/*
* Try to get MAC address from running hardware.
@ -193,7 +194,9 @@ emac_get_hwaddr(struct emac_softc *sc, uint8_t *hwaddr)
hwaddr[4] = (val0 >> 8) & 0xff;
hwaddr[5] = (val0 >> 0) & 0xff;
} else {
if (aw_sid_get_rootkey(rootkey) == 0) {
rootkey_size = sizeof(rootkey);
if (aw_sid_get_fuse(AW_SID_FUSE_ROOTKEY, rootkey,
&rootkey_size) == 0) {
hwaddr[0] = 0x2;
hwaddr[1] = rootkey[3];
hwaddr[2] = rootkey[12];